Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Raman Measurements and Equipment
2.3. Computational Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baldock, P.A.; Allison, S.J.; Herzog, H.; Gardiner, E.M. The Central Control of Bone Remodeling. In Dynamics of Bone and Cartilage Metabolism, 2nd ed.; Seibel, M., Robins, S., Bilezikian, J., Eds.; Elsevier, Academic Press: San Diego, CA, USA, 2006; pp. 361–376. [Google Scholar]
- Shetty, S.; Kapoor, N.; Bondu, J.D.; Thomas, N.; Paul, T.V. Bone turnover markers: Emerging tool in the management of osteoporosis. Indian J. Endocr. Metab. 2016, 20, 846–852. [Google Scholar]
- Civitelli, R.; Armamento-Villareal, R.; Napoli, N. Bone turnover markers: Understanding their value in clinical trials and clinical practice. Osteoporos Int. 2009, 20, 843–851. [Google Scholar] [CrossRef]
- Moe, S.; Drüeke, T.; Cunningham, J.; Goodman, W.; Martin, K.; Olgaard, K.; Ott, S.; Sprague, S.; Lameire, N.; Eknoyan, G. Definition, evaluation, and classification of renal osteodystrophy: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006, 69, 1945–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malluche, H.H.; Faugere, M.-C. Atlas of Mineralized Bone Histology; Karger: Basel, Switzerland, 1986; pp. 70–103. [Google Scholar]
- Malluche, H.H.; Porter, D.S.; Monier-Faugere, M.C.; Maward, H.; Pienkowski, D. Differences in Bone Quality in Low- and High-Turnover Renal Osteodystrophy. J. Am. Soc. Nephrol. 2012, 23, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorthi, R.N.; Moe, S.M. Recent advances in the noninvasive diagnosis of renal osteodystrophy. Kidney Int. 2013, 84, 50–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malluche, H.H.; Mawad, H.W.; Monier-Faugere, M.C. Renal osteodystrophy in the first decade of the new millennium: Analysis of 630 bone biopsies in black and white patients. J. Bone Miner. Res. 2011, 26, 1368–1376. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.D. The role of bone biopsy in patients with chronic renal failure. Clin. J. Am. Soc. Nephrol. 2008, 3, S140–S150. [Google Scholar] [CrossRef] [Green Version]
- Morii, H.; Okamoto, T.; Iba, K.; Inoue, T.; Matsushita, Y.; Hasegawa, K.; Kikkawa, T.; Kanao, K.; Yamada, N.; Okamoto, S. Age-related changes of renal osteodystrophy. Endocrinol Jpn. 1979, 26, 8–84. [Google Scholar] [CrossRef] [Green Version]
- Boyce, T.M.; Bloebaum, R.D. Cortical aging differences and fracture implications for the human femoral neck. Bone 1993, 14, 769–778. [Google Scholar] [CrossRef]
- Boskey, A.L.; Coleman, R. Aging and bone. J. Dent. Res. 2010, 89, 1333–1348. [Google Scholar] [CrossRef]
- Hind, K.; Oldroyd, B.; Truscott, J.G. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total-body, lumbar spine, and femoral bone mineral density in adults. J. Clin. Densitom. 2010, 13, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Nickolas, T.L.; Stein, E.; Cohen, A.; Thomas, V.; Staron, R.B.; McMahon, D.J.; Leonard, M.B.; Shane, E. Bone Mass and Microarchitecture in CKD Patients with Fracture. J. Am. Soc. Nephrol. 2010, 21, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.D.; Mandair, G.S. Raman Assesment of Bone Quality. Clin. Orthop. Relat. Res. 2011, 469, 2160–2169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNerny, E.M.; Gong, B.; Morris, M.D.; Kohn, D.H. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J. Bone Miner. Res. 2015, 30, 455–464. [Google Scholar] [CrossRef]
- Esmonde-White, K.A.; Esmonde-White, F.W.; Holmes, C.M.; Morris, M.D.; Roessler, B.J. Alterations to bone mineral composition as an early indication of osteomyelitis in the diabetic foot. Diabetes Care 2013, 36, 3652–3654. [Google Scholar] [CrossRef] [Green Version]
- Felice, P.A.; Gong, B.; Ahsan, S.; Deshpande, S.S.; Nelson, N.S.; Donneys, A.; Tchanque-Fossuo, C.; Morris, M.D.; Buchman, S.R. Raman spectroscopy delineates radiation-induced injury and partial rescue by amifostine in bone: A murine mandibular model. J. Bone Miner. Metab. 2015, 33, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCreadie, B.R.; Morris, M.D.; Chen, T.-c.; Rao, D.S.; Finney, W.F.; Widjaja, E.; Goldstein, S.A. Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 2006, 39, 1190–1195. [Google Scholar] [CrossRef]
- Inzana, J.A.; Maher, J.R.; Takahata, M.; Schwarz, E.M.; Berger, A.J.; Awad, H.A. Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis. J. Biomech. 2013, 46, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.V.; Atkins, A.; Akens, M.; Willett, T.L.; Whyne, C.M. Osteolytic and mixed cancer metastasis modulates collagen and mineral parameters within rat vertebral bone matrix. J. Orthop. Res. 2016, 34, 2126–2136. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.; Patil, C.A.; Lynch, C.C.; Pharr, G.M.; Mahadevan-Jansen, A.; Nyman, J.S. Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J. Biomech. 2011, 44, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Unal, M.; Jung, H.; Akkus, O. Novel Raman Spectroscopic Biomarkers Indicate That Postyield Damage Denatures Bone’s Collagen. J. Bone Miner. Res. 2016, 31, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Nyman, J.S.; Sterling, J.A.; Perrien, D.S.; Mahadevan-Jansen, A.; Bi, X. Development of Raman spectral markers to assess metastatic bone in breast cancer. J. Biomed. Opt. 2014, 19, 111606-1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciubuc, J.D.; Manciu, M.; Maran, A.; Yaszemski, M.J.; Sundin, E.M.; Bennet, K.E.; Manciu, F.S. Raman Spectroscopic and Microscopic Analysis for Monitoring Renal Osteodystrophy Signatures. Biosensors 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gourion-Arsiquaud, S.; Faibish, D.; Myers, E.; Spevak, L.; Compston, J.; Hodsman, A.; Shane, E.; Recker, R.R.; Boskey, E.R.; Boskey, A.L. Use of FTIR spectroscopic imaging to identify parameters associated with fragility fracture. J. Bone Miner. Res. 2009, 24, 1565–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boskey, A.; Mendelsohn, R. Infrared analysis of bone in health and disease. J. Biomed. Opt. 2005, 10, 031102–0311029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boskey, A.; Pleshko Camacho, N. FT-IR Imaging of Native and Tissue-Engineered Bone and Cartilage. Biomaterials 2007, 28, 2465–2478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschalis, E.P.; Betts, F.; DiCarlo, E.; Mendelsohn, R.; Boskey, A.L. FTIR Microspectroscopic Analysis of Human Iliac Crest Biopsies from Untreated Osteoporotic Bone. Calcif. Tissue Int. 1997, 61, 487–492. [Google Scholar] [CrossRef]
- Isaksson, H.; Turunen, M.J.; Rieppo, L.; Saarakkala, S.; Tamminen, I.S.; Rieppo, J.; Kröger, H.; Jurvelin, J.S. Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy. J. Bone Miner. Res. 2010, 25, 1360–1366. [Google Scholar] [CrossRef]
- Roschger, A.; Gamsjaeger, S.; Hofstetter, B.; Masic, A.; Blouin, S.; Messmer, P.; Berzlanovich, A.; Paschalis, E.P.; Roschger, P.; Klaushofer, K.; et al. Relationship between the V2PO4/amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone. J. Biomed. Opt. 2014, 19, 065002. [Google Scholar] [CrossRef]
- Wasserman, L. Springer Texts in Statistics. In All of Statistics. A Concise Course in Statistical Inference; Springer Science + Business Media, LLC: New York, NY, USA, 2003; pp. 165–168. [Google Scholar]
- Fournier, A.; Oprisiu, R.; Hottelart, C.; Yverneau, P.H.; Ghazali, A.; Atik, A.; Hedri, H.; Said, S.; Sechet, A.; Rasolombololona, M.; et al. Renal Osteodystrophy in Dialysis Patients: Diagnosis and Treatment. Artif. Organs 1998, 22, 530–557. [Google Scholar] [CrossRef]
- Tomasello, S. Secondary Hyperparathyroidism and Chronic Kidney Disease. Diabetes Spectr. 2008, 21, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Hill Gallant, K.M.; Spiegel, D.M. Calcium Balance in Chronic Kidney Disease. Curr. Osteoporos. Rep. 2017, 15, 214–221. [Google Scholar] [CrossRef] [PubMed]
Condition Positive | Condition Negative | Prevalence 57.14% | Accuracy 80.5% | |
---|---|---|---|---|
Prediction positive | 70470 | 11205 | Precision 78.3% | FDR (false discovery rate) 16.6% |
Prediction negative | 19530 | 56295 | FOR (false omission rate) 21.7% | NPV (negative predictive value) 78.3% |
Sensitivity 78.3% | Specificity 83.7% | FPR (false positive rate) 16.6% | FNR (false negative rate) 38.9% |
Condition Positive | Condition Negative | Prevalence 57.1% | Accuracy 87.5% | |
---|---|---|---|---|
Prediction positive | 70470 | 9112 | Precision 88.3% | FDR (false discovery rate) 13.5% |
Prediction negative | 10530 | 58388 | FOR (false omission rate) 11.7% | NPV (negative predictive value) 88.3% |
Sensitivity 88.3% | Specificity 86.5% | FPR (false positive rate) 13.5% | FNR (false negative rate) 15.6% |
Condition Positive | Condition Negative | Prevalence 57.1% | Accuracy 98.8% | |
---|---|---|---|---|
Prediction positive | 98.3% | 0.5% | Precision 98.3% | FDR (false discovery rate) 0.5% |
Prediction negative | 1.7% | 99.5% | FOR (false omission rate) 0.0174% | NPV (negative predictive value) 98.3% |
Sensitivity 78.3% | Specificity 99.5% | FPR (false positive rate) 0.5% | FNR (false negative rate) 2.3% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manciu, M.; Cardenas, M.; Bennet, K.E.; Maran, A.; Yaszemski, M.J.; Maldonado, T.A.; Magiricu, D.; Manciu, F.S. Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers. Diagnostics 2020, 10, 79. https://doi.org/10.3390/diagnostics10020079
Manciu M, Cardenas M, Bennet KE, Maran A, Yaszemski MJ, Maldonado TA, Magiricu D, Manciu FS. Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers. Diagnostics. 2020; 10(2):79. https://doi.org/10.3390/diagnostics10020079
Chicago/Turabian StyleManciu, Marian, Mario Cardenas, Kevin E. Bennet, Avudaiappan Maran, Michael J. Yaszemski, Theresa A. Maldonado, Diana Magiricu, and Felicia S. Manciu. 2020. "Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers" Diagnostics 10, no. 2: 79. https://doi.org/10.3390/diagnostics10020079
APA StyleManciu, M., Cardenas, M., Bennet, K. E., Maran, A., Yaszemski, M. J., Maldonado, T. A., Magiricu, D., & Manciu, F. S. (2020). Assessment of Renal Osteodystrophy via Computational Analysis of Label-free Raman Detection of Multiple Biomarkers. Diagnostics, 10(2), 79. https://doi.org/10.3390/diagnostics10020079