Exploring Marine Natural Compounds: Innovative Therapeutic Candidates Against Chagas Disease Through Virtual Screening and Molecular Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.2. Ligand Preparation
2.3. Receptor Preparation and Identification of the Active Site
2.4. Molecular Docking Process
2.5. Drug Likeness Analysis and ADMET Predictions
2.6. Molecular Dynamics Simulations
3. Results and Discussion
3.1. Molecular Docking Simulation
3.2. Drug-likeness and In Silico ADMET of Potential Hit Compounds
3.2.1. Drug-likeness
3.2.2. ADMET
3.3. Interactions Between Potential Hit Molecules and the TcBDF2, Active Site Residues
3.4. Molecular Dynamics Simulation (MD)
3.4.1. Root Mean Square Deviation (RMSD)
3.4.2. Root Mean Square Fluctuations (RMSF)
3.4.3. Radius of Gyration (RoG)
3.4.4. Solvent Accessible Surface Area (SASA)
3.4.5. Hydrogen Bond Analysis
3.4.6. Principal Component Analysis (PCA)
3.4.7. Dynamic Cross Correlation Matrix (DCCM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Sousa, A.S.; Vermeij, D.; Ramos, A.N., Jr.; Luquetti, A.O. Chagas disease. Lancet 2024, 403, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, N.S.; Montgomery, S.P. Chagas disease. Ann. Intern. Med. 2023, 176, ITC17–ITC32. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Waseem, M. Chagas Disease. In StatPearls; StatPearls Publishing: Tampa, FL, USA, 2023. [Google Scholar]
- Swett, M.C.; Rayes, D.L.; Campos, S.V.; Kumar, R.N. Chagas Disease: Epidemiology, Diagnosis, and Treatment. Curr. Cardiol. Rep. 2024, 26, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.Z.L.; de Araújo, C.N.; Cardoso, I.C.C.; Mangabeira, K.S.d.S.; Rocha, A.P.; Charneau, S.; Santana, J.M.; Motta, F.N.; Bastos, I.M.D. Metacyclogenesis as the Starting Point of Chagas Disease. Int. J. Mol. Sci. 2023, 25, 117. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Silva, J.; Menezes, D.S.; Fernandes, J.M.P.; Almeida, M.C.; Vasco-Dos-Santos, D.R.; Saraiva, R.M.; Viçosa, A.L.; Perez, S.A.C.; Andrade, S.G.; Suarez-Fontes, A.M.; et al. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926699. [Google Scholar] [CrossRef]
- Aldasoro, E.; Posada, E.; Requena-Méndez, A.; Calvo-Cano, A.; Serret, N.; Casellas, A.; Sanz, S.; Soy, D.; Pinazo, M.J.; Gascon, J. What to expect and when: Benznidazole toxicity in chronic Chagas’ disease treatment. J. Antimicrob. Chemother. 2018, 73, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Schmunis, G.A.; Yadon, Z.E. Chagas disease: A Latin American health problem becoming a world health problem. Acta Trop. 2010, 115, 14–21. [Google Scholar] [CrossRef]
- Medina-Rincón, G.J.; Gallo-Bernal, S.; Jiménez, P.A.; Cruz-Saavedra, L.; Ramírez, J.D.; Rodríguez, M.J.; Medina-Mur, R.; Díaz-Nassif, G.; Valderrama-Achury, M.D.; Medina, H.M. Molecular and Clinical Aspects of Chronic Manifestations in Chagas Disease: A State-of-the-Art Review. Pathogens 2021, 10, 1493. [Google Scholar] [CrossRef]
- Viotti, R.; Vigliano, C.; Lococo, B.; Bertocchi, G.; Petti, M.; Alvarez, M.G.; Postan, M.; Armenti, A. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: A nonrandomized trial. Ann. Intern. Med. 2006, 144, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.G.; Ramírez, J.C.; Bertocchi, G.; Fernández, M.; Hernández, Y.; Lococo, B.; Lopez-Albizu, C.; Schijman, A.; Cura, C.; Abril, M.; et al. New scheme of intermittent benznidazole administration in patients chronically infected with Trypanosoma cruzi: Clinical, parasitological, and serological assessment after three years of follow-up. Antimicrob. Agents Chemother. 2020, 64, e00439-20. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Estani, S.; Viotti, R.; Segura, E.L. Therapy, Diagnosis and Prognosis of Chronic Chagas Disease: Insight Gained in Argentina. Mem. Inst. Oswaldo Cruz 2009, 104, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.M.C.; Pedra-Rezende, Y.; Pereira, L.D.; de Melo, T.G.; Barbosa, H.S.; Lannes-Vieira, J.; de Castro, S.L.; Daliry, A.; Salomão, K. Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells. Front. Cell. Infect. Microbiol. 2022, 12, 975931. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Quan, C.; Hou, X.; Fan, S. Potential pharmacological resources: Natural bioactive compounds from marine-derived fungi. Mar. Drugs 2016, 14, 76. [Google Scholar] [CrossRef]
- Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A comprehensive marine natural products database towards facilitating drug discovery from the ocean. Nucleic Acids Res. 2021, 49, D509–D515. [Google Scholar] [CrossRef] [PubMed]
- Sheokand, D.; Grewal, A.; Kumar, P.; Chauhan, R.; Saini, V.; Kumar, A. Molecular docking analysis of marine phytochemicals with BACE-1. Bioinformation 2024, 20, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Bittrich, S.; Segura, J.; Duarte, J.M.; Burley, S.K.; Rose, Y. RCSB protein data bank: Exploring protein 3D similarities via comprehensive structural alignments. Bioinformatics 2024, 40, btae370. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Ravindranath, P.A.; Sanner, M.F. AutoSite: An automated approach for pseudo-ligands prediction—From ligand-binding sites identification to predicting key ligand atoms. Bioinformatics 2016, 32, 3142–3149. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, N.; Hutchison, G.R. Fast, efficient fragment-based coordinate generation for Open Babel. J. Cheminform. 2019, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Smith, J.C. Speed vs accuracy: Effect on ligand pose accuracy of varying box size and exhaustiveness in AutoDock Vina. Mol. Inform. 2023, 42, e2200188. [Google Scholar] [CrossRef] [PubMed]
- Kemmish, H.; Fasnacht, M.; Yan, L. Fully automated antibody structure prediction using BIOVIA tools: Validation study. PLoS ONE 2017, 12, e0177923. [Google Scholar] [CrossRef] [PubMed]
- Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.; Flachsenberg, F.; Graef, J.; Sieg, J.; Penner, P.; Poppinga, M.; Ungethüm, A.; Rarey, M. ProteinsPlus: A comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022, 50, W611–W615. [Google Scholar] [CrossRef]
- Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Young, R.J. Today’s drug discovery and the shadow of the rule of 5. Expert Opin. Drug Discov. 2023, 18, 965–972. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Sajadi, F.; Rowley, C.N. Simulations of lipid bilayers using the CHARMM36 force field with the TIP3P-FB and TIP4P-FB water models. PeerJ 2018, 6, e5472. [Google Scholar] [CrossRef]
- Soterroni, A.C.; Galski, R.L.; Scarabello, M.C.; Ramos, F.M. The q-G method: A q-version of the Steepest Descent method for global optimization. SpringerPlus 2015, 4, 647. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.A.F.; Habitzreuter, M.A.; Schwade, M.H.; Borrasca, R.; Antonacci, M.; Gonzatti, G.K.; Netz, P.A.; Barbosa, M.C. Dynamical aspects of supercooled TIP3P–water in the grooves of DNA. J. Chem. Phys. 2019, 150, 235101. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Nose, S.; Klein, M.L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 1983, 50, 1055–1076. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided-Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.L.; Nissink, J.W.M.; Strasser, J.M.; Francis, S.; Higgins, L.; Zhou, H.; Zhang, Z.; Walters, M.A. PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem. 2015, 58, 2091–2113. [Google Scholar] [CrossRef] [PubMed]
- Lippert, T.; Rarey, M. Fast automated placement of polar hydrogen atoms in protein-ligand complexes. J. Cheminform. 2009, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Madushanka, A.; Moura, R.T., Jr.; Verma, N.; Kraka, E. Quantum mechanical assessment of protein-ligand hydrogen bond strength patterns: Insights from semiempirical tight-binding and local vibrational mode theory. Int. J. Mol. Sci. 2023, 24, 6311. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, H.; Charris, K.; Fernandez-Moreira, E.; Nogueda-Torres, B.; Capparelli, M.V.; Ángel, J.; Charris, J. One-pot multicomponent synthesis of methoxybenzo[h]quinoline-3-carbonitrile derivatives; Anti-Chagas, X-ray, and in silico ADME/Tox profiling studies. Molecules 2021, 26, 6977. [Google Scholar] [CrossRef] [PubMed]
- Tavernelli, L.E.; Alonso, V.L.; Peña, I.; Araya, E.R.; Manarin, R.; Cantizani, J.; Martin, J.; Salamanca, J.; Bamborough, P.; Calderón, F.; et al. Identification of novel bromodomain inhibitors of Trypanosoma cruzi bromodomain factor 2 (TcBDF2) using a fluorescence polarization-based high-throughput assay. Antimicrob. Agents Chemother. 2024, 68, e0024324. [Google Scholar] [CrossRef]
- da Fonseca, A.M.; Caluaco, B.J.; Madureira, J.M.C.; Cabongo, S.Q.; Gaieta, E.M.; Djata, F.; Colares, R.P.; Neto, M.M.; Fernandes, C.F.C.; Marinho, G.S.; et al. Screening of Potential Inhibitors Targeting the Main Protease Structure of SARS-CoV-2 via Molecular Docking, and Approach with Molecular Dynamics, RMSD, RMSF, H-Bond, SASA and MMGBSA. Mol. Biotechnol. 2024, 66, 1919–1933. [Google Scholar] [CrossRef]
- Singh, M.B.; Sharma, R.; Kumar, D.; Khanna, P.; Khanna, L.; Kumar, V.; Kumari, K.; Gupta, A.; Chaudhary, P.; Kaushik, N.; et al. An understanding of coronavirus and exploring the molecular dynamics simulations to find promising candidates against the Mpro of nCoV to combat the COVID-19: A systematic review. J. Infect. Public Health 2022, 15, 1326–1349. [Google Scholar] [CrossRef]
- Lobanov, M.; Bogatyreva, N.S.; Galzitskaia, O.V. Radius of gyration is indicator of compactness of protein structure. Mol. Biol. 2008, 42, 701–706. [Google Scholar] [CrossRef]
- Mitternacht, S. FreeSASA: An open-source C library for solvent accessible surface area calculations. F1000Research 2016, 5, 189. [Google Scholar] [CrossRef] [PubMed]
- Eissa, I.H.; Alesawy, M.S.; Saleh, A.M.; Elkaeed, E.B.; Alsfouk, B.A.; El-Attar, A.-A.M.M.; Metwaly, A.M. Ligand and structure-based in silico determination of the most promising SARS-CoV-2 nsp16-nsp10 2′-o-methyltransferase complex inhibitors among 3009 FDA approved drugs. Molecules 2022, 27, 2287. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Yu, H.; Dalby, P.A. A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering. Methods Enzymol. 2020, 643, 15–49. [Google Scholar] [CrossRef] [PubMed]
- Maskey, R.P.; Li, F.; Qin, S.; Fiebig, H.H.; Laatsch, H. Chandrananimycins A approximately C: Production of novel anticancer antibiotics from a marine Actinomadura sp. isolate M048 by variation of medium composition and growth conditions. J. Antibiot. 2003, 56, 622–629. [Google Scholar] [CrossRef]
- Ren, J.; Liu, D.; Tian, L.; Wei, Y.; Proksch, P.; Zeng, J.; Lin, W. Venezuelines A-G, new phenoxazine-based alkaloids and aminophenols from Streptomyces venezuelae and the regulation of gene target Nur77. Bioorg. Med. Chem. Lett. 2013, 23, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Ebada, S.S.; Linh, M.H.; Longeon, A.; de Voogd, N.J.; Durieu, E.; Meijer, L.; Bourguet-Kondracki, M.-L.; Singab, A.N.B.; Müller, W.E.; Proksch, P. Dispacamide E and other bioactive bromopyrrole alkaloids from two Indonesian marine sponges of the genus Stylissa. Nat. Prod. Res. 2015, 29, 231–238. [Google Scholar] [CrossRef]
- Cheng, W.; Huang, Y.; Gao, H.; Bold, B.; Zhang, T.; Yang, D. Marine natural products as novel treatments for parasitic diseases. Handb. Exp. Pharmacol. 2024, 287, 325–393. [Google Scholar] [CrossRef]
- Jones, A.J.; Grkovic, T.; Sykes, M.L.; Avery, V.M. Trypanocidal activity of marine natural products. Mar. Drugs 2013, 11, 4058–4082. [Google Scholar] [CrossRef] [PubMed]
Molecule | Binding Affinity in kcal/mol | MW 1 | HBA 2 | HBD 3 | iLOGP | Lipinski # Violations | PAINS # Alerts |
---|---|---|---|---|---|---|---|
1 | −10.2 | 797.07 | 10 | 8 | 7.98 | 2 | 0 |
2 | −10.1 | 746.49 | 6 | 9 | 2.78 | 3 | 0 |
3 | −9.8 | 857.86 | 17 | 13 | 1.99 | 3 | 1 |
4 | −9.4 | 594.52 | 13 | 7 | 2.2 | 3 | 1 |
5 | −9.3 | 789.74 | 13 | 13 | 3.13 | 3 | 1 |
6 | −9.3 | 254.29 | 2 | 2 | 1.87 | 0 | 1 |
7 | −9.1 | 844.75 | 10 | 8 | 3.69 | 3 | 0 |
8 | −9.1 | 270.24 | 5 | 2 | 2.02 | 0 | 0 |
9 | −9.1 | 458.48 | 4 | 8 | −0.14 | 2 | 0 |
10 | −9 | 802.99 | 16 | 6 | 4.82 | 3 | 0 |
11 | −9 | 610.52 | 14 | 8 | 0.92 | 3 | 1 |
12 | −9 | 784.44 | 6 | 10 | −2.01 | 3 | 0 |
13 | −9 | 726.72 | 15 | 6 | 3.62 | 3 | 0 |
14 | −9 | 694.74 | 10 | 13 | 0.28 | 3 | 0 |
15 | −8.9 | 741.41 | 7 | 9 | −0.2 | 3 | 0 |
16 | −8.9 | 636.3 | 5 | 9 | 0.39 | 3 | 0 |
17 | −8.9 | 333.18 | 2 | 2 | 2.31 | 0 | 1 |
18 | −8.9 | 610.52 | 14 | 8 | 2.22 | 3 | 1 |
19 | −8.9 | 898.2 | 8 | 10 | 1.79 | 3 | 0 |
20 | −8.9 | 899.21 | 7 | 9 | 1.98 | 3 | 0 |
21 | −8.8 | 900.21 | 6 | 9 | 0.61 | 3 | 0 |
22 | −8.8 | 599.59 | 11 | 6 | 1.15 | 3 | 0 |
23 | −8.8 | 447.44 | 7 | 4 | 2.64 | 0 | 0 |
24 | −8.7 | 199.23 | 1 | 2 | −2.01 | 0 | 0 |
25 | −8.7 | 450.57 | 5 | 2 | 4.49 | 0 | 0 |
26 | −8.7 | 969.48 | 7 | 3 | 7.6 | 2 | 0 |
27 | −8.7 | 808.12 | 5 | 8 | 0.35 | 3 | 0 |
28 | −8.7 | 928.34 | 10 | 4 | 5.44 | 2 | 0 |
29 | −8.6 | 780.11 | 4 | 8 | 2.07 | 3 | 0 |
30 | −8.6 | 661.51 | 8 | 10 | 1.23 | 3 | 0 |
31 | −8.6 | 405.05 | 3 | 4 | 1.05 | 0 | 0 |
Molecule | Intestinal Absorption Human (% Absorbed) | BBB Permeability (log BB) | CYP2D6 Inhibitor | CYP3A4 Inhibitor | Total Clearance (log mL/min/kg) | AMES Toxicity |
---|---|---|---|---|---|---|
8 | 88.159 | −0.141 | No | No | 0.334 | No |
23 | 80.906 | −1.055 | No | No | −0.067 | No |
24 | 94.67 | 0.435 | Yes | No | 0.918 | Yes |
25 | 92.268 | −0.628 | No | Yes | 1.485 | Yes |
31 | 70.422 | −1.072 | No | No | 0.892 | No |
BZN | 75.5 | −0.863 | No | No | 0.519 | Yes |
NFX | 83.905 | −0.953 | No | No | 0.718 | Yes |
Complex ID | CMNPD ID | ΔG kcal/mol | Involved Residues | Interactions |
---|---|---|---|---|
8 | CMNPD13212 | −9.1 | Met 30, Tyr 43 Ala 82 Trp 92 Ile 35, Leu 40 | Conventional hydrogen bond Carbon hydrogen bond Pi–pi stacked interaction Pi-Alkyl interaction |
23 | CMNPD23228 | −8.8 | His 33, Phe 31, Val 51, Met 78, Asp 52, Asn 81, Asn 86, Tyr 85, Asp 42, Thr 90 Met 30, Tyr 43, Ala 87 Ala 82 Trp 82 Ile 35, Leu 40 | van der Waal’s interaction Conventional hydrogen bond Carbon hydrogen bond Pi–pi stacked interaction Pi–alkyl interaction |
31 | CMNPD8246 | −8.6 | Pro 34, Asp 52, Tyr 85 Val 51, His 33, Met 30, Asn 86 Met 78 Phe 31, Tyr 43, Trp 92 Ile 35, Ala 82, Leu 40 | van der Waal’s interaction Conventional hydrogen bond Carbon hydrogen bond Pi–pi stacked interaction Pi–alkyl interaction |
Reference | Bromosporine | −7.7 | Glu 91, Lys 29, Tyr 85, Tyr 43 Leu 28, Trp 92, Asn 86 Met 30 Trp 92 Leu 40, Ala 82, ILe 35, Phe 31 | van der Waal’s interaction Conventional hydrogen bond Pi–sigma interaction Pi-Sulfur interaction Pi–alkyl interaction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maya-Ramírez, C.E.; Saih, A.; Méndez Tenorio, A.; Wong Baeza, C.; Nogueda Torres, B.; Santiago Hernández, J.C. Exploring Marine Natural Compounds: Innovative Therapeutic Candidates Against Chagas Disease Through Virtual Screening and Molecular Dynamics. Life 2025, 15, 192. https://doi.org/10.3390/life15020192
Maya-Ramírez CE, Saih A, Méndez Tenorio A, Wong Baeza C, Nogueda Torres B, Santiago Hernández JC. Exploring Marine Natural Compounds: Innovative Therapeutic Candidates Against Chagas Disease Through Virtual Screening and Molecular Dynamics. Life. 2025; 15(2):192. https://doi.org/10.3390/life15020192
Chicago/Turabian StyleMaya-Ramírez, Carlos Eliel, Asmae Saih, Alfonso Méndez Tenorio, Carlos Wong Baeza, Benjamín Nogueda Torres, and Juan Carlos Santiago Hernández. 2025. "Exploring Marine Natural Compounds: Innovative Therapeutic Candidates Against Chagas Disease Through Virtual Screening and Molecular Dynamics" Life 15, no. 2: 192. https://doi.org/10.3390/life15020192
APA StyleMaya-Ramírez, C. E., Saih, A., Méndez Tenorio, A., Wong Baeza, C., Nogueda Torres, B., & Santiago Hernández, J. C. (2025). Exploring Marine Natural Compounds: Innovative Therapeutic Candidates Against Chagas Disease Through Virtual Screening and Molecular Dynamics. Life, 15(2), 192. https://doi.org/10.3390/life15020192