The Paleomineralogy of the Hadean Eon Revisited
Abstract
:1. Introduction
2. Prebiotic Organic Materials
3. Impact Mineralization
4. Prebiotic Redox Gradients on Earth
4.1. Global-Scale Redox Gradients
4.2. Regional-Scale Redox Gradients
4.3. Local-Scale Redox Gradients
4.3.1. Local Immiscibility
4.3.2. Meteorites
4.3.3. Lightning Strikes
4.3.4. Hydrothermal Vents
4.3.5. Photo-Oxidation
4.4. ‘Natural Kinds’ of Hadean Minerals
4.4.1. Minerals That Have Been Lumped Together
4.4.2. Mineral Kinds That Have Been Split
4.4.3. Non-Crystalline Materials
5. Conclusions: Minerals and Origins-of-Life Chemistry
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hazen, R.M. Paleomineralogy of the Hadean eon: A preliminary species list. Am. J. Sci. 2013, 313, 807–843. [Google Scholar] [CrossRef]
- Bernal, J.D. The Physical Basis of Life; Routledge and Kegan Paul: Abingdon, UK, 1951; ISBN 594837739. [Google Scholar]
- Goldschmidt, V.M. Geochemical aspects of the origin of complex organic molecules on the Earth, as precursors to organic life. New Biol. 1952, 12, 97–105. [Google Scholar]
- Cairns-Smith, A.G. Genetic Takeover and the Mineral Origins of Life; Cambridge University Press: Cambridge, UK, 1982; ISBN 978-0521346825. [Google Scholar]
- Acevedo, O.L.; Orgel, L.E. Template-directed oligonucleotide ligation on hydroxylapatite. Nature 1986, 321, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Wächtershäuser, G. Before enzymes and templates: Theory of surface metabolism. Microbiol. Rev. 1988, 52, 452–484. [Google Scholar] [PubMed]
- Lahav, N. Minerals and the origin of life-hypotheses and experiments in heterogeneous chemistry. Heterog. Chem. Rev. 1994, 1, 159–179. [Google Scholar]
- Ferris, J.P.; Hill, A.R., Jr.; Liu, R.; Orgel, L.E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 1996, 381, 59–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgel, L.E. Polymerization on the rocks: Theoretical introduction. Orig. Life Evol. Biosph. 1998, 28, 227–234. [Google Scholar] [CrossRef]
- Cody, G.D. Transition metal sulfides and the origins of metabolism. Annu. Rev. Earth Planet. Sci. 2004, 32, 569–599. [Google Scholar] [CrossRef]
- Ricardo, A.; Carrigan, M.A.; Olcott, A.N.; Benner, S.A. Borate minerals stabilize ribose. Science 2004, 303, 196. [Google Scholar] [CrossRef]
- Hazen, R.M. Presidential Address to the Mineralogical Society of America, Salt Lake City, October 18, 2005: Mineral surfaces and the prebiotic selection and organization of biomolecules. Am. Mineral. 2006, 91, 1715–1729. [Google Scholar] [CrossRef]
- Pasek, M.A.; Dworkin, J.P.; Lauretta, D.S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta 2007, 71, 1721–1736. [Google Scholar] [CrossRef]
- Cleaves, H.J., II; Scott, A.M.; Hill, F.C.; Leszczynski, J.; Sahai, N.; Hazen, R. Mineral–organic interfacial processes: Potential roles in the origins of life. Chem. Soc. Rev. 2012, 41, 5502–5525. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Furukawa, Y.; Kakegawa, T.; Bita, A.; Scorei, R.; Benner, S.A. Evaporite Borate-Containing Mineral Ensembles Make Phosphate Available and Regiospecifically Phosphorylate Ribonucleosides: Borate as a Multifaceted Problem Solver in Prebiotic Chemistry. Angew. Chem. Int. Ed. 2016, 55, 15816–15820. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, E.W.; Kim, H.-J.; Benner, S.A. Molybdenum (VI)-Catalyzed Rearrangement of Prebiotic Carbohydrates in Formamide, a Candidate Prebiotic Solvent. Astrobiology 2018, 18, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Schoonen, M.; Smirnov, A. Staging life in an early warm ‘seltzer’ocean. Elements 2016, 12, 395–400. [Google Scholar] [CrossRef]
- Lahav, N. Biogenesis: Theories of Life’s Origin; Oxford University Press on Demand: Oxford, UK, 1999; ISBN 0195117557. [Google Scholar]
- Hazen, R.M. Genesis: The Scientific Quest for Life’s Origin; National Academies Press: Washington, DC, USA, 2005; ISBN 0309094321. [Google Scholar]
- Sahai, N.; Kaddour, H.; Dalai, P.; Wang, Z.; Bass, G.; Gao, M. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly. Sci. Rep. 2017, 7, 43418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanczyc, M.M.; Fujikawa, S.M.; Szostak, J.W. Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division. Science 2003, 302, 618–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard-Casely, H.E.; Cable, M.L.; Malaska, M.J.; Vu, T.H.; Choukroun, M.; Hodyss, R. Prospects for mineralogy on Titan. Am. Mineral. 2018, 103, 343–349. [Google Scholar] [CrossRef]
- Hazen, R.M. Titan mineralogy: A window on organic mineral evolution. Am. Mineral. 2018, 103, 341–342. [Google Scholar] [CrossRef]
- Glikson, A. Eugene Shoemaker and the impact paradigm in Earth and planetary science. Celest. Mech. Dyn. Astron. 1997, 69, 1–7. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal Processes and Mineral Systems; Springer: Amsterdam, The Netherlands, 2009; ISBN 978-1-4020-8613-7. [Google Scholar]
- Hazen, R.M. An evolutionary system of mineralogy: Proposal for a classification based on natural kind clustering. Am. Mineral. 2019, in press. [Google Scholar] [CrossRef]
- Reeder, R.J.; Barber, D.J. Carbonates: Mineralogy and Chemistry; Mineralogical Society of America: Washington, DC, USA, 1983; Volume 11, ISBN 978-0939950157. [Google Scholar]
- Falkowski, P.; Scholes, R.J.; Boyle, E.E.A.; Canadell, J.; Canfield, D.; Elser, J.; Gruber, N.; Hibbard, K.; Högberg, P.; Linder, S. The global carbon cycle: A test of our knowledge of earth as a system. Science 2000, 290, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, M.M.; Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 2009, 262, 4–16. [Google Scholar] [CrossRef]
- Perry, R.S.; Mcloughlin, N.; Lynne, B.Y.; Sephton, M.A.; Oliver, J.D.; Perry, C.C.; Campbell, K.; Engel, M.H.; Farmer, J.D.; Brasier, M.D. Defining biominerals and organominerals: Direct and indirect indicators of life. Sediment. Geol. 2007, 201, 157–179. [Google Scholar] [CrossRef]
- Hazen, R.M.; Downs, R.T.; Jones, A.P.; Kah, L. Carbon Mineralogy and Crystal Chemistry. In Reviews in Mineralogy and Geochemistry; Hazen, R.M., Jones, A., Baross, J., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2013; Volume 75, pp. 7–46. ISBN 1529-6466r978-0-939950-90-4. [Google Scholar]
- Nasdala, L.; Pekov, I.V. Ravatite, C14HIO, a new organic mineral species from Ravat, Tadzhikistan. Eur. J. Miner. 1993, 5, 699–705. [Google Scholar] [CrossRef]
- Hummer, D.R.; Noll, B.C.; Hazen, R.M.; Downs, R.T. Crystal structure of abelsonite, the only known crystalline geoporphyrin. Am. Mineral. 2017, 102, 1129–1132. [Google Scholar]
- Oftedal, I. Minerals from the burning Coal Seam at Mt. Pyramide, Spitsbergen. Result. av Nor. Statsunderstottede Spitsbergenekspeditioner 1922, 1, 9–14. [Google Scholar]
- Rost, R. Supplements to the mineralogy of the burning (coal) heaps in the region of Kladno. Rozpravy II. Trídy Ces. Akad. 1942, 52, 1–4. [Google Scholar]
- Belakovskiy, D.I. A natural mineralization process resulting from in situ self-ignition and burning of coal. In Proceedings of the 17th General Meeting of the International Mineralogical Association, Toronto, ON, Canada, 9–14 August 1998. [Google Scholar]
- Chesnokov, B.V.; Shcherbakova, Y.P.; Nishanbayev, T.P. Minerals from Burned Dumps of Chelyabinsk Coal Basin. Miass. Russ. Acad. Sci. Ural. Div. Inst. Mineral. 2008, 139. [Google Scholar]
- Witzke, T.; de Wit, F.; Kolitsch, U.; Blass, G.; Stracher, G.B.; Prakash, A.; Sokol, E.V. Mineralogy of the burning Anna I coal mine dump, Alsdorf, Germany. In Coal and Peat Fires—A Global Perspective; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 203–240. [Google Scholar]
- Pekov, I.V.; Chukanov, N.V.; Belakovskiy, D.I.; Lykova, I.S.; Yapaskurt, V.O.; Zubkova, N.V.; Shcherbakova, E.P.; Britvin, S. Tinnunculite, IMA 2015-021a. Mineral. Mag. 2016, 80, 199–205. [Google Scholar]
- Benner, S.A.; Kim, H.-J.; Kim, M.-J.; Ricardo, A. Planetary organic chemistry and the origins of biomolecules. Cold Spring Harb. Perspect. Biol. 2010, 2, a003467. [Google Scholar] [CrossRef] [PubMed]
- Chyba, C.; Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 1992, 355, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfreund, P.; Charnley, S.B. Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth. Annu. Rev. Astron. Astrophys. 2000, 38, 427–483. [Google Scholar] [CrossRef]
- Sephton, M.A. Organic compounds in carbonaceous meteorites. Nat. Prod. Rep. 2002, 19, 292–311. [Google Scholar] [CrossRef] [PubMed]
- Pizzarello, S.; Cooper, G.W.; Flynn, G.J. The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dust particles. Meteorit. Early Sol. Syst. II 2006, 1, 625–651. [Google Scholar]
- Burton, A.S.; Stern, J.C.; Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 2012, 41, 5459–5472. [Google Scholar] [CrossRef]
- Koga, T.; Naraoka, H. A new family of extraterrestrial amino acids in the Murchison meteorite. Sci. Rep. 2017, 7, 636. [Google Scholar] [CrossRef]
- Glasby, G.P. Abiogenic origin of hydrocarbons: An historical overview. Resour. Geol. 2006, 56, 83–96. [Google Scholar] [CrossRef]
- Fu, Q.; Lollar, B.S.; Horita, J.; Lacrampe-Couloume, G.; Seyfried, W.E., Jr. Abiotic formation of hydrocarbons under hydrothermal conditions: Constraints from chemical and isotope data. Geochim. Cosmochim. Acta 2007, 71, 1982–1998. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Kutcherov, V.G.; Goncharov, A.F. Methane-derived hydrocarbons produced under upper-mantle conditions. Nat. Geosci. 2009, 2, 566–570. [Google Scholar] [CrossRef]
- McCollom, T.M. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev. Mineral. Geochem. 2013, 75, 467–494. [Google Scholar] [CrossRef]
- Sephton, M.A.; Hazen, R.M. On the origins of deep hydrocarbons. Rev. Mineral. Geochem. 2013, 75, 449–465. [Google Scholar] [CrossRef]
- Huang, F.; Daniel, I.; Cardon, H.; Montagnac, G.; Sverjensky, D.A. Immiscible hydrocarbon fluids in the deep carbon cycle. Nat. Commun. 2017, 8, 15798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, G.; Kimmich, N.; Belisle, W.; Sarinana, J.; Brabham, K.; Garrel, L. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 2001, 414, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Cooper, G.; Rios, A.C. Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proc. Natl. Acad. Sci. USA 2016, 113, E3322–E3331. [Google Scholar] [CrossRef] [PubMed]
- Springsteen, G.; Joyce, G.F. Selective derivatization and sequestration of ribose from a prebiotic mix. J. Am. Chem. Soc. 2004, 126, 9578–9583. [Google Scholar] [CrossRef] [PubMed]
- Hein, J.E.; Tse, E.; Blackmond, D.G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nat. Chem. 2011, 3, 704–706. [Google Scholar] [CrossRef]
- Blackmond, D.G. Asymmetric autocatalysis and its implications for the origin of homochirality. Proc. Natl. Acad. Sci. 2004, 101, 5732–5736. [Google Scholar] [CrossRef]
- Blackmond, D.G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 2010, 2, a002147. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 1995, 23, 997–1008. [Google Scholar] [CrossRef]
- Buffett, B.A. Clathrate hydrates. Annu. Rev. Earth Planet. Sci. 2000, 28, 477–507. [Google Scholar] [CrossRef]
- Hazen, R.M.; Sverjensky, D.A.; Azzolini, D.; Bish, D.L.; Elmore, S.C.; Hinnov, L.; Milliken, R.E. Clay mineral evolution. Am. Mineral. 2013, 98, 2007–2029. [Google Scholar] [CrossRef]
- Guggenheim, S.; van Groos, A.F.K. New gas-hydrate phase: Synthesis and stability of clay–methane hydrate intercalate. Geology 2003, 31, 653–656. [Google Scholar] [CrossRef]
- Benner, S.A.; Devine, K.G.; Matveeva, L.N.; Powell, D.H. The missing organic molecules on Mars. Proc. Natl. Acad. Sci. USA 2000, 97, 2425–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritson, D.J.; Sutherland, J.D. Synthesis of aldehydic ribonucleotide and amino acid precursors by photoredox chemistry. Angew. Chem. Int. Ed. 2013, 52, 5845–5847. [Google Scholar] [CrossRef]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W. The origin of life on Earth and the design of alternative life forms. Mol. Front. J. 2017, 1, 121–131. [Google Scholar] [CrossRef]
- Kebukawa, Y.; Cody, G.D. A kinetic study of the formation of organic solids from formaldehyde: Implications for the origin of extraterrestrial organic solids in primitive Solar System objects. Icarus 2015, 248, 412–423. [Google Scholar] [CrossRef]
- Glikson, A.Y.; Pirajno, F. Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia; Springer: Berlin, Germany, 2018; ISBN 331974545X. [Google Scholar]
- Versh, E.; Kirsimäe, K.; Jõeleht, A. Development of potential ecological niches in impact-induced hydrothermal systems: The small-to-medium size impacts. Planet. Space Sci. 2006, 54, 1567–1574. [Google Scholar] [CrossRef]
- Abramov, O.; Kring, D.A. Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. Planets 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.C.; Gooding, J.L.; Keil, K. Hydrothermally altered impact melt rock and breccia: Contributions to the soil of Mars. J. Geophys. Res. Solid Earth 1982, 87, 10083–10101. [Google Scholar] [CrossRef]
- Pirajno, F. Hydrothermal processes associated with meteorite impact structures: Evidence from three Australian examples and implications for economic resources. Aust. J. Earth Sci. 2005, 52, 587–605. [Google Scholar] [CrossRef]
- Naldrett, A.J. From impact to riches: Evolution of geological understanding. GSA TODAY 2003, 5, 4–9. [Google Scholar] [CrossRef]
- Johansson, Å. Geochemical studies on the Boda Pb-Zn deposit in the Siljan astrobleme, central Sweden. Geol. Föreningen i Stock. Förhandlingar 1984, 106, 15–25. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Borates, Carbonates, Sulfates. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2003; Volume V, ISBN 0-9622097-0-8. [Google Scholar]
- Hazen, R.M.; Papineau, D.; Bleeker, W.; Downs, R.T.; Ferry, J.M.; McCoy, T.J.; Sverjensky, D.A.; Yang, H. Mineral evolution. Am. Mineral. 2008, 93, 1693–1720. [Google Scholar] [CrossRef]
- Delano, J.W. Redox history of the Earth’s interior since ∼3900 Ma: Implications for prebiotic molecules. Orig. Life Evol. Biosph. 2001, 31, 311–341. [Google Scholar] [CrossRef]
- Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 2002, 195, 75–90. [Google Scholar] [CrossRef]
- Li, Z.-X.A.; Lee, C.-T.A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 2004, 228, 483–493. [Google Scholar]
- Frost, D.J.; McCammon, C.A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 2008, 36, 389–420. [Google Scholar] [CrossRef]
- Trail, D.; Watson, E.B.; Tailby, N.D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 2011, 480, 79–82. [Google Scholar] [CrossRef]
- Righter, K.; Ghiorso, M.S. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition. Proc. Natl. Acad. Sci. USA 2012, 109, 11955–11960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, K.; Frost, D.J.; McCammon, C.M.; Rubie, D.; Boffa-Ballaran, T. Oxidation States of Fe in Silicate Melts as a Function of Pressure and Implications for Redox Evolution of the Early Mantle. Proc. Lunar Planet. Sci. Conf. 2016, 47, 2580. [Google Scholar]
- Zhang, H.L.; Hirschmann, M.M.; Cottrell, E.; Withers, A.C. Effect of pressure on Fe 3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochim. Cosmochim. Acta 2017, 204, 83–103. [Google Scholar] [CrossRef]
- Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H. Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 2013, 341, 263–266. [Google Scholar] [CrossRef]
- Nair, H.; Allen, M.; Anbar, A.D.; Yung, Y.L.; Clancy, R.T. A photochemical model of the Martian atmosphere. Icarus 1994, 111, 124–150. [Google Scholar] [CrossRef] [PubMed]
- Sakuraba, H.; Kurokawa, H.; Genda, H. Impact degassing and atmospheric erosion on Venus, Earth, and Mars during the late accretion. Icarus 2019, 317, 48–58. [Google Scholar] [CrossRef]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef]
- Canfield, D.E. Oxygen: A Four Billion Year History; Princeton University Press: Princeton, NJ, USA, 2014; ISBN 1400849888. [Google Scholar]
- Genda, H.; Brasser, R.; Mojzsis, S.J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 2017, 480, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Genda, H.; Iizuka, T.; Sasaki, T.; Ueno, Y.; Ikoma, M. Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion. Earth Planet. Sci. Lett. 2017, 470, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Hazen, R.M.; Ewing, R.C.; Sverjensky, D.A. Evolution of uranium and thorium minerals. Am. Mineral. 2009, 94, 1293–1311. [Google Scholar] [CrossRef]
- Hao, J.; Sverjensky, D.A.; Hazen, R.M. A model for late Archean chemical weathering and world average river water. Earth Planet. Sci. Lett. 2017, 457, 191–203. [Google Scholar] [CrossRef]
- Roedder, E. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: An example of serendipity. Geochim. Cosmochim. Acta 1978, 42, 1597–1617. [Google Scholar] [CrossRef]
- Philpotts, A.R. Compositions of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol. 1982, 80, 201–218. [Google Scholar] [CrossRef]
- Charlier, B.; Grove, T.L. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol. 2012, 164, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Wager, L.R.; Brown, G.M. Layered Igneous Rocks; W. H. Freeman and Company: New York, NY, USA, 1968; ISBN 978-0716702368. [Google Scholar]
- Gray, N.H.; Crain, I.K. Crystal settling in sills: A model for suspension settling. Can. J. Earth Sci. 1969, 6, 1211–1216. [Google Scholar] [CrossRef]
- Fujii, T. Crystal settling in a sill. Lithos 1974, 7, 133–137. [Google Scholar] [CrossRef]
- Martin, D.; Nokes, R. Crystal settling in a vigorously converting magma chamber. Nature 1988, 332, 534–536. [Google Scholar] [CrossRef]
- Weinstein, S.A.; Yuen, D.A.; Olson, P.L. Evolution of crystal-settling in magma-chamber convection. Earth Planet. Sci. Lett. 1988, 87, 237–248. [Google Scholar] [CrossRef]
- Hoshide, T.; Obata, M.; Akatsuka, T. Crystal settling and crystal growth of olivine in magmatic differentiation—The Murotomisaki Gabbroic Complex, Shikoku, Japan. J. Mineral. Petrol. Sci. 2006, 101, 223–239. [Google Scholar] [CrossRef]
- Sun, W.; Arculus, R.J.; Kamenetsky, V.S.; Binns, R.A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 2004, 431, 975–978. [Google Scholar] [CrossRef]
- Maier, W.D. Platinum-group element (PGE) deposits and occurrences: Mineralization styles, genetic concepts, and exploration criteria. J. Afr. Earth Sci. 2005, 41, 165–191. [Google Scholar] [CrossRef]
- Collins, S.J.; Maclennan, J.; Pyle, D.M.; Barnes, S.-J.; Upton, B.G.J. Two phases of sulphide saturation in Réunion magmas: Evidence from cumulates. Earth Planet. Sci. Lett. 2012, 337, 104–113. [Google Scholar] [CrossRef]
- Savelyev, D.P.; Kamenetsky, V.S.; Danyushevsky, L.V.; Botcharnikov, R.E.; Kamenetsky, M.B.; Park, J.-W.; Portnyagin, M.V.; Olin, P.; Krasheninnikov, S.P.; Hauff, F. Immiscible sulfide melts in primitive oceanic magmas: Evidence and implications from picrite lavas (Eastern Kamchatka, Russia). Am. Mineral. 2018, 103, 886–898. [Google Scholar] [CrossRef]
- Lester, G.W.; Clark, A.H.; Kyser, T.K.; Naslund, H.R. Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: Implications for natural magmas. Contrib. Mineral. Petrol. 2013, 166, 329–349. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusion evidence for immiscibility in magmatic differentiation. Geochim. Cosmochim. Acta 1992, 56, 5–20. [Google Scholar] [CrossRef]
- Veksler, I.V.; Dorfman, A.M.; Dulski, P.; Kamenetsky, V.S.; Danyushevsky, L.V.; Jeffries, T.; Dingwell, D.B. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta 2012, 79, 20–40. [Google Scholar] [CrossRef]
- Naldrett, A.J. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer Science & Business Media: Berlin, Germany, 2004; ISBN 3662084449. [Google Scholar]
- Naldrett, A.J. Ores associated with flood basalts. In Reviews in Economic Geology: Ore Deposition Associated with Magmas; Whitney, J.A., Naldrett, A.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1989; Volume 4, pp. 103–118. ISBN 0961307404. [Google Scholar]
- Naldrett, A.J. A model for the Ni-Cu-PGE ores of the Noril’sk region and its application to other areas of flood basalt. Econ. Geol. 1992, 87, 1945–1962. [Google Scholar] [CrossRef]
- Naldrett, A.J. World-class Ni-Cu-PGE deposits: Key factors in their genesis. Miner. Depos. 1999, 34, 227–240. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Hawkesworth, C.J. Flood basalts and magmatic Ni, Cu, and PGE sulphide mineralization: Comparative geochemistry of the Noril’sk (Siberian Traps) and West Greenland sequences. Geophys. Monogr. Geophys. Union 1997, 100, 357–380. [Google Scholar]
- Lesher, C.M.; Keays, R.R. Komatiite-associated Ni-Cu-PGE deposits. Can. Inst. Min. Metall. Pet. Spec. 2002, 54, 579–617. [Google Scholar]
- Czamanske, G.K.; Zen’ko, T.E.; Fedorenko, V.A.; Calk, L.C.; Budahn, J.R.; Bullock, J.H.; Fries, T.L.; King, B.-S.W.; Siems, D.F. Petrographic and Geochemical Characterization of Ore-bearing Intrusions of the Noril’sk type, Siberia; With Discussion of Their Origin. Resour. Geol. Spec. Issue 1995, 18, 1–48. [Google Scholar]
- Kjarsgaard, B.A.; Hamilton, D.L. The immiscibility of silicate and carbonate liquids. S. Afr. J. Geol 1993, 96, 139–142. [Google Scholar]
- Solovova, I.P.; Girnis, A.V.; Kogarko, L.N.; Kononkova, N.N.; Stoppa, F.; Rosatelli, G. Compositions of magmas and carbonate–silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy. Lithos 2005, 85, 113–128. [Google Scholar] [CrossRef]
- Guzmics, T.; Mitchell, R.H.; Szabó, C.; Berkesi, M.; Milke, R.; Ratter, K. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): Evolution of carbonated nephelinitic magma. Contrib. Mineral. Petrol. 2012, 164, 101–122. [Google Scholar] [CrossRef]
- Guzmics, T.; Zajacz, Z.; Mitchell, R.H.; Szabó, C.; Wälle, M. The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: Insights from Kerimasi melt inclusions. Contrib. Mineral. Petrol. 2015, 169, 17. [Google Scholar] [CrossRef]
- Lee, W.; Wyllie, P.J. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions. Contrib. Mineral. Petrol. 1997, 127, 1–16. [Google Scholar] [CrossRef]
- Brooker, R.A. The effect of CO2 saturation on immiscibility between silicate and carbonate liquids: An experimental study. J. Petrol. 1998, 39, 1905–1915. [Google Scholar] [CrossRef]
- Veksler, I.V.; Dorfman, A.M.; Danyushevsky, L.V.; Jakobsen, J.K.; Dingwell, D.B. Immiscible silicate liquid partition coefficients: Implications for crystal-melt element partitioning and basalt petrogenesis. Contrib. Mineral. Petrol. 2006, 152, 685–702. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Schmidt, M.W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 2008, 267, 17–31. [Google Scholar] [CrossRef]
- Brooker, R.A.; Kjarsgaard, B.A. Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 1–2.5 GPa with applications to carbonatite genesis. J. Petrol. 2010, 52, 1281–1305. [Google Scholar] [CrossRef]
- Martin, L.H.J.; Schmidt, M.W.; Mattsson, H.B.; Guenther, D. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J. Petrol. 2013, 54, 2301–2338. [Google Scholar] [CrossRef]
- Lister, G.F. The composition and origin of selected iron-titanium deposits. Econ. Geol. 1966, 61, 275–310. [Google Scholar] [CrossRef]
- Philpotts, A.R. Origin of certain iron-titanium oxide and apatite rocks. Econ. Geol. 1967, 62, 303–315. [Google Scholar] [CrossRef]
- Namur, O.; Charlier, B.; Holness, M.B. Dual origin of Fe–Ti–P gabbros by immiscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion. Lithos 2012, 154, 100–114. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.T.; Zhou, M.-F.; Zhao, T.-P. Differentiation of nelsonitic magmas in the formation of the~ 1.74 Ga Damiao Fe–Ti–P ore deposit, North China. Contrib. Mineral. Petrol. 2013, 165, 1341–1362. [Google Scholar] [CrossRef]
- Lindsley, D.H.; Epler, N. Do Fe-Ti-oxide magmas exist? Probably not! Am. Mineral. 2017, 102, 2157–2169. [Google Scholar] [CrossRef]
- Charlier, B.; Namur, O.; Bolle, O.; Latypov, R.; Duchesne, J.-C. Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks. Earth-Sci. Rev. 2015, 141, 56–81. [Google Scholar] [CrossRef] [Green Version]
- Oen, I.S. A peculiar type of Cr-Ni-mineralization; cordierite-chromite-niccolite ores of Malaga, Spain, and their possible origin by liquid unmixing. Econ. Geol. 1973, 68, 831–842. [Google Scholar] [CrossRef]
- Makovicky, E.; Karup-Møller, S.; Makovicky, M.; Rose-Hansen, J. Experimental studies on the phase systems Fe-Ni-Pd-S and Fe-Pt-Pd-As-S applied to PGE deposits. Mineral. Petrol. 1990, 42, 307–319. [Google Scholar] [CrossRef]
- Fleet, M.E.; Chryssoulis, S.L.; Stone, W.E.; Weisener, C.G. Partitioning of platinum-group elements and Au in the Fe−Ni−Cu−S system: Experiments on the fractional crystallization of sulfide melt. Contrib. Mineral. Petrol. 1993, 115, 36–44. [Google Scholar] [CrossRef]
- Gervilla, F.; Leblanc, M.; Torres-Ruiz, J.; Fenoll Hach-Ali, P. Immiscibility between arsenide and sulfide melts; a mechanism for concentration of noble metals. Can. Mineral. 1996, 34, 485–502. [Google Scholar]
- Gervilla, F.; Gutiérrez-Narbona, R.; Fenoll-Hach-Alí, P. The origin of different types of magmatic mineralizations from small-volume melts in the lherzolite massifs of the Serranía de Ronda. Boletín la Soc. Esp. Mineral. 2002, 25, 79–96. [Google Scholar]
- Bali, E.; Audétat, A.; Keppler, H. Water and hydrogen are immiscible in Earth’s mantle. Nature 2013, 495, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Ruprecht, P.; Fiege, A.; Simon, A. Local redox gradients induced during magma mixing. In Proceedings of the XIV Congreso Geológico Chileno, La Serena, Chile, 4–8 October 2015; pp. 643–646. [Google Scholar]
- Fiege, A.; Ruprecht, P.; Simon, A. A magma mixing redox trap that moderates mass transfer of sulphur and metals. GEOCHEMICAL Perspect. Lett. 2017, 3, 190–198. [Google Scholar] [CrossRef]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, T.M.; Schmitt, A.K.; McCulloch, M.T.; Lovera, O.M. Early (≥4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 2008, 268, 476–486. [Google Scholar] [CrossRef]
- Valley, J.W.; Cavosie, A.J.; Ushikubo, T.; Reinhard, D.A.; Lawrence, D.F.; Larson, D.J.; Clifton, P.H.; Kelly, T.F.; Wilde, S.A.; Moser, D.E. Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nat. Geosci. 2014, 7, 219–223. [Google Scholar] [CrossRef] [Green Version]
- O’neil, J.; Carlson, R.W. Building Archean cratons from Hadean mafic crust. Science 2017, 355, 1199–1202. [Google Scholar] [CrossRef]
- Johnson, T.E.; Gardiner, N.J.; Miljković, K.; Spencer, C.J.; Kirkland, C.L.; Bland, P.A.; Smithies, H. An impact melt origin for Earth’s oldest known evolved rocks. Nat. Geosci. 2018, 11, 795–799. [Google Scholar] [CrossRef]
- Pasek, M.A.; Lauretta, D.S. Aqueous corrosion of phosphide minerals from iron meteorites: A highly reactive source of prebiotic phosphorus on the surface of the early Earth. Astrobiology 2005, 5, 515–535. [Google Scholar] [CrossRef]
- Pasek, M.A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 853–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gull, M.; Mojica, M.A.; Fernández, F.M.; Gaul, D.A.; Orlando, T.M.; Liotta, C.L.; Pasek, M.A. Nucleoside phosphorylation by the mineral schreibersite. Sci. Rep. 2015, 5, 17198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essene, E.J.; Fisher, D.C. Lightning strike fusion: Extreme reduction and metal-silicate liquid immiscibility. Science 1986, 234, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.; Thackrey, S.; Muirhead, D.K.; Wright, A.J. Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. In Proceedings of the Lunar and Planetary Science Conference, League City, TX, USA, 10–14 March 2008; Volume 39, p. 1286. [Google Scholar]
- Pasek, M.A.; Block, K.; Pasek, V. Fulgurite morphology: A classification scheme and clues to formation. Contrib. Mineral. Petrol. 2012, 164, 477–492. [Google Scholar] [CrossRef]
- Pasek, M.; Block, K. Lightning-induced reduction of phosphorus oxidation state. Nat. Geosci. 2009, 2, 553–556. [Google Scholar] [CrossRef]
- Glindemann, D.; Edwards, M.; Schrems, O. Phosphine and methylphosphine production by simulated lightning—A study for the volatile phosphorus cycle and cloud formation in the earth atmosphere. Atmos. Environ. 2004, 38, 6867–6874. [Google Scholar] [CrossRef]
- Daly, T.K.; Buseck, P.R.; Williams, P.; Lewis, C.F. Fullerenes from a fulgurite. Science 1993, 259, 1599–1601. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, F.B.; Vasseur, J.; Llewellin, E.W.; Genareau, K.; Cimarelli, C.; Dingwell, D.B. Size limits for rounding of volcanic ash particles heated by lightning. J. Geophys. Res. Solid Earth 2017, 122, 1977–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Nakamura, R.; Kasaya, T.; Kumagai, H.; Suzuki, K.; Takai, K. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields. Angew. Chem. Int. Ed. 2017, 56, 5725–5728. [Google Scholar] [CrossRef]
- Ang, R.; Khan, A.U.; Tsujii, N.; Takai, K.; Nakamura, R.; Mori, T. Thermoelectricity Generation and Electron–Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent. Angew. Chem. Int. Ed. 2015, 54, 12909–12913. [Google Scholar] [CrossRef]
- Rona, P.A. The changing vision of marine minerals. Ore Geol. Rev. 2008, 33, 618–666. [Google Scholar] [CrossRef]
- Lusty, P.A.J.; Murton, B.J. Deep-ocean mineral deposits: Metal resources and windows into Earth processes. Elem. Int. Mag. Mineral. Geochem. Petrol. 2018, 14, 301–306. [Google Scholar] [CrossRef]
- Petersen, S.; Lehrmann, B.; Murton, B.J. Modern seafloor hydrothermal systems: New perspectives on ancient ore-forming processes. Elem. Int. Mag. Mineral. Geochem. Petrol. 2018, 14, 307–312. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Kim, J.D.; Yee, N.; Nanda, V.; Falkowski, P.G. Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. Proc. Natl. Acad. Sci. USA 2013, 110, 10073–10077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braterman, P.S.; Cairns-Smith, A.G.; Sloper, R.W. Photo-oxidation of hydrated Fe2+—Significance for banded iron formations. Nature 1983, 303, 163–164. [Google Scholar] [CrossRef]
- Borowska, Z.; Mauzerall, D. Formation of hydrogen on irradiation of aqueous ferrous ion with UV light at neutral pH. Orig. Life Evol. Biosph. 1986, 16, 194–195. [Google Scholar] [CrossRef]
- Borowska, Z.K.; Mauzerall, D.C. Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. Orig. Life Evol. Biosph. 1987, 17, 251–259. [Google Scholar] [CrossRef]
- Matthews, R.W. Photooxidation of organic impurities in water using thin films of titanium dioxide. J. Phys. Chem. 1987, 91, 3328–3333. [Google Scholar] [CrossRef]
- Chen, X.D.; Wang, Z.; Liao, Z.F.; Mai, Y.L.; Zhang, M.Q. Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polym. Test. 2007, 26, 202–208. [Google Scholar] [CrossRef]
- Valdes, A.; Qu, Z.-W.; Kroes, G.-J.; Rossmeisl, J.; Nørskov, J.K. Oxidation and photo-oxidation of water on TiO2 surface. J. Phys. Chem. C 2008, 112, 9872–9879. [Google Scholar] [CrossRef]
- Valdés, Á.; Kroes, G.-J. Cluster study of the photo-oxidation of water on rutile titanium dioxide (TiO2). J. Phys. Chem. C 2010, 114, 1701–1708. [Google Scholar] [CrossRef]
- Waki, K.; Zhao, J.; Horikoshi, S.; Watanabe, N.; Hidaka, H. Photooxidation mechanism of nitrogen-containing compounds at TiO2/H2O interfaces: An experimental and theoretical examination of hydrazine derivatives. Chemosphere 2000, 41, 337–343. [Google Scholar] [CrossRef]
- Kebede, M.A.; Varner, M.E.; Scharko, N.K.; Gerber, R.B.; Raff, J.D. Photooxidation of Ammonia on TiO2 as a Source of NO and NO2 under Atmospheric Conditions. J. Am. Chem. Soc. 2013, 135, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.; Kempley, R.; Awadh, G.; Richman, K. Photo-oxidation of chloride to perchlorate in the presence of titanium dioxide and nitrate. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2004; Volume 228, p. U92. [Google Scholar]
- Schuttlefield, J.D.; Sambur, J.B.; Gelwicks, M.; Eggleston, C.M.; Parkinson, B.A. Photooxidation of chloride by oxide minerals: Implications for perchlorate on Mars. J. Am. Chem. Soc. 2011, 133, 17521–17523. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Wo, K.P.; Maity, S.; Atreya, S.K.; Kaiser, R.I. Radiation-induced formation of chlorine oxides and their potential role in the origin of Martian perchlorates. J. Am. Chem. Soc. 2013, 135, 4910–4913. [Google Scholar] [CrossRef] [PubMed]
- Nie, N.X.; Dauphas, N.; Greenwood, R.C. Iron and oxygen isotope fractionation during iron UV photo-oxidation: Implications for early Earth and Mars. Earth Planet. Sci. Lett. 2017, 458, 179–191. [Google Scholar] [CrossRef]
- Mills, S.J.; Hatert, F.; Nickel, E.H.; Ferraris, G. The standardisation of mineral group hierarchies: Application to recent nomenclature proposals. Eur. J. Mineral. 2009, 21, 1073–1080. [Google Scholar] [CrossRef]
- Schertl, H.-P.; Mills, S.J.; Maresch, W.V. A Compendium of IMA-Approved Nomenclature. In Proceedings of the XXII General Meeting of the International Mineralogical Association, Melbourne, Australia, 13–17 August 2018. [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The Power of Databases: The RRUFF Project; Walter de Gruyter GmbH: Berlin, Germany, 2015; ISBN 9783110417043. [Google Scholar]
- Davis, G. Diamond; Adam Hilger Ltd.: Bristol, UK, 1984. [Google Scholar]
- Shirey, S.B.; Cartigny, P.; Frost, D.J.; Keshav, S.; Nestola, F.; Nimis, P.; Pearson, D.G.; Sobolev, N.V.; Walter, M.J. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 2013, 75, 355–421. [Google Scholar] [CrossRef]
- Greaves, J.S.; Scaife, A.M.M.; Frayer, D.T.; Green, D.A.; Mason, B.S.; Smith, A.M.S. Anomalous microwave emission from spinning nanodiamonds around stars. Nat. Astron. 2018, 2, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Ott, U. Nanodiamonds in meteorites: Properties and astrophysical context. J. Achiev. Mater. Manuf. Eng. 2009, 37, 779–784. [Google Scholar]
- Smith, E.M.; Shirey, S.B.; Nestola, F.; Bullock, E.S.; Wang, J.; Richardson, S.H.; Wang, W. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 2016, 354, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Vishnevsky, S.; Raitala, J. Impact diamonds as indicators of shock metamorphism in strongly-reworked Pre-Cambrian impactites. In Impacts and the Early Earth; Springer: Berlin, Germany, 2000; pp. 229–247. [Google Scholar]
- Németh, P.; Garvie, L.A.J.; Aoki, T.; Dubrovinskaia, N.; Dubrovinsky, L.; Buseck, P.R. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 2014, 5, 5447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, P.J.; Vicenzi, E.P.; De, S. Strange diamonds: The mysterious origins of carbonado and framesite. Elements 2005, 1, 85–89. [Google Scholar] [CrossRef]
- Garai, J.; Haggerty, S.E.; Rekhi, S.; Chance, M. Infrared absorption investigations confirm the extraterrestrial origin of carbonado diamonds. Astrophys. J. Lett. 2006, 653, L153. [Google Scholar] [CrossRef]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline-supergroup minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Grew, E.S.; Hystad, G.; Hazen, R.M.; Krivovichev, S.V.; Gorelova, L.A. How many boron minerals occur in Earth’s upper crust? Am. Mineral. 2017, 102, 1573–1587. [Google Scholar] [CrossRef]
- Grew, E.S.; Dymek, R.F.; De Hoog, J.C.M.; Harley, S.L.; Boak, J.; Hazen, R.M.; Yates, M.G. Boron isotopes in tourmaline from the ca. 3.7–3.8 Ga Isua supracrustal belt, Greenland: Sources for boron in Eoarchean continental crust and seawater. Geochim. Cosmochim. Acta 2015, 163, 156–177. [Google Scholar] [CrossRef]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Harlov, D.E.; Rakovan, J.F. Apatite: A mineral for all seasons. Elements 2015, 11, 165–200. [Google Scholar]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef] [Green Version]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Rieder, M.; Cavazzini, G.; D’yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval’, P.V.; Mueller, G.; Neiva, A.M.R.; Radoslovich, E.W. Nomenclature of the micas. Clays Clay Miner. 1998, 46, 586–595. [Google Scholar] [CrossRef]
- Lindsley, D.H. Oxide Minerals: Petrologic and Magnetic Significance; Mineral Society of America: Chantilly, VA, USA, 1991; Volume 25. [Google Scholar]
- Biagioni, C.; Pasero, M. The systematics of the spinel-type minerals: An overview. Am. Mineral. 2014, 99, 1254–1264. [Google Scholar] [CrossRef]
- Rickard, D. Pyrite: A Natural History of Fool’s Gold; Oxford University Press: Oxford, UK, 2015; ISBN 0190203684. [Google Scholar]
- Rogers, A.F. A review of the amorphous minerals. J. Geol. 1917, 25, 515–541. [Google Scholar] [CrossRef]
- Morrison, S.M.; Downs, R.T.; Blake, D.F.; Vaniman, D.T.; Ming, D.W.; Hazen, R.M.; Treiman, A.H.; Achilles, C.N.; Yen, A.S.; Morris, R.V.; et al. Crystal chemistry of Martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. Am. Mineral. 2018, 103, 857–871. [Google Scholar] [CrossRef]
- Grew, E.S.; Bada, J.L.; Hazen, R.M. Borate minerals and origin of the RNA world. Orig. Life Evol. Biosph. 2011, 41, 307–316. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3, pp. 1–64. ISBN 008044847X. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-forming Minerals: Feldspars; Geological Society of London: London, UK, 2001; Volume 4A. [Google Scholar]
- Hazen, R.M.; Hystad, G.; Golden, J.J.; Hummer, D.R.; Liu, C.; Downs, R.T.; Morrison, S.M.; Ralph, J.; Grew, E.S. Cobalt mineral ecology. Am. Mineral. 2017, 102, 108–116. [Google Scholar] [CrossRef]
- Herzberg, C.; Vidito, C.; Starkey, N.A. Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. Am. Mineral. 2016, 101, 1952–1966. [Google Scholar] [CrossRef]
Molecular Class | Name |
---|---|
Amino acids | glycine |
alanine (D and L) | |
β-alanine | |
isovaline | |
aspartate (D and L) | |
Nucleobases | adenine |
guanine 1,* | |
uracil | |
Polycyclic Aromatic Hydrocarbons | fluorene 2,* |
anthracene 3,* | |
pentacene 4,* | |
coronene 5,* | |
pyrene | |
chrysene | |
tetracene | |
Other Organics | ferrocyanide |
2-aminooxazole |
Group | Species | IMA Formula |
---|---|---|
Sulfides, Chalcogenides | argentopentlandite | Ag(Fe,Ni)8S8 |
argentopyrite | AgFe2S3 | |
bismuthinite | Bi2S3 | |
breithauptite | NiSb | |
clausthalite | PbSe | |
dyscrasite | Ag3+xSb1-x (x ≈ 0.2) | |
geffroyite | (Cu,Fe,Ag)9Se8 | |
maucherite | Ni11As8 | |
naumannite | Ag2Se | |
siegenite | CoNi2S4 | |
stibnite | Sb2S3 | |
Sulfosalts | aikinite | CuPbBiS3 |
andorite | AgPbSb3S6 | |
berthierite | FeSb2S4 | |
boulangerite | Pb5Sb4S11 | |
bournonite | CuPbSbS3 | |
chalcostibite | CuSbS2 | |
cosalite | Pb2Bi2S5 | |
emplectite | CuBiS2 | |
jamesonite | Pb4FeSb6S14 | |
lindströmite | Pb3Cu3Bi7S15 | |
matildite | AgBiS2 | |
proustite | Ag3AsS3 | |
pyrargyrite | Ag3SbS3 | |
ramdohrite | Ag3Pb6Sb11S24 | |
samsonite | Ag4MnSb2S6 | |
seligmannite | CuPbAsS3 | |
smithite | AgAsS2 | |
sulvanite | Cu3VS4 | |
tealite | PbSnS2 | |
tetrahedrite | Cu6[Cu4(Fe,Zn)2]Sb4S13 | |
ullmanite | NiSbS | |
zinkenite | Pb9Sb22S42 |
Group | Species | IMA Formula |
---|---|---|
Oxides, Hydroxides, Halides | akaganeite | Fe3+O(OH,Cl) |
arsenolite | As2O3 | |
cotunnite | PbCl2 | |
cuprite | Cu2O | |
hibbingite | Fe2+2(OH)3Cl | |
lawrencite | FeCl2 | |
zirkelite | (Ti,Ca,Zr)O2-x | |
Silicates | allanite-(La) | CaLa(Al2Fe2+)[Si2O7][SiO4]O(OH) |
allanite-(Y) | CaY(Al2Fe2+)[Si2O7][SiO4]O(OH) | |
Carbonates | azurite | Cu3(CO3)2(OH)2 |
malachite | Cu2(CO3)(OH)2 | |
pyroaurite | Mg6Fe3+2(CO3)(OH)16·4H2O | |
Sulphates, Arsenates, etc. | brochanthite | Cu4(SO4)(OH)6 |
chalcanthite | Cu(SO4)·5H2O | |
copiaipite | Fe2+Fe3+4(SO4)6(OH)2·20H2O | |
erythrite | Co3(AsO4)2·8H2O | |
jarosite | KFe3+3(SO4)2(OH)6 | |
magnesiocopiapite | MgFe3+4(SO4)6(OH)2·20H2O | |
morenosite | Ni(SO4)·7H2O | |
nickelhexahydrite | Ni(SO4)·6H2O | |
römerite | Fe2+Fe3+2(SO4)4·14H2O | |
scorodite | Fe3+(AsO4)·2H2O | |
Molybdate, Tungstate, Phosphate | powellite | CaMoO4 |
scheelite | CaWO4 | |
xenotime-(Y) | YPO4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morrison, S.M.; Runyon, S.E.; Hazen, R.M. The Paleomineralogy of the Hadean Eon Revisited. Life 2018, 8, 64. https://doi.org/10.3390/life8040064
Morrison SM, Runyon SE, Hazen RM. The Paleomineralogy of the Hadean Eon Revisited. Life. 2018; 8(4):64. https://doi.org/10.3390/life8040064
Chicago/Turabian StyleMorrison, Shaunna M., Simone E. Runyon, and Robert M. Hazen. 2018. "The Paleomineralogy of the Hadean Eon Revisited" Life 8, no. 4: 64. https://doi.org/10.3390/life8040064
APA StyleMorrison, S. M., Runyon, S. E., & Hazen, R. M. (2018). The Paleomineralogy of the Hadean Eon Revisited. Life, 8(4), 64. https://doi.org/10.3390/life8040064