A Method for Calculating Small Sizes of Volumes in Postsurgical Thyroid SPECT/CT Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method for Calculating Small Sizes of Volumes
2.1.1. Concept
2.1.2. MATLAB Calculations
2.1.3. Dependencies of the Gray-Level Histogram Technique
2.2. Validation Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
%Bkg | Background-to-Volume Activity Ratio |
%ΔV | Percentage Difference between V and V1SPECT-CT |
%ΔV1–2 | Percentage Difference between V1SPECT-CT and V2SPECT-CT |
3D | Three-Dimensional |
CT | Computed Tomography |
DICOM | Digital Imaging and Communications in Medicine |
DTC | Differentiated Thyroid Cancer |
FDG | Fluorodeoxyglucose |
GLH | Gray-Level Histogram |
HEGP | High-Energy General-Purpose |
HU | Hounsfield Unit |
I-123 | Iodine 123 |
I-131 | Iodine 131 |
LEHR | Low-Energy High-Resolution |
MATLAB | Matrix Laboratory |
NaI-124 | Potassium Iodine 124 |
OSEM | Ordered-Subset Expectation Maximization |
PET | Positron Emission Tomography |
PMMA | Polymethyl Methacrylate |
PVE | Partial Volume Effect |
R | Volume Ratio: VSPECT/VSPECT-CT |
RAIT | Radioiodine Therapy |
ROI | Region-of-Interest |
SD | Standard Deviation |
SPECT | Single-Photon Emission Computed Tomography |
Tc-99m | Technetium 99m |
TEW | Triple-Energy Window |
Tg | Thyroglobulin |
V | Actual Volume |
V1SPECT-CT | VSPECT-CT When ROI Included One Volume |
V2SPECT-CT | VSPECT-CT When ROI Included Two Volumes |
VOI | Volume-of-Interest |
VOISPECT | VOI on SPECT matrix |
VOISPECT-CT | VOI on CT matrix |
VOXSPECT | SPECT Voxels of VSPECT |
VOXSPECT-CT | CT Voxels of VSPECT-CT |
VSPECT | Volume Calculated from SPECT VOI |
VSPECT-CT | Volume Calculated from CT VOI |
WBS | Whole-Body Scintigraphy |
References
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed]
- Avram, A.M.; Giovanella, L.; Greenspan, B.; Lawson, S.A.; Luster, M.; Van Nostrand, D.; Peacock, J.G.; Ovcaricek, P.P.; Silberstein, E.; Tulchinsky, M.; et al. SNMMI Procedure Standard/EANM Practice Guideline for Nuclear Medicine Evaluation and Therapy of Differentiated Thyroid Cancer: Abbreviated Version. J. Nucl. Med. 2022, 63, 15N–35N. [Google Scholar] [PubMed]
- Rault, E.; Vandenberghe, S.; Van Holen, R.; De Beenhouwer, J.; Staelens, S.; Lemahieu, I. Comparison of Image Quality of Different Iodine Isotopes (I-123, I-124, and I-131). Cancer Biother. Radiopharm. 2007, 22, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, N.; Li, X.; Chen, S.; Du, B.; Li, Y. Thyroid Remnant Estimation by Diagnostic Dose (131)I Scintigraphy or (99m)TcO4(-) Scintigraphy after Thyroidectomy: A Comparison with Therapeutic Dose (131)I Imaging. BioMed Res. Int. 2016, 2016, 4763824. [Google Scholar]
- Iwano, S.; Kato, K.; Nihashi, T.; Ito, S.; Tachi, Y.; Naganawa, S. Comparisons of I-123 Diagnostic and I-131 Post-Treatment Scans for Detecting Residual Thyroid Tissue and Metastases of Differentiated Thyroid Cancer. Ann. Nucl. Med. 2009, 23, 777–782. [Google Scholar] [CrossRef]
- Cooper, D.S.; Doherty, G.M.; Haugen, B.R.; Kloos, R.T.; Lee, S.L.; Mandel, S.J.; Mazzaferri, E.L.; McIver, B.; Pacini, F.; American Thyroid Association Guidelines Taskforce on Thyroid; et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009, 19, 1167–1214. [Google Scholar] [CrossRef]
- Pacini, F.; Schlumberger, M.; Dralle, H.; Elisei, R.; A Smit, J.W.; Wiersinga, W.; Taskforce, T.E.T.C. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 2006, 154, 788. [Google Scholar] [CrossRef]
- Carballo, M.; Quiros, R.M. To Treat or Not to Treat: The Role of Adjuvant Radioiodine Therapy in Thyroid Cancer Patients. J. Oncol. 2012, 2012, 707156. [Google Scholar] [CrossRef]
- Avram, A.M.; Fig, L.M.; Frey, K.A.; Gross, M.D.; Wong, K.K. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: What is the impact on staging? J. Clin. Endocrinol. Metab. 2013, 98, 1163–1171. [Google Scholar] [CrossRef]
- Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: Benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 2006, 91, 2892–2899. [Google Scholar] [CrossRef]
- Schmidt, D.; Linke, R.; Uder, M.; Kuwert, T. Five months’ follow-up of patients with and without iodine-positive lymph node metastases of thyroid carcinoma as disclosed by 131I-SPECT/CT at the first radioablation. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum-Krumme, S.J.; Wieduwilt, M.; Nagarajah, J.; Bockisch, A.; Jentzen, W. Estimation of tumour mass in patients with differentiated thyroid carcinoma using serum thyroglobulin. Nuklearmedizin 2012, 51, 217–222. [Google Scholar] [PubMed]
- Campennì, A.; Avram, A.M.; Verburg, F.A.; Iakovou, I.; Hänscheid, H.; de Keizer, B.; Petranović Ovčariček, P.; Giovanella, L. The EANM guideline on radioiodine therapy of benign thyroid disease. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3324–3348. [Google Scholar] [CrossRef]
- Schmidt, M.; Bartenstein, P.; Bucerius, J.; Dietlein, M.; Drzezga, A.; Herrmann, K.; Lapa, C.; Lorenz, K.; Musholt, T.J.; Nagarajah, J.; et al. Individualized treatment of differentiated thyroid cancer: The value of surgery in combination with radioiodine imaging and therapy—A German position paper from Surgery and Nuclear Medicine. Nuklearmedizin 2022, 61, 87–96. [Google Scholar]
- Lassmann, M.; Reiners, C.; Luster, M. Dosimetry and thyroid cancer: The individual dosage of radioiodine. Endocr. Relat. Cancer 2010, 17, R161–R172. [Google Scholar] [CrossRef]
- Mallick, U.; Harmer, C.; Yap, B.; Wadsley, J.; Clarke, S.; Moss, L.; Nicol, A.; Clark, P.M.; Farnell, K.; McCready, R.; et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N. Engl. J. Med. 2012, 366, 1674–1685. [Google Scholar] [CrossRef]
- Mortelmans, L.; Nuyts, J.; Van Pamel, G.; Van den Maegdenbergh, V.; De Roo, M.; Suetens, P. A New Thresholding Method for Volume Determination by SPECT. Eur. J. Nucl. Med. 1986, 12, 284–290. [Google Scholar] [CrossRef]
- Zaidi, H. Comparative Methods for Quantifying Thyroid Volume Using Planar Imaging and SPECT. J. Nucl. Med. 1996, 37, 1421–1426. [Google Scholar]
- Lyra, M.; Striligas, J.; Gavrilelli, M.; Chatzijiannis, C.; Skouroliakou, K. Thyroid Volume Determination by Single Photon Tomography and 3D Processing for Activity Dose Estimation. In Proceedings of the IST IEEE Workshop on Imaging Systems and Techniques Proceedings, Chania, Crete, 1 July 2008; pp. 17–20. [Google Scholar]
- Pacilio, M.; Basile, C.; Shcherbinin, S.; Caselli, F.; Ventroni, G.; Aragno, D.; Mango, L.; Santini, E. An innovative iterative thresholding algorithm for tumour segmentation and volumetric quantification on SPECT images: Monte Carlo-based methodology and validation. Med. Phys. 2011, 38, 3050–3061. [Google Scholar] [CrossRef]
- Pierre, F.; Amendola, M.; Bigeard, C.; Ruel, T.; Villard, P.-F. Segmentation with Active Contours. Image Process Line 2021, 11, 120–141. [Google Scholar] [CrossRef]
- Al-Ameen, Z.; Sulong, G.; Rehman, A.; Al-Dhelaan, A.; Al-Rodhaan, M. A Review of Image Segmentation Using MATLAB Environment. IEEE Access 2020, 8, 123456–123469. [Google Scholar]
- Verma, S.; Khare, D.; Gupta, R.; Chandel, G.S. Analysis of Image Segmentation Algorithms Using MATLAB. In Proceedings of the Third International Conference on Trends in Information, Telecommunication and Computing, Kochi, India, 2–3 August 2012; Springer: New York, NY, USA, 2012; Volume 150, pp. 163–172. [Google Scholar]
- Rogowska, J. Overview and Fundamentals of Medical Image Segmentation. In Handbook of Medical Image Processing and Analysis, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009; Chapter 5; pp. 69–85. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Soret, M.; Bacharach, S.L.; Buvat, I. Partial-Volume Effect in PET Tumor Imaging. J. Nucl. Med. 2007, 48, 932–945. [Google Scholar] [CrossRef]
- Marquis, H.; Willowson, K.P.; Bailey, D.L. Partial Volume Effect in SPECT & PET Imaging and Impact on Radionuclide Dosimetry Estimates. Asia Ocean. J. Nucl. Med. Biol. 2023, 11, 44–54. [Google Scholar]
- Michael, K.; Hadjiconstanti, A.; Lontos, A.; Demosthenous, G.; Frangos, S.; Parpottas, Y. A Neck-Thyroid Phantom with Small Sizes of Thyroid Remnants for Postsurgical I-123 and I-131 SPECT/CT Imaging. Life 2023, 13, 961. [Google Scholar] [CrossRef]
- Boening, G.; Pretorius, P.H.; King, M.A. Study of Relative Quantification of Tc-99m with Partial Volume Effect and Spillover Correction for SPECT Oncology Imaging. IEEE Trans. Nucl. Sci. 2006, 53, 1205–1212. [Google Scholar] [CrossRef]
- Matsubara, K.; Ibaraki, M.; Shimada, H.; Ikoma, Y.; Suhara, T.; Kinoshita, T.; Ito, H. Impact of Spillover from White Matter by Partial Volume Effect on Quantification of Amyloid Deposition with [11C]PiB PET. NeuroImage 2016, 142, 200–206. [Google Scholar] [CrossRef]
- MATLAB. MATLAB Release 2022a; The MathWorks Inc.: Natick, MA, USA, 2022. [Google Scholar]
- Michael, K.; Frangos, S.; Iakovou, I.; Lontos, A.; Demosthenous, G.; Parpottas, Y. The Impact of Dual and Triple Energy Window Scatter Correction on I-123 Postsurgical Thyroid SPECT/CT Imaging Using a Phantom with Small Sizes of Thyroid Remnants. Life 2024, 14, 113. [Google Scholar] [CrossRef]
- Hadjiconstanti, A.; Michael, K.; Frangos, S.; Demosthenous, G.; Lyra, M. The Impact of Two Scatter Correction Methods on I-131 AC-SPECT Images Using an Anthropomorphic Phantom with Variable Sizes of Thyroid Remnants. In Proceedings of the 2020 7th International Conference on Biomedical and Bioinformatics Engineering, Kyoto, Japan, 6–9 November 2020. [Google Scholar]
- Lagerburg, V.; de Nijs, R.; Holm, S.; Svarer, C. A Comparison of Different Energy Window Subtraction Methods to Correct for Scatter and Downscatter in I-123 SPECT Imaging. Nucl. Med. Commun. 2012, 33, 708–718. [Google Scholar] [CrossRef]
- Mandel, S.J.; Shankar, L.K.; Benard, F.; Yamamoto, A.; Alavi, A. Superiority of Iodine-123 Compared with Iodine-131 Scanning for Thyroid Remnants in Patients with Differentiated Thyroid Cancer. Clin. Nucl. Med. 2001, 26, 6–9. [Google Scholar] [CrossRef]
- Siddiqi, A.; Foley, R.R.; Britton, K.E.; Sibtain, A.; Plowman, P.N.; Grossman, A.B.; Monson, J.P.; Besser, G.M. The Role of 123I-Diagnostic Imaging in the Follow-up of Patients with Differentiated Thyroid Carcinoma as Compared to 131I-Scanning: Avoidance of Negative Therapeutic Uptake due to Stunning. Clin. Endocrinol. 2001, 55, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Hilditch, T.E.; Dempsey, M.F.; Bolster, A.A.; McMenemin, R.M.; Reed, N.S. Self-Stunning in Thyroid Ablation: Evidence from Comparative Studies of Diagnostic 131I and 123I. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Benfante, V.; Stefano, A.; Ali, M.; Laudicella, R.; Arancio, W.; Cucchiara, A.; Caruso, F.; Cammarata, F.P.; Coronnello, C.; Russo, G.; et al. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics 2023, 13, 1210. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Benfante, V.; Di Raimondo, D.; Laudicella, R.; Tuttolomondo, A.; Comelli, A. A Review of Advances in Molecular Imaging of Rheumatoid Arthritis: From In Vitro to Clinic Applications Using Radiolabeled Targeting Vectors with Technetium-99m. Life 2024, 14, 751. [Google Scholar] [CrossRef]
- Alongi, P.; Stefano, A.; Comelli, A.; Spataro, A.; Formica, G.; Laudicella, R.; Lanzafame, H.; Panasiti, F.; Longo, C.; Midiri, F.; et al. Artificial Intelligence Applications on Restaging [18F]FDG PET/CT in Metastatic Colorectal Cancer: A Preliminary Report of Morpho-Functional Radiomics Classification for Prediction of Disease Outcome. Appl. Sci. 2022, 12, 2941. [Google Scholar] [CrossRef]
V (mL) | I-123 | I-131 | ||||
---|---|---|---|---|---|---|
A (MBq) | No. | %ΔV | A (MBq) | No. | %ΔV | |
0.5 | 2.173 | 1 | 15.2 | 0.555 | 1 | 15.8 |
1 | 2.561 | 1 | 11.7 | 1.109 | 1 | 12.1 |
1.5 | 0.555–12.542 | 7 | 8.0 | 0.444–43.512 | 10 | 8.6 |
3 | 1.110–12.650 | 6 | 3.7 | 1.110–47.471 | 8 | 4.1 |
10 | 3.228, 3.581 | 2 | 1.2 | 3.700, 3.990 | 2 | 1.4 |
V (mL) | I-123 | I-131 | ||||
---|---|---|---|---|---|---|
V1SPECT-CT | V2SPECT-CT | %ΔV1–2 | V1SPECT-CT | V2SPECT-CT | %ΔV1–2 | |
0.5 | 0.576 1 | 0.626 1 | 8.8 | 0.579 1 | 0.631 1 | 9.1 |
1 | 1.117 1 | 1.196 1 | 7.1 | 1.121 1 | 1.209 1 | 7.9 |
1.5 | 1.621 ± 0.033 | 1.655 ± 0.036 | 2.1 | 1.630 ± 0.039 | 1.669 ± 0.045 | 2.4 |
3 | 3.113 ± 0.031 | 3.169 ± 0.035 | 1.8 | 3.123 ± 0.040 | 3.182 ± 0.046 | 1.9 |
10 | 10.120 ± 0.004 | 10.231 ± 0.006 | 1.1 | 10.140 ± 0.011 | 10.251 ± 0.017 | 1.1 |
V (mL) | R(I-123) | R(I-131) |
---|---|---|
0.5 | 12.04 ± 0.01 1 | 9.84 ± 0.01 1 |
1.0 | 7.89 ± 0.01 1 | 8.71 ± 0.01 1 |
1.5 | 3.32 ± 0.38 | 5.94 ± 0.72 |
3.0 | 2.63 ± 0.11 | 4.25 ± 0.49 |
10.0 | 1.50 ± 0.01 | 2.41 ± 0.07 |
V (mL) | %Bkg | I-123 | I-131 | ||
---|---|---|---|---|---|
VSPECT | VSPECT-CT | VSPECT | VSPECT-CT | ||
1.5 | 0 | 4.711 | 1.614 | 8.601 | 1.623 |
1.5 | 5 | 5.225 | 1.630 | 9.841 | 1.642 |
1.5 | 10 | 5.413 | 1.626 | 10.292 | 1.664 |
Mean ± SD | 5.116 ± 0.363 | 1.623 ± 0.008 | 9.578 ± 0.875 | 1.643 ± 0.020 | |
3.0 | 0 | 7.703 | 3.094 | 11.602 | 3.116 |
3.0 | 5 | 8.221 | 3.098 | 12.981 | 3.141 |
3.0 | 10 | 8.508 | 3.165 | 13.521 | 3.152 |
Mean ± SD | 8.144 ± 0.407 | 3.119 ± 0.039 | 12.701 ± 0.989 | 3.136 ± 0.018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ttofi, E.; Kyriacou, C.; Leontiou, T.; Parpottas, Y. A Method for Calculating Small Sizes of Volumes in Postsurgical Thyroid SPECT/CT Imaging. Life 2025, 15, 200. https://doi.org/10.3390/life15020200
Ttofi E, Kyriacou C, Leontiou T, Parpottas Y. A Method for Calculating Small Sizes of Volumes in Postsurgical Thyroid SPECT/CT Imaging. Life. 2025; 15(2):200. https://doi.org/10.3390/life15020200
Chicago/Turabian StyleTtofi, Elena, Costas Kyriacou, Theodoros Leontiou, and Yiannis Parpottas. 2025. "A Method for Calculating Small Sizes of Volumes in Postsurgical Thyroid SPECT/CT Imaging" Life 15, no. 2: 200. https://doi.org/10.3390/life15020200
APA StyleTtofi, E., Kyriacou, C., Leontiou, T., & Parpottas, Y. (2025). A Method for Calculating Small Sizes of Volumes in Postsurgical Thyroid SPECT/CT Imaging. Life, 15(2), 200. https://doi.org/10.3390/life15020200