The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life
Abstract
:1. Introduction
2. Hypothesis
3. Key Innovations of Life: Background and Models
3.1. Background
3.2. Models
- A Critical Path Model. The major event or innovation requires preconditions that take time to develop. The amount of time needed is to a large degree determined by the nature of the event and the geological and environmental conditions of the planet, and so once the necessary preconditions exist on the planet then the event will occur in a well-defined time frame. There is no major role of chance in this process.
- A Random Walk Model. The major event or innovation is highly unlikely to occur in a specific time step, and the likelihood does not change (substantially) with time. This may be because the innovation requires a highly improbable precursor event to occur, or a number of highly improbable steps that have to occur in sequence. Thus, a substantial amount of time has to elapse before chance events allow the innovation to be made. Once life exists on a planet, ultimately the innovation will occur, but when it occurs is up to chance, and whether it occurs before the planet’s sun leaves the main sequence and renders the planet uninhabitable is not knowable. Chance events limit this process, and must occur in a specific order.
- A Many Paths Model. The major event or innovation requires many random events to create a complex new function, but many combinations of these can generate the same functional output, even though the genetic or anatomical details of the different outputs are not the same. So once life exists the chance that the innovation will occur in a given time period is high, but the exact time is not knowable. Chance events limit this process, but can occur in any order.
- Critical Path Model. One set of preconditions is needed for that transition. Once those preconditions (“causes”) are satisfied, the innovation will arise quickly, and will occur on all occasions that the preconditions are satisfied. The preconditions take only time to fulfil, and there is no (major) random element in it (however, the required amount of time may be very substantial). As a consequence, if an innovation occurs through a Critical Path process more than once, it is likely to follow a similar evolutionary path in the different examples. Thus, independent evolution of a common function in the descendants of a common ancestor is likely to use similar mechanisms.
- Random Walk Model. There are no preconditions other that prior existence of life that can achieve the innovation (e.g., nervous systems cannot evolve without cells). The innovation will occur at random, but since it is highly improbable it will not likely occur twice even if the preconditions are satisfied many times.
- Many Paths Model. There are no specific preconditions other that prior existence of life that can achieve the innovation. However once any appropriate precondition is met, the innovation will occur at a fairly reliable time frame (in generations) afterwards, and so will eventually occur on all occasions that the preconditions are satisfied. If an innovation occurs through a Many Paths process more than once, it is likely to use different mechanisms each time it occurs.
4. Preconditions for Complex Life
5. The Key Innovations
5.1. Origin of Life
5.2. Photosynthesis
5.3. Oxygenesis
- that two water molecules must be oxidized to produce one molecule of O2, while at the same time dispensing four charge separated electron/proton pairs [60];
- PS-II must be shifted to a strong positive oxidizing potential while PS-I is shifted to a highly negative one [99]; and
- the oxygen sensitive components of an anoxygenic photosynthetic apparatus (especially the FeS clusters) must be transformed into oxygen resistant ones [101].
5.4. Endosymbiosis and Eukaryotic Cell Structure
5.5. Eukaryotic Gene Organization
5.6. Multicellularity
5.7. The Development of Large, Complex Organisms
5.8. Intelligence
5.9. Technological Intelligence, or “Are There Visitors in the Cosmic Zoo?”
6. Discussion
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Maynard Smith, J.; Szathmary, E. The Major Transitions in Evolution; W H Freeman: Oxford, UK, 1995. [Google Scholar]
- McShea, D.W.; Simpson, C. The miscellaneous transitions in evolution. In The Major Transitions in Evolution Revisited; Chalcott, B., Sterelny, K., Eds.; MIT Press: Cambridge, MA, USA, 2011; pp. 19–33. [Google Scholar]
- Hanson, R. The Great Filter—Are We Almost Past It? Available online: http://www.hanson.gmu.edu/~greatfilter.html (accessed on 26 June 2016).
- Bostrom, N. Where are they? Why I hope the search for extreterrestrial life finds nothing. Technol. Rev. 2008, 72–77. [Google Scholar]
- Mojzsis, S.J.; Arrhenius, G.; Mckeegan, K.; Harrison, T.M.; Nutman, A.P.; Friend, C.R.I. Evidence for life on earth before 3800 million years ago. Nature 1996, 384, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Brasier, M.D.; Green, O.R.; Jephcoat, A.P.; Kleppe, A.K.; van Kranendonk, M.J.; Lindsay, J.F.; Steele, A.; Grassineau, N.V. Questioning the evidence for earth’s oldest fossils. Nature 2002, 416, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Altermann, W.; Kaznierczak, J. Archean microfossils: A reappraisal of early life on earth. Res. Microbiol. 2003, 154, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Lineweaver, C.H.; Davies, P.C.W.; Ruse, M. What is complexity? Is it increasing? In Complexity and the Arrow of Time; Lineweaver, C.H., Davies, P.C.W., Ruse, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 3–16. [Google Scholar]
- Traub, J.F.; Werschulz, A.G. Complexity and Information; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Lloyd, S. On the spontaneous generation of complexity in the universe. In Complexity and the Arrow of Time; Lineweaver, C.H., Davies, P.C.W., Ruse, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 80–112. [Google Scholar]
- Conway-Morris, S. Life: The final frontier of complexity? In Complexity and the Arrow of Time; Lineweaver, C.H., Davies, P.C.W., Ruse, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 135–161. [Google Scholar]
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [PubMed]
- Landenmark, H.K.E.; Forgan, D.H.; Cockell, C.S. An estimate of the total DNA in the biosphere. PLoS Biol. 2015, 13, e1002168. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J. Full House. The Spread of Excellence from Plato to Darwin; Three Rivers Press: New York, NY, USA, 1996. [Google Scholar]
- Hutchison, C.A.; Chuang, R.-Y.; Noskov, V.N.; Assad-Garcia, N.; Deerinck, T.J.; Ellisman, M.H.; Gill, J.; Kannan, K.; Karas, B.J.; Ma, L.; et al. Design and synthesis of a minimal bacterial genome. Science 2016. [Google Scholar] [CrossRef] [PubMed]
- Blain, J.C.; Szostak, J.W. Progress toward synthetic cells. Annu. Rev. Biochem. 2014, 83, 615–640. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 2003, 1, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Nitecki, M. Evolutionary Innovations; University of Chicago Press: Chicago, IL, USA, 1990. [Google Scholar]
- Heard, S.B.; Hauser, D.H. Key evolutionary innovations and their ecoloical consequences. Hist. Biol. 1995, 10, 151–173. [Google Scholar] [CrossRef]
- Gould, S.J. Wonderful Life. The Burgess Shales and the Nature of History; W.W. Norton and Co.: New York, NY, USA, 1989. [Google Scholar]
- Conway-Morris, S. Life's Solution: Inevitable Humans in a Lonely Universe; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Land, M.F.; Nilsson, D.-E. Animal Eyes, 2nd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Cowen, R. History of Life; Blackwell: Cambridge, MA, USA, 1995. [Google Scholar]
- De Duve, C. Singularities. Landmarks on the Pathways of Life; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Jablonka, E.; Lamb, M.J. The evolution of information in the major transitions. J. Theor. Biol. 2006, 239, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Lane, N. Life Ascending. The Ten Great Inventions of Evolution; Profile Books: Suffolk, UK, 2009. [Google Scholar]
- Schulze-Makuch, D.; Irwin, L.N. Life in the Universe: Expectations and Constraints, 2nd ed.; Springer: Wein, Austria, 2008. [Google Scholar]
- Calcott, B.; Sterelny, K. Major Transitions in Evolution Revisited; MIT Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Kauffman, S.A. Evolution beyond newton, darwin and entailing law. In Complexity and the Arrow of Time; Lineweaver, C.H., Davies, P.C.W., Ruse, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 162–190. [Google Scholar]
- Bains, W. What do we think life is? A simple illustration and its consequences. Int. J. Astrobiol. 2014, 13, 101–111. [Google Scholar] [CrossRef]
- Jacob, F. Evolution and tinkering. Science 1977, 196, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Schulze-Makuch, D. Mechanisms of evolutionary innovation point to genetic control logic as the key difference between prokaryotes and eukaryotes. J. Mol. Evol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Irwin, L.N.; Schulze-Makuch, D. Assessing the plausibility of life on other worlds. Astrobiology 2001, 1, 143–160. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F.; Whitmire, D.P.; Reynolds, R.T. Habitable zones around main sequence stars. Icarus 1993, 101, 108–128. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.D.; Brownlee, D. Rare Earth. Why Complex Life is Uncommon in the Universe; Spinger-Verlag: New York, NY, USA, 2000. [Google Scholar]
- Bains, W. Many chemistries could be used to build living systems. Astrobiology 2004, 4, 137–167. [Google Scholar] [CrossRef] [PubMed]
- Benner, S.A.; Ricardo, A.; Carrigan, M.A. Is there a common model for life in the universe? Curr. Opin. Biol. 2004, 8, 672–689. [Google Scholar] [CrossRef] [PubMed]
- Seager, S. Exoplanet habitability. Science 2013, 340, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Bains, W.; Seager, S.; Zsom, A. Photosynthesis in hydrogen-dominated atmospheres. Life 2014, 4, 716–744. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Makuch, D.; Méndez, A.; Fairén, A.G.; von Paris, P.; Turse, C.; Boyer, G.; Davila, A.F.; António, M.R.S.; Catling, D.; Irwin, L.N. A two-tiered approach to assessing the habitability of exoplanets. Astrobiology 2011, 11, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Irwin, L.N.; Mendez, A.; Fairén, A.G.; Schulze-Makuch, D. Assessing the possibility of biological complexity on other worlds, with an estimate of the occurrence of complex life in the milky way galaxy. Challenges 2014, 5, 159–174. [Google Scholar] [CrossRef]
- Clark, A. The thermal limits to life. Int. J. Astrobiol. 2014, 13, 141–154. [Google Scholar] [CrossRef]
- Catling, D.C.; Glein, C.R.; Zahnle, K.J.; McCay, C.P. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 2005, 5, 415–438. [Google Scholar] [CrossRef] [PubMed]
- Kopp, R.E.; Kirschvink, J.L.; Hilburn, I.A.; Nash, C.Z. The paleoproterozoic snowball earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 2005, 102, 11131–11136. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, F.A.; Schmitz, M.D.; Crowley, J.L.; Roots, C.F.; Jones, D.S.; Maloof, A.C.; Strauss, J.V.; Cohen, P.A.; Johnston, D.T.; Schrag, D.P. Calibrating the cryogenian. Science 2010, 327, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-Q.; Benton, M.J. The timing and pattern of biotic recovery following the end-permian mass extinction. Nat. Geosci. 2012, 5, 375–383. [Google Scholar] [CrossRef]
- Hu, S.-X.; Zhang, Q.-Y.; Chen, Z.-Q.; Zhou, C.-Y.; Lü, T.; Xie, T.; Wen, W.; Huang, J.-Y.; Benton, M.J. The luoping biota: Exceptional preservation, and new evidence on the triassic recovery from end-permian mass extinction. Proc. R. Soc. Lond. B Biol. Sci. 2010, 278, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Ruhl, M.; Deenen, M.H.L.; Abels, H.A.; Bonis, N.R.; Krijgsman, W.; Kürschner, W.M. Astronomical constraints on the duration of the early jurassic hettangian stage and recovery rates following the end-triassic mass extinction (st audrie’s bay/east quantoxhead, uk). Earth Planet. Sci. Lett. 2010, 295, 262–276. [Google Scholar] [CrossRef]
- D’Hondt, S.; Donaghay, P.; Zachos, J.C.; Luttenberg, D.; Lindinger, M. Organic carbon fluxes and ecological recovery from the cretaceous-tertiary mass extinction. Science 1998, 282, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C.S. Trajectories of martian habitability. Astrobiology 2014, 14, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Lammer, H.; Chassefière, E.; Karatekin, Ö.; Morschhauser, A.; Niles, P.B.; Mousis, O.; Odert, P.; Möstl, U.V.; Breuer, D.; Dehant, V.; et al. Outgassing history and escape of the martian atmosphere and water inventory. Space Sci. Rev. 2013, 174, 113–154. [Google Scholar] [CrossRef]
- Grinspoon, D. Chasing the lost oceans of venus. In Alien Seas: Oceans in Space; Carroll, M., Lopes, R., Eds.; Springer: New York, NY, USA, 2013; pp. 3–9. [Google Scholar]
- Raine, D.; Luisi, P.L. Open questions on the origin of life. Orig. Life Evol. Biosph. 2012, 42, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Ryder, G. Mass flux in the ancient earth-moon system and benign implications for the origin of life on earth. J. Geophys. Res. 2002. [Google Scholar] [CrossRef]
- Rosing, M.T. 13c-Depleted carbon microparticles in >3700-ma sea-floor sedimentary rocks from west greenland. Science 1999, 283, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.D.; Mojzsis, S.J. A protracted timeline for lunar bombardment from mineral chemistry, ti thermometry and u-pb geochronology of apollo 14 melt breccia zircons. Contrib. Mineral. Petrol. 2015, 169, 1–18. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Davis, D.R. Satellite-sized planetesimals and lunar origin. Icarus 1975, 24, 504–515. [Google Scholar] [CrossRef]
- Halliday, A.N. A young moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the earth. Philos. Trans. R. Soc. A 2008, 366, 4163–4181. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.A.; Morbidelli, A.; Raymond, S.N.; O’Brien, D.P.; Walsh, K.J.; Rubie, D.C. Highly siderophile elements in earth/’s mantle as a clock for the moon-forming impact. Nature 2014, 508, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Nitschke, W.; Branscomb, E. The inevitable journey to being. Philos. Trans. R. Soc. A Biol. Sci. 2013. [Google Scholar] [CrossRef] [PubMed]
- Deamer, D.; Dworkin, J.P.; Sandford, S.A.; Bernstein, M.P.; Allanmandola, L.J. The first cell membranes. Astrobiology 2002, 2, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Segré, D.; Ben-Eli, D.; Deamer, D.W.; Lancet, D. The lipid world. Orig. Life Evol. Biosph. 2001, 31, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M. The origin of genetic information. Orig. Life Evol. Biosph. 1994, 24, 241–262. [Google Scholar] [CrossRef]
- Fox, S.W. Self-sequencing of amino acids and origins of polyfunctional protocells. Orig. life 1984, 14, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L.J. The evolution of photosynthesis… again? Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2787–2801. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, R.E. Early evolution of photosynthesis. Plant Physiol. 2010, 154, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Hohmann-Marriott, M.F.; Blankenship, R.E. Evolution of photosynthesis. Annu. Rev. Plant Physiol. 2011, 2, 515–548. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins. Mol. Biol. Evol. 2012, 29, 3397–3412. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Bauer, C.E. Complex evolution of photosynthesis. Annu. Rev. Plant Biol. 2002, 53, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Sleep, N.H.; Bird, D.K. Evolutionary ecology during the rise of dioxygen in the earth’s atmosphere. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 2651–2664. [Google Scholar] [CrossRef] [PubMed]
- Lozier, R.H.; Bogomolni, R.A.; Stoeckenius, W. Bacteriorhodopsin: A light-driven proton pump in halobacterium halobium. Biophys. J. 1975, 15, 955–962. [Google Scholar] [CrossRef]
- Stoeckenius, W.; Bogomolni, R.A. Bacteriorhodopsin and related pigments of halobacteria. Annu. Rev. Biochem. 1982, 52, 587–616. [Google Scholar] [CrossRef] [PubMed]
- Béjà, O.; Aravind, L.; Koonin, E.V.; Suzuki, M.T.; Hadd, A.; Nguyen, L.P.; Jovanovich, S.B.; Gates, C.M.; Feldman, R.A.; Spudich, J.L.; et al. Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea. Science 2000, 289, 1902–1906. [Google Scholar] [CrossRef] [PubMed]
- Béjà, O.; Spudich, E.N.; Spudich, J.L.; Leclerc, M.; DeLong, E.F. Proteorhodopsin phototrophy in the ocean. Nature 2001, 411, 786–789. [Google Scholar] [CrossRef] [PubMed]
- Overman, J.; Garcia-Pichel, F. The phototrophic way of life. In The Prokaryotes. Prokaryotic Communities and Ecophysiology; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Wein, Austria, 2013; pp. 203–257. [Google Scholar]
- Rappe, M.; Connon, S.A.; Vergin, K.L.; Giovannoni, S.J. Cultivation of the ubiquitous sar11 marine bacterioplankton clade. Nature 2002, 418, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Slamovits, C.; Okamoto, N.; Burri, L.; James, E.R.; Keeling, P.J. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2011. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Ben-Shem, A. The structure of photosystem I and evolution of photosynthesis. BioEssays 2005, 27, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Turick, C.E.; Ekechukwu, A.A.; Milliken, C.E.; Casadevall, A.; Dadachova, E. Gamma radiation interacts with melanin to alter its oxidation–reduction potential and results in electric current production. Bioelectrochemistry 2011, 82, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Dadachova, E.; Casadevall, A. Ionizing radiation: How fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 2008, 11, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Bryan, R.; Jiang, Z.; Friedman, M.; Dadachova, E. The effects of gamma radiation, uv and visible light on atp levels in yeast cells depend on cellular melanization. Fungal Biol. 2011, 115, 945–949. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A.; Jarvik, T. Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids. Science 2010, 328, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Valmalette, J.C.; Dombrovsky, A.; Brat, P.; Mertz, C.; Capovilla, M.; Robichon, A. Light- induced electron transfer and ATP synthesis in a carotene synthesizing insect. Sci. Rep. 2012, 2, 579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bains, W.; Seager, S. A combinatorial approach to biochemical space: Description and application to the redox distribution of metabolism. Astrobiology 2012, 12, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Boyle, N.R.; Morgan, J.A. Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metab. Eng. 2011, 13, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Schidlowski, M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 1988, 333, 313–318. [Google Scholar] [CrossRef]
- Dufresne, A.; Salanoubat, M.; Partensky, F.; Artiguenave, F.; Axmann, I.M.; Barbe, V.; Duprat, S.; Galperin, M.Y.; Koonin, E.V.; le Gall, F.; et al. Genome sequence of the cyanobacterium prochlorococcus marinus ss120, a nearly minimal oxyphototrophic genome. Proc. Natl. Acad. Sci. USA 2003, 100, 10020–10025. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E. The early history of atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 2005, 33, 1–36. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Koonin, E.V.; Makarova, K.S.; Haselkorn, R.; Galperin, M.Y. Origin and evolution of photosynthesis: Clues from genome comparison. In Photosynthesis. Energy from the Sun: 14th International Congress on Photosynthesis; Allen, J.F., Gantt, E., Golbeck, J.H., Osmond, B., Eds.; Springer: Wein, Austria, 2008; pp. 1169–1175. [Google Scholar]
- Raven, J.A.; Beardall, J.; Larkum, A.W.D.; Sanchez-Baracaldo, P. Interactions of photosynthesis with genome size and function. Philos. Trans. R. Soc. B 2013. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G. Tracing oxygen’s imprint on earth’s metabolic evolution. Science 2006, 311, 1724–1725. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.E.; Sánchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria—A key to understanding the rise in atmospheric oxygen. Geobiology 2010, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Beraldi-Campesi, H. Early life on land and the first terrestrial ecosystems. Ecol. Process. 2013, 2, 1–17. [Google Scholar] [CrossRef]
- Battistuzzi, F.U.; Hedges, S.B. A major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 2009, 26, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.; Lyons, T.W.; Bekker, A.; Shen, Y.; Poulton, S.W.; Chu, X.; Anbar, A.D. Tracing the stepwise oxygenation of the proterozoic ocean. Nature 2008, 452, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F. What caused the rise of atmospheric O2? Chem. Geol. 2013, 362, 13–25. [Google Scholar] [CrossRef]
- Holland, H.D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Sessions, A.L.; Doughty, D.M.; Welander, P.V.; Summons, R.E.; Newman, D.K. The continuing puzzle of the great oxidation event. Curr. Biol. 2009, 19, R567–R574. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, R.E.; Hartman, H. The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 1998, 23, 94–97. [Google Scholar] [CrossRef]
- Rutherford, A.W.; Faller, P. Photosystem II: Evolutionary perspectives. Philos. Trans. R. Soc. B 2002, 358, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, B.; Shen, G.; Golbeck, J.H. The evolution of type I reaction centers: The response to oxygenic photosynthesis. In Functional Genomics and Evolution of Photosynthetic Schemes: Advances in Photosynthesis and Respiration 33; Burnap, R.L., Vermaas, W.J.F., Eds.; Spinger: Wein, Austria, 2012; pp. 285–316. [Google Scholar]
- Allen, J.F. A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett. 2005, 579, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Allen, J.; Milner-White, E.J. Inorganic complexes enabled the onset of life and oxygenic photosynthesis. In Photosynthesis. Energy from the Sun; Allen, J., Gantt, E., Golbeck, J., Osmond, B., Eds.; Springer Netherlands: Amsterdam, The Netherlands, 2008; pp. 1187–1192. [Google Scholar]
- Johnson, J.E.; Webb, S.M.; Thomas, K.; Ono, S.; Kirschvink, J.L.; Fischer, W.W. Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proc. Natl. Acad. Sci. USA 2013, 110, 11238–11243. [Google Scholar] [CrossRef] [PubMed]
- Shevela, D.; Eaton-Rye, J.J.; Shen, J.-R.; Giovindjee. Photosystem II and the unique role of bicarbonate: A historical perspective. Biochim. Biophys. Acta 2012, 1817, 1134–1151. [Google Scholar] [CrossRef] [PubMed]
- Andersson, I.; Backlund, A. Structure and function of rubisco. Plant Physiol. Biochem. 2008, 46, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Tomitani, A.; Knoll, A.H.; Cavanaugh, C.M.; Ohno, T. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc. Natl. Acad. Sci. USA 2006, 103, 5442–5447. [Google Scholar] [CrossRef] [PubMed]
- Rippka, R.; Deruelles, J.; Waterbury, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Kempes, C.P.; Dutkiewicz, S.; Follows, M.J. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. USA 2012, 109, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Foster, P.G.; Cox, C.J.; Embley, T.M. An archeal origin of eukaryotes supports only two primary domains of life. Nature 2014, 504, 231–236. [Google Scholar] [CrossRef] [PubMed]
- De Duve, C. The origin of eukaryotes: A reappraisal. Nat. Rev. Genet. 2007, 8, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Pittis, A.A.; Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 2016, 531, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Resendes de Sousa António, M.; Schulze-Makuch, D. Toward a new understanding of multicellularity. Hypotheses Life Sci. 2012, 2, 4–14. [Google Scholar]
- Blackstone, N.W. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation. Philos. Trans. R. Soc. B 2013. [Google Scholar] [CrossRef] [PubMed]
- Atteia, A.; van Lis, R.; Tielens, A.G.M.; Martin, W.F. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim. Biophys. Acta 2013, 1827, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Prieto, A.; Yoon, H.S.; Moustafa, A.; Yang, E.C.; Andersen, R.A.; Boo, S.M.; Nakayama, T.; Ishida, K.-I.; Bhattacharya, D. Differential gene retention in plastids of common recent origin. Mol. Biol. Evol. 2010, 27, 1530–1537. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.M.; Nowack, E.C.; Melkonian, M. A plastid in the making: Evidence for a second primary endosymbiosis. Protist 2005, 156, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Tirichine, L.; Bowler, C. Decoding algal genomes: Tracing back the history of photosynthetic life on earth. Plant J. 2011, 66, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Larsson, J.; Vigil-Stenman, T.; HNylander, J.A.A.; Ininbergs, K.; Zheng, W.-W.; Lapidus, A.; Lowry, S.; Haselkorn, R.; Bergman, B. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE 2010. [Google Scholar] [CrossRef]
- Moran, N.A.; McCutcheon, J.P.; Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 2008, 42, 165–190. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, J.P.; Moran, N.A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 2012, 10, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Mullapudi, N.; Sicheritz-Ponten, T.; Kissinger, J.C. A first glimpse into the pattern and scale of gene transfer in the apicomplexa. Int. J. Parasitol. 2004, 34, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Thao, M.L.; Gullan, P.J.; Baumann, P. Secondary (γ-proteobacteria) endosymbionts infect the primary (β-proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl. Environ. Microbiol. 2002, 68, 3190–3197. [Google Scholar] [CrossRef] [PubMed]
- Wujek, D.E. Intracellular bacteria in the blue-green alga pleurocapsa minor. Trans. Am. Microsc. Soc. 1979, 98, 143–145. [Google Scholar] [CrossRef]
- Sassera, D.; Beninati, T.; Bandi, C.; Bouman, E.A.P.; Sacchi, L.; Fabbi, M.; Lo, N. ‘Candidatus midichloria mitochondrii’, an endosymbiont of the tick ixodes ricinus with a unique intramitochondrial lifestyle. Int. J. Syst. Evol. Microbiol. 2006, 56, 2535–2540. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T. Endosymbiosis, Microbes and Evolution. Available online: http://www.biologyaspoetry.com/textbooks/microbes_and_evolution/symbiosis_endosymbiosis.html (accessed on 19 March 2014).
- Nagamune, K.; Xiong, L.; Chini, E.; Sibley, L.D. Plants, endosymbionts, and parasites. Commun. Integr. Biol. 2008, 1, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Van der Giezen, M.; Tovar, J. Degenerate mitochondria. EMBO Rep. 2005, 6, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Mentel, M.; Martin, W. Anaerobic animals from an ancient, anoxic ecological niche. BMC Biol. 2010, 8, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, J.A. Intracellular compartmentalization in planctomycetes. Annu. Rev. Microbiol. 2005, 59, 299–328. [Google Scholar] [CrossRef] [PubMed]
- Rachel, R.; Wyschkony, I.; Riehl, S.; Huber, H. The ultrastructure of ignicoccus: Evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 2002, 1, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, D.D. Thylakoid centers: Structures associated with the cyanobacterial photosynthetic membrane system. Arch. Microbiol. 1982, 133, 97–99. [Google Scholar] [CrossRef]
- Cavalier-Smith, T. Origin of the cell nucleus, mitosis and sex: Roles of intracellular coevolution. Biol. Direct. 2010, 5, 1–78. [Google Scholar] [CrossRef] [PubMed]
- Jékely, G. Origin of eukaryotic endomembranes. In Eukaryotic Membranes and Cytoskeleton: Origins and Evolution; Jékely, G., Ed.; Springer: Wein, Austria, 2007; pp. 38–51. [Google Scholar]
- Roeben, A.; Kofler, C.; Nagy, I.; Nickell, S.; Ulrich Hartl, F.; Bracher, A. Crystal structure of an archaeal actin homolog. J. Mol. Biol. 2006, 358, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, W. The prokaryotic cytoskeleton: A putative target for inhibitors and antibiotics? Appl. Microbiol. Biotechnol. 2006, 73, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Van den Ent, F.; Amos, L.A.; Lowe, J. Prokaryotic origin of the actin cytoskeleton. Nature 2001, 413, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Erickson, H.P. Ftsz, a tubulin homologue in prokaryote cell division. Trends Cell Biol. 1997, 7, 362–367. [Google Scholar] [CrossRef]
- Ausmees, N.; Kuhn, J.R.; Jacobs-Wagner, C. The bacterial cytoskeleton: An intermediate filament-like function in cell shape. Cell 2003, 115, 705–713. [Google Scholar] [CrossRef]
- Montgomery, W.L.; Pollak, P.E. Epulopiscium fishelsoni N. G., N. Sp., a protist of uncertain taxonomic affinities from the gut of an herbivorous reef fish. Eukaryot. Microbiol. 1988, 35, 565–569. [Google Scholar]
- Angert, E.R.; Clements, K.D.; Pace, N.R. The largest bacterium. Nature 1993, 362, 239–241. [Google Scholar] [CrossRef] [PubMed]
- Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature 2014, 510, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Jobe, E.M.; McQuate, A.L.; Zhao, X. Crosstalk among epigenetic pathways regulates neurogenesis. Front. Neurosci. 2012. [Google Scholar] [CrossRef] [PubMed]
- Schouten, M.; Buijink, M.R.; Lucassen, P.J.; Fitzsimons, C.P. New neurons in aging brains: Molecular control by small non-coding rnas. Front. Neurosci. 2012. [Google Scholar] [CrossRef] [PubMed]
- Buhler, M.; Moazed, D. Transcription and rnai in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 2007, 14, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.I.S.; Rice, J.C. Regulation of heterochromatin by histone methylation and small rnas. Curr. Opin. Cell Biol. 2004, 16, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Makuch, D.; Lim, D.S.S.; Laval, B.; Turse, C.; Antonio, M.R.S.; Chan, O.; Pointing, S.B.; Reid, D.; Irwin, L.N. Pavilion lake microbialites: Morphological, molecular, and biochemical evidence for a cold-water transition to colonial aggregates. Life 2013, 3, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.T. Evolutionary strategies and developmental constraints in the cellular slime molds. Am. Nat. 1982, 119, 530–552. [Google Scholar] [CrossRef]
- Bell, G.; Mooers, A.O. Size and complexity among multicellular organisms. Biol. J. Linn. Soc. 1997, 60, 345–363. [Google Scholar] [CrossRef]
- Boraas, M.E.; Seale, D.B.; Boxhorn, J.E. Phagotrophy by a flagellate selects for colonial prey: A possible origin for multicellularity. Evol. Ecol. 1998, 12, 153–164. [Google Scholar] [CrossRef]
- Fairclough, S.R.; Dayel, M.J.; King, N. Multicellular development in a choanoflagellate. Curr. Biol. 2010, 20, R875–R876. [Google Scholar] [CrossRef] [PubMed]
- King, N. The unicellular ancestry of animal development. Dev. Cell 2004, 7, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Calcott, B.; Sterelny, K. A dynamic view of evolution. In The Major Transitions in Evolution Revisited; MIT Press: Cambridge, MA, USA, 2011; pp. 1–14. [Google Scholar]
- Levinton, J.S. The cambrian explosion: How do we use the evidence. BioScience 2008, 58, 855–864. [Google Scholar] [CrossRef]
- Li, D.J.; Zhang, S. The cambrian explosion triggered by critical turning point in genome size evolution. Biochem. Biophys. Res. Commun. 2010, 392, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A. The Evolution of Developmental Pathways; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Narbonne, G.M. The ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 2005, 33, 421–442. [Google Scholar] [CrossRef]
- Collins, A.G. Evaluating multiple alternative hypotheses for the origin of bilateria: An analysis of 18s rRNA molecular evidence. Proc. Natl. Acad. Sci. USA 1998, 95, 15458–15463. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.G.; Wang, X.; Schröder, H. Paleoclimate and evolution: Emergence of sponges during the neoproterozoic. In Biosilica in Evolution, Morphogenesis, and Nanobiotechnology; Müller, W.G., Grachev, M., Eds.; Springer: Berlin, Heidelberg, 2009; pp. 55–77. [Google Scholar]
- Steinmetz, P.R.H.; Kraus, J.E.M.; Larroux, C.; Hammel, J.U.; Amon-Hassenzahl, A.; Houliston, E.; Worheide, G.; Nickel, M.; Degnan, B.M.; Technau, U. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 2012, 487, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Hejnol, A. Muscle’s dual origins. Nature 2012, 487, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Moroz, L.L.; Kocot, K.M.; Citarella, M.R.; Dosung, S.; Norekian, T.P.; Povolotskaya, I.S.; Grigorenko, A.P.; Dailey, C.; Berezikov, E.; Buckley, K.M.; et al. The ctenophore genome and the evolutionary origins of neural systems. Nature 2014, 510, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Marı́n, I.; Baker, B.S. The evolutionary dynamics of sex determination. Science 1998, 281, 1990–1994. [Google Scholar] [PubMed]
- Cortez, D.; Marin, R.; Toledo-Flores, D.; Froidevaux, L.; Liechti, A.; Waters, P.D.; Grutzner, F.; Kaessmann, H. Origins and functional evolution of y chromosomes across mammals. Nature 2014, 508, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, M.H.; Farley, C.T.; Full, R.J.; Koehl, M.A.R.; Kram, R.; Lehman, S. How animals move: An integrative view. Science 2000, 288, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.C. The fossil record and the early evolution of the metazoa. Nature 1993, 361, 219–225. [Google Scholar] [CrossRef]
- Richter, D.J.; King, N. The genomic and cellular foundations of animal origins. Annu. Rev. Genet. 2013, 47, 509–537. [Google Scholar] [CrossRef] [PubMed]
- Parfrey, L.W.; Lahr, D.J.G.; Knoll, A.H.; Katz, L.A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl. Acad. Sci. USA 2011, 108, 13624–13629. [Google Scholar] [CrossRef] [PubMed]
- King, N.; Westbrook, M.J.; Young, S.L.; Kuo, A.; Abedin, M.; Chapman, J.; Fairclough, S.; Hellsten, U.; Isogai, Y.; Letunic, I.; et al. The genome of the choanoflagellate monosiga brevicollis and the origin of metazoans. Nature 2008, 451, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.E.; Cook, M.E.; Busse, J.S. The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proc. Natl. Acad. Sci. USA 2000, 97, 4535–4540. [Google Scholar] [CrossRef] [PubMed]
- Brenner, E.D.; Stahlberg, R.; Mancuso, S.; Vivanco, J.; Baluška, F.; van Volkenburgh, E. Plant neurobiology: An integrated view of plant signaling. Trends Plant Sci. 2006, 11, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Barlow, P.W. Reflections on ‘plant neurobiology’. BioSystems 2008, 92, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Alpi, A.; Amrhein, N.; Bertl, A.; Blatt, M.R.; Blumwald, E.; Cervone, F.; Dainty, J.; de Michelis, M.I.; Epstein, E.; Galston, A.W.; et al. Plant neurobiology: No brain, no gain? Trends Plant Sci. 2007, 12, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Simon, P. The Action Plant. Movement and Newvous Behaviour in Plants; Blackwell: Oxford, UK, 1992. [Google Scholar]
- Meeuse, B.J.D. Thermogenic respiration in aroids. Annu. Rev. Plant Physiol. 1975, 26, 117–126. [Google Scholar] [CrossRef]
- Ivantsov, Y. Trace fossils of precambrian metazoans “vendobionta” and “mollusks”. Stratigr. Geol. Correl. 2013, 21, 252–264. [Google Scholar] [CrossRef]
- Irwin, L.N.; Mendez, A.; Fairen, A.G.; Catling, D.; Schulze-Makuch, D. Metrics for predicting biological complexity on other worlds. In Proceedings of the Astrobiology Science Conference, Atlanta, GA, USA, 15–20 April 2012.
- Finn, J.K.; Tregenza, T.; Norman, M.D. Defensive tool use in a coconut-carrying octopus. Curr. Biol. 2009, 19, R1069–R1070. [Google Scholar] [CrossRef] [PubMed]
- Shumaker, R.W.; Walkup, K.R.; Beck, B.B. Animal Tool Behaviour. The Use and Manufacture of Tools by Animals; Johns Hopkins University Press: Baltimore, MD, USA, 2011. [Google Scholar]
- Boesch, C. Wild Cultures. A Comparison between Chimpanzee and Human Cultures; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Irwin, L.N.; Schulze-Makuch, D. Cosmic Biology: How Life Could Evolve on Other Worlds; Springer: New York, NY, USA, 2010. [Google Scholar]
- Krakauer, D. The inferential evolution of biological complexity: Forgetting nature by learning to nurture. In Complexity and the Arrow of Time; Lineweaver, C.H., Davies, P.C.W., Ruse, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 224–245. [Google Scholar]
- Gould, S.J.; Lewontin, R.C. The spandrels of san marco and the panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B Biol. Sci. 1979, 205, 581–598. [Google Scholar] [CrossRef] [PubMed]
- Cavalier-smith, T. Origins of the machinery of recombination and sex. Heredity 2002, 88, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Havird, J.C.; Hall, M.D.; Dowling, D.K. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion. BioEssays 2015, 37, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, B.O. Asex and evolution: A very large-scale overview. In Lost Sex. The Evolutionary Biology of Parthenogenesis; Schön, I., Martens, K., van Dijk, P., Eds.; Springer: Wein, Austria, 2009; pp. 1–19. [Google Scholar]
- Welch, D.B.M.; Ricci, C.; Meselson, M. Bdelloid rotifers: Progress in understanding the success of an evolutionary scandal. In Lost Sex. The Evolutionary Biology of Parthenogenesis; Schön, I., Martens, K., van Dijk, P., Eds.; Springer: Wein, Austria, 2009; pp. 259–279. [Google Scholar]
- Flot, J.-F.; Hespeels, B.; Li, X.; Noel, B.; Arkhipova, I.; Danchin, E.G.J.; Hejnol, A.; Henrissat, B.; Koszul, R.; Aury, J.-M.; et al. Genomic evidence for ameiotic evolution in the bdelloid rotifer adineta vaga. Nature 2013, 500, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Heethoff, M.; Norton, R.A.; Scheu, S.; Maraun, M. Asex and evolution: A very large-scale overview. In Lost Sex. The Evolutionary Biology of Parthenogenesis; Schön, I., Martens, K., van Dijk, P., Eds.; Springer: Wein, Austria, 2009; pp. 241–247. [Google Scholar]
- Clarke, E. Plant individuality and multilevel sepection theory. In The Major Transitions in Evolution Revisited; Chalcott, B., Sterelny, K., Eds.; MIT Press: Cambridge, MA, USA, 2011; pp. 227–250. [Google Scholar]
- Roach, K.C.; Ross, B.D.; Malik, M.S. Rapid evolution of centromeres and centromeric/kinetochore proteins. In Rapidly Evolving Genes and Genetic Systems; Singh, R.S., Xu, J., Kulathinal, R.J., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 83–93. [Google Scholar]
- Malik, H.S.; Henikoff, S. Major evolutionary transitions in centromere complexity. Cell 2009, 138, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
Key Innovation | Sub-Category of Innovation | References | |||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | ||
The origin of life | • | • | |||||
Photosynthesis | • | ||||||
Oxygenesis | • | • | • | ||||
Extremophily | • | ||||||
Eukaryotic cell organization | • | • | • | • | • | • | |
Gene organization | • | ||||||
Endosymbiont acquisition | • | • | |||||
• | • | • | • | ||||
Multicellularity | • | • | |||||
Cell/organism differentiation | • | • | • | ||||
Plant colonization of land | • | ||||||
Animals evolution | • | • | |||||
Movement | • | ||||||
Sight | • | ||||||
Homeothermy | • | • | |||||
Nervous systems | • | • | |||||
Intelligence | • | ||||||
Consciousness * | • | ||||||
Human society/language/technology | • | • | • | • | • |
Promoter | Reasoning | Example |
---|---|---|
Body Size | Animals with individual intelligence tend to have large body sizes compared to the average of their taxonomic group | Cephalopods, elephants |
Activity Level | Active organism that move through changing environments are required to analyse features that—sedentary organisms do not have to deal with, like acceleration and balance, depth perception, feature extraction, distinguishing foreground from back-ground, etc. | Dolphins, humans |
High Sensory Resolution | High sensory processing, such as visual and tactile, requires high intelligence, for example in complex arboreal environments | Primates, parrots, |
Fine Motor Control | Fine motor control is needed for a combination of delicate and complex movements including the coordination of multiple appendices and subtle muscle movement to control vocalization | Octopus, parrots, human |
Social Behaviour | Intelligence is required for sophisticated communication either by behaviour, vocalization, or facial expression. It often involves hierarchical and territorial awareness, and accurate social memory | Primates, cetaceans, social insects * |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bains, W.; Schulze-Makuch, D. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life 2016, 6, 25. https://doi.org/10.3390/life6030025
Bains W, Schulze-Makuch D. The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life. 2016; 6(3):25. https://doi.org/10.3390/life6030025
Chicago/Turabian StyleBains, William, and Dirk Schulze-Makuch. 2016. "The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life" Life 6, no. 3: 25. https://doi.org/10.3390/life6030025
APA StyleBains, W., & Schulze-Makuch, D. (2016). The Cosmic Zoo: The (Near) Inevitability of the Evolution of Complex, Macroscopic Life. Life, 6(3), 25. https://doi.org/10.3390/life6030025