Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight-Mass Spectrometry-Based Analysis of Facial Physiological Parameters and Lipid Composition of Between Sensitive Skin of Women Aged 36–42 and 43–49 Year
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Method
2.2.1. Subject
2.2.2. Sample Collection
2.2.3. Lipid Sample Processing
2.2.4. Liquid Chromatography and Mass Spectrometry Conditions
2.3. Data Processing
3. Results
3.1. Results and Analysis of Research Questionnaires in T1–T2 Groups
3.2. Results and Analysis of Physiological Parameters in T1-T2 Groups
3.3. OPLS-DA Screening of Facial Differential Lipids in T1-T2 Groups
3.4. Analysis of Facial SSL Broad Categories and Subcategory in T1-T2 Groups
3.5. Facial VLCM Lipid Screening and ROC Prediction Analysis in T1-T2 Groups
3.6. Correlation Visual Analysis of Questionnaires, Physiological Parameters, and Key Lipids in T1–T2 Groups
3.6.1. Correlation Analysis of Questionnaires and Physiological Parameters
3.6.2. Correlation Analysis of VLCM Lipids and Physiological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ninomiya, R.; Nishijima, T.; Aoshima, M.; Sakaguchi, H.; Tokura, Y. Sensory irritation to methylparaben is caused by its low metabolism in the skin. J. Dermatol. 2023, 50, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Jourdain, R.; Lacharrière, O.D.; Bastien, P.; Maibach, H.I. Ethnic variations in self-perceived sensitive skin: Epidemiological survey. Contact Dermat. 2002, 46, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Su, Y.; Zheng, B.; Wen, S.; Liu, D.; Ye, L.; Yan, Y.; Elias, P.M.; Yang, B.; Man, M.Q. Gender-related characterization of sensitive skin in normal young Chinese. J. Cosmet. Dermatol. 2020, 19, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ma, X.; Zhao, J.; Yan, S.; Liu, Q.; Zhao, H. The Interaction of Age and Anatomical Region Influenced Skin Biophysical Characteristics of Chinese Women. Clin. Cosmet. Investig. Dermatol. 2020, 13, 911–926. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Guo, Y.; Lai, H. Revealing the connotation of the “seven-seven” theory of Huangdi Neijing and the mechanism of traditional Chinese medicine intervention in elderly IVF-ET patients based on mitochondrial function. Chin. J. Exp. Herb. Med. 2023, 29, 28–134. [Google Scholar]
- Wang, Z.; Tong, W.; Zhou, C.; Hu, P.O.; Yang, S.; Zhang, H. Differential analysis of sensitive skin surface lipids based on lipidomics. Dly. Chem. Ind. 2023, 53, 999–1007. (In English) [Google Scholar]
- Ma, Y.; Cui, L.; Tian, Y.; He, C. Lipidomics analysis of facial lipid biomarkers in females with self-perceived skin sensitivity. Health Sci. Rep. 2022, 5, e632. [Google Scholar] [CrossRef]
- Jia, Y.; Zhou, M.; Huang, H.; Gan, Y.; Yang, M.; Ding, R. Characterization of circadian human facial surface lipid composition. Exp. Dermatol. 2019, 28, 858–862. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, M.; Wang, H.; Yang, M.; Gao, Y.; Jia, Y. Lipidomics reveals the role of glycoceramide and phosphatidylethanolamine in infantile acne. J. Cosmet. Dermatol. 2020, 20, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ding, W.; Sun, J.; Bi, Y.; Liu, J.; Dai, X.; He, C.; He, H.; Jia, Y. Lipid profiling of oily skin in Chinese female aged 22-28 and 29-35-according to the life rhythm theory of Huangdi Neijing. Asian J. Beauty Cosmetol. 2024, 22, 197–209. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, W.; Yu, X. Effects of intense pulsed light irradiation on female facial lipids based on UPLC-QTOF-MS. Dly. Chem. Ind. 2023, 53, 32–40, (In Chinese and English). [Google Scholar]
- Harvey, V.M.; Alexis, A.; Okeke, C.A.V. Integrating skin color assessments into clinical practice and research: A review of current approaches. J. Am. Acad. Dermatol. 2024, 91, 1189–1198. [Google Scholar] [CrossRef]
- Gupta, V.; Sharma, V.K. Skin typing: Fitzpatrick grading and others. Clin. Dermatol. 2020, 37, 430–436. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Zhang, Y. Advances in facial skin typing methods. Tissue Eng. Reconstr. Surg. 2024, 20, 378–381. [Google Scholar]
- Jian, Y.; Ma, L.; Li, J. Correlation study of different methods for evaluating the degree of skin redness. Sci. Dly. Chem. 2024, 47, 26–30. [Google Scholar]
- Lu, Y.; Yang, J.; Xiao, K.; Pointer, M.; Li, C.; Wuerger, S. Skin coloration is a culturally-specific cue for attractiveness, healthiness, and youthfulness in observers of Chinese and western European descent. PLoS ONE 2021, 16, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta (BBA) 2011, 1811, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Janssens, A.C.J.W.; Forike, K.M. Reflection on modern methods: Revisiting the area under the ROC Curve. Int. J. Epidemiol. 2020, 49, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Svetlana, K.E.; Chun, L.; Bryan, E.S. Nonparametric estimation of Spearman’s rank correlation with bivariate survival data. Biometrics 2022, 78, 421–434. [Google Scholar]
- Imokawa, G.; Ishida, K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: Reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int. J. Mol. Sci. 2015, 16, 7753–7775. [Google Scholar] [CrossRef]
- Abraham, I.C.; Zachary, W.L.; Hookway, T.A.; German, G.K. Ultraviolet light induces mechanical and structural changes in full thickness human skin. J. Mech Behav. Biomed. Mater. 2023, 143, 105880. [Google Scholar]
- Kim, S.J.; Shin, M.K.; Back, J.H. Pore volume is most highly correlated with the visual assessment of skin pores. Ski. Res. Technol. 2014, 20, 429–434. [Google Scholar] [CrossRef]
- Misery, L.; Loser, K.; Ständer, S. Sensitive skin. J. Eur. Acad Dermatol. Venereol. 2016, 30, 2–8. [Google Scholar] [CrossRef]
- Schwab, H.; Flora, J.; Harvey, N.M. Impacts of Skin Eccrine Glands on the Measured Values of Transepidermal Water Loss. Cureus 2022, 14, 32266. [Google Scholar] [CrossRef] [PubMed]
- Rzepecki, A.K.; Murase, J.E.; Juran, R.; Fabi, S.G.; McLellan, B.N. Estrogen-deficient skin: The role of topical therapy. Int. J. Womens Dermatol. 2019, 5, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Li, X.; Zhao, S.; Zheng, X.; Zhu, W.; Zhang, J.; Dong, Y. Impact of skin sensitivity mechanisms on sebum secretion: Management strategies for oily sensitive skin. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100017. [Google Scholar] [CrossRef]
- Yang, X.X.; Zhao, M.M.; He, Y.F.; Meng, H.; Meng, Q.Y.; Shi, Q.Y.; Yi, F. Facial Skin Aging Stages in Chinese Females. Front. Med. 2022, 9, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Lephart, E.D.; Naftolin, F. Menopause and the Skin: Old Favorites and New Innovations in Cosmeceuticals for Estrogen-Deficient Skin. Dermatol. Ther. 2021, 11, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Kuang, X.; Yi, F.; Yang, X. Study on skin differences and aging characteristics of sensitive people based on skin homeostasis. Sci. Dly. Chem. 2024, 47, 43–54. [Google Scholar]
- Xue, F. Aging Parameters of Facial Skin and Their Skin Type by Correlating in Han Chinese Women in Beijing. Master’s Degree, Peking Union Medical College Hospital, Beijing, China, 2017. [Google Scholar]
- Misery, L.; Jourdan, E.; Huet, F. Sensitive skin in france: A study on prevalence, relationship with age and skin type and impact on quality of life. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Tomasz, S.; Christian, K.; Mathias, J. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry. Sci. Rep. 2017, 7, 43761. [Google Scholar]
- Ahmad, A.; Ahsan, H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed. Dermatol. 2020, 4, 12. [Google Scholar] [CrossRef]
- He, X.; Gao, X.; Xie, W. Research Progress in Skin Aging, Metabolism, and Related Products. Int. J. Mol. Sci 2023, 24, 15930. [Google Scholar] [CrossRef] [PubMed]
- Soyun, C.; Kim, H.H.; Lee, M.J. Phosphatidylserine prevents UV-induced decrease of type I procollagen and increase of MMP-1 in dermal fibroblasts and human skin in vivo. J. Lipid. Res. 2008, 49, 1235–1245. [Google Scholar]
- Omotezako, T.; Zhao, W.; Rodrigues, M.; Ehrman, M.; Deng, D.; Lau, H.; Hakozaki, T. Skin inflammatory signatures, as measured by disordered spatial redness patterns, predict current and future skin ageing attributes. Exp. Dermatol. 2024, 33, 15163. [Google Scholar] [CrossRef] [PubMed]
- Tanguy, E.; Kassas, N.; Vitale, N. Protein-Phospholipid Interaction Motifs: A Focus on Phosphatidic Acid. Biomolecules 2018, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Gan, Y.; He, C.; Chen, Z.; Zhou, C. The mechanism of skin lipids influencing skin status. J. Dermatol. Sci. 2018, 89, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Helen, A.; Sara, B.; Simon, D.; Carsten, F. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool. J. Investig. Dermatol. 2018, 138, 2295–2300. [Google Scholar]
- Lagace, T.A. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery. Lipid Insights 2016, 8, 65–73. [Google Scholar] [CrossRef]
- Mohammadzadeh, H.N.; Zarezadeh, M.; Molsberry, S.A.; Ascherio, A. Changes in plasma phospholipids and sphingomyelins with aging in men and women: A comprehensive systematic review of longitudinal cohort studies. Ageing Res. Rev. 2021, 68, 101340. [Google Scholar] [CrossRef] [PubMed]
Description | Formula | Compound ID | m/z | Highest Mean |
---|---|---|---|---|
PS(P-16:0/12:0) | C34H66NO9P | LMGP03030001 | 686.4394 | T2 |
PS(O-18:0/20:5(5Z,8Z,11Z,14Z,17Z)) | C44H78NO9P | LMGP03020085 | 796.5514 | T2 |
PA(O-16:0/20:5(5Z,8Z,11Z,14Z,17Z)) | C39H69O7P | LMGP10020076 | 681.4844 | T2 |
PA(O-16:0/22:2(13Z,16Z)) | C41H79O7P | LMGP10020017 | 737.5467 | T2 |
PC(O-16:0/22:5(7Z,10Z,13Z,16Z,19Z)) | C46H84NO7P | LMGP01020066 | 816.5846 | T2 |
PC(16:0/18:3(6Z,9Z,12Z)) | C42H78NO8P | LMGP01010598 | 756.5568 | T2 |
PC(9:0/0:0) | C17H36NO7P | LMGP01050068 | 398.2319 | T2 |
PC(19:3(10Z,13Z,16Z)/0:0) | C27H50NO7P | LMGP01050003 | 554.3197 | T2 |
PS(2-OMe-21:0/0:0) | C28H58NO9P | LMGP03060020 | 606.374 | T2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, R.; Yue, L.; He, C. Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight-Mass Spectrometry-Based Analysis of Facial Physiological Parameters and Lipid Composition of Between Sensitive Skin of Women Aged 36–42 and 43–49 Year. Life 2025, 15, 175. https://doi.org/10.3390/life15020175
Li Y, Tang R, Yue L, He C. Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight-Mass Spectrometry-Based Analysis of Facial Physiological Parameters and Lipid Composition of Between Sensitive Skin of Women Aged 36–42 and 43–49 Year. Life. 2025; 15(2):175. https://doi.org/10.3390/life15020175
Chicago/Turabian StyleLi, Yu, Rong Tang, Lizhi Yue, and Congfen He. 2025. "Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight-Mass Spectrometry-Based Analysis of Facial Physiological Parameters and Lipid Composition of Between Sensitive Skin of Women Aged 36–42 and 43–49 Year" Life 15, no. 2: 175. https://doi.org/10.3390/life15020175
APA StyleLi, Y., Tang, R., Yue, L., & He, C. (2025). Ultra-Performance Liquid Chromatography-Quadrupole-Time-of-Flight-Mass Spectrometry-Based Analysis of Facial Physiological Parameters and Lipid Composition of Between Sensitive Skin of Women Aged 36–42 and 43–49 Year. Life, 15(2), 175. https://doi.org/10.3390/life15020175