Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ng, M.; Fleming, T. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- 2018 Global Nutrition Report—Global Nutrition Report. Available online: https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (accessed on 10 March 2020).
- Serdula, M.K.; Ivery, D. Do Obese Children Become Obese Adults? A Review of the Literature. Prev. Med. 1993, 22, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Owen, C.G.; Whincup, P.H.; Orfei, L.; Chou, Q.A.; Rudnicka, A.R.; Wathern, A.K.; Kaye, S.J.; Eriksson, J.G.; Osmond, C.; Cook, D.G. Is Body Mass Index before Middle Age Related to Coronary Heart Disease Risk in Later Life? Evidence from Observational Studies. Int. J. Obes. 2009, 33, 866–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twig, G.; Yaniv, G.; Levine, H.; Leiba, A.; Goldberger, N.; Derazne, E.; Ben-Ami Shor, D.; Tzur, D.; Afek, A.; Shamiss, A.; et al. Body-Mass Index in 2.3 Million Adolescents and Cardiovascular Death in Adulthood. N. Engl. J. Med. 2016, 374, 2430–2440. [Google Scholar] [CrossRef]
- Kumar, S.; Kelly, A.S. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. In Mayo Clinic Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 251–265. [Google Scholar] [CrossRef]
- Levy, D.; Garrison, R.J.; Savage, D.D.; Kannel, W.B.; Castelli, W.P. Prognostic Implications of Echocardiographically Determined Left Ventricular Mass in the Framingham Heart Study. N. Engl. J. Med. 1990, 322, 1561–1566. [Google Scholar] [CrossRef]
- Gardin, J.M.; McClelland, R.; Kitzman, D.; Lima, J.A.C.; Bommer, W.; Klopfenstein, H.S.; Wong, N.D.; Smith, V.E.; Gottdiener, J. M-Mode Echocardiographic Predictors of Six- to Seven-Year Incidence of Coronary Heart Disease, Stroke, Congestive Heart Failure, and Mortality in an Elderly Cohort (The Cardiovascular Health Study). Am. J. Cardiol. 2001, 87, 1051–1057. [Google Scholar] [CrossRef]
- Chinali, M.; De Simone, G.; Roman, M.J.; Lee, E.T.; Best, L.G.; Howard, B.V.; Devereux, R.B. Impact of Obesity on Cardiac Geometry and Function in a Population of Adolescents. The Strong Heart Study. J. Am. Coll. Cardiol. 2006, 47, 2267–2273. [Google Scholar] [CrossRef] [Green Version]
- Alp, H.; Karaarslan, S.; Eklioǧlu, B.S.; Atabek, M.E.; Baysal, T. The Effect of Hypertension and Obesity on Left Ventricular Geometry and Cardiac Functions in Children and Adolescents. J. Hypertens. 2014, 32, 1283–1292. [Google Scholar] [CrossRef]
- Pieruzzi, F.; Antolini, L.; Salerno, F.R.; Giussani, M.; Brambilla, P.; Galbiati, S.; Mastriani, S.; Rebora, P.; Stella, A.; Valsecchi, M.G.; et al. The Role of Blood Pressure, Body Weight and Fat Distribution on Left Ventricular Mass, Diastolic Function and Cardiac Geometry in Children. J. Hypertens. 2015, 33, 1182–1192. [Google Scholar] [CrossRef]
- Lauer, M.S.; Anderson, K.M.; Kannel, W.B.; Levy, D. The Impact of Obesity on Left Ventricular Mass and Geometry: The Framingham Heart Study. JAMA J. Am. Med. Assoc. 1991, 266, 231–236. [Google Scholar] [CrossRef]
- Ayer, J.; Charakida, M.; Deanfield, J.E.; Celermajer, D.S. Lifetime Risk: Childhood Obesity and Cardiovascular Risk. Eur. Heart J. 2015, 36, 1371–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Salvo, G.; Pacileo, G.; Del Giudice, E.M.; Natale, F.; Limongelli, G.; Verrengia, M.; Rea, A.; Fratta, F.; Castaldi, B.; D’Andrea, A.; et al. Abnormal Myocardial Deformation Properties in Obese, Non-Hypertensive Children: An Ambulatory Blood Pressure Monitoring, Standard Echocardiographic, and Strain Rate Imaging Study. Eur. Heart J. 2006, 27, 2689–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingul, C.B.; Tjonna, A.E.; Stolen, T.O.; Stoylen, A.; Wisloff, U. Impaired Cardiac Function among Obese Adolescents: Effect of Aerobic Interval Training. Arch. Pediatr. Adolesc. Med. 2010, 164, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Dhuper, S.; Abdullah, R.A.; Weichbrod, L.; Mahdi, E.; Cohen, H.W. Association of Obesity and Hypertension with Left Ventricular Geometry and Function in Children and Adolescents. Obesity 2011, 19, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Labombarda, F.; Zangl, E.; Dugue, A.E.; Bougle, D.; Pellissier, A.; Ribault, V.; Maragnes, P.; Milliez, P.; Saloux, E. Alterations of Left Ventricular Myocardial Strain in Obese Children. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 668–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, H.M.; Atwa, H.A.; Saleh, O.M.; Mohamed, F.A. Echocardiographic Evaluation of Cardiac Structure and Function in Obese Egyptian Adolescents. Cardiol. Young 2012, 22, 410–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, A.A.; Singh, G.K. Early Ventricular Remodeling and Dysfunction in Obese Children and Adolescents. Curr. Treat. Opt. Cardiovasc. Med. 2014, 16, 340. [Google Scholar] [CrossRef]
- Wirix, A.J.G.; Kaspers, P.J.; Nauta, J.; Chinapaw, M.J.M.; Kist-van Holthe, J.E. Pathophysiology of Hypertension in Obese Children: A Systematic Review. Obes. Rev. 2015, 16, 831–842. [Google Scholar] [CrossRef]
- Dahiya, R.; Shultz, S.P.; Dahiya, A.; Fu, J.; Flatley, C.; Duncan, D.; Cardinal, J.; Kostner, K.M.; Byrne, N.M.; Hills, A.P.; et al. Relation of Reduced Preclinical Left Ventricular Diastolic Function and Cardiac Remodeling in Overweight Youth to Insulin Resistance and Inflammation. Am. J. Cardiol. 2015, 115, 1222–1228. [Google Scholar] [CrossRef]
- Porcar-Almela, M.; Codoñer-Franch, P.; Tuzón, M.; Navarro-Solera, M.; Carrasco-Luna, J.; Ferrando, J. Left Ventricular Diastolic Function and Cardiometabolic Factors in Obese Normotensive Children. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 108–115. [Google Scholar] [CrossRef]
- Murdolo, G.; Angeli, F.; Reboldi, G.; Di Giacomo, L.; Aita, A.; Bartolini, C.; Vedecchia, P. Left Ventricular Hypertrophy and Obesity: Only a Matter of Fat? High Blood Press. Cardiovasc. Prev. 2015, 22, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Brady, T.M. The Role of Obesity in the Development of Left Ventricular Hypertrophy among Children and Adolescents. Curr. Hypertens. Rep. 2016, 18, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. Br. Med. J. 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [Green Version]
- Androutsos, O.; Grammatikaki, E.; Moschonis, G.; Roma-Giannikou, E.; Chrousos, G.P.; Manios, Y.; Kanaka-Gantenbein, C. Neck Circumference: A Useful Screening Tool of Cardiovascular Risk in Children. Pediatr. Obes. 2012, 7, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Serdula, M.K.; Srinivasan, S.R.; Berenson, G.S. Relation of Circumferences and Skinfold Thicknesses to Lipid and Insulin Concentrations in Children and Adolescents: The Bogalusa Heart Study. Am. J. Clin. Nutr. 1999, 69, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Tanner, J.M.; Whitehouse, R.H. Clinical Longitudinal Standards for Height, Weight, Height Velocity, Weight Velocity, and Stages of Puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Motamed, N.; Perumal, D.; Zamani, F.; Ashrafi, H.; Haghjoo, M.; Saeedian, F.S.; Maadi, M.; Akhavan-Niaki, H.; Rabiee, B.; Asouri, M. Conicity Index and Waist-to-Hip Ratio Are Superior Obesity Indices in Predicting 10-Year Cardiovascular Risk among Men and Women. Clin. Cardiol. 2015, 38, 527–534. [Google Scholar] [CrossRef]
- Santos, S.; Severo, M.; Lopes, C.; Oliveira, A. Anthropometric Indices Based on Waist Circumference as Measures of Adiposity in Children. Obesity 2018, 26, 810–813. [Google Scholar] [CrossRef]
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis Model Assessment Is More Reliable than the Fasting Glucose/Insulin Ratio and Quantitative Insulin Sensitivity Check Index for Assessing Insulin Resistance among Obese Children and Adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef] [Green Version]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; De Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017. [Google Scholar] [CrossRef] [Green Version]
- Khoury, P.R.; Mitsnefes, M.; Daniels, S.R.; Kimball, T.R. Age-Specific Reference Intervals for Indexed Left Ventricular Mass in Children. J. Am. Soc. Echocardiogr. 2009, 22, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Daniels, S.R.; Loggie, J.M.H.; Khoury, P.; Kimball, T.R. Left Ventricular Geometry and Severe Left Ventricular Hypertrophy in Children and Adolescents With Essential Hypertension. Circulation 1998, 97, 1907–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Victor, M.A.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharod, A.M.; Ramlogan, S.R.; Kumar, S.; Raghuveer, T.; Drake, W.; Dai, H.; Raghuveer, G. Childhood Obesity Increases Left-Ventricular Mass Irrespective of Blood Pressure Status. Pediatr. Cardiol. 2014, 35, 353–360. [Google Scholar] [CrossRef]
- Jing, L.; Nevius, C.D.; Friday, C.M.; Suever, J.D.; Pulenthiran, A.; Mejia-Spiegeler, A.; Kirchner, H.L.; Cochran, W.J.; Wehner, G.J.; Chishti, A.S.; et al. Ambulatory Systolic Blood Pressure and Obesity Are Independently Associated with Left Ventricular Hypertrophic Remodeling in Children. J. Cardiovasc. Magn. Reson. 2017, 19, 86. [Google Scholar] [CrossRef] [Green Version]
- Di Bonito, P.; Capaldo, B.; Forziato, C.; Sanguigno, E.; Di Fraia, T.; Scilla, C.; Cavuto, L.; Saitta, F.; Sibilio, G.; Moio, N. Central Adiposity and Left Ventricular Mass in Obese Children. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 613–617. [Google Scholar] [CrossRef]
- Mehta, S.K. Waist Circumference to Height Ratio and Left Ventricular Mass in Children and Adolescents. Cardiol. Young 2016, 26, 658–662. [Google Scholar] [CrossRef]
- Rodicio, M.M.; Domenech de Miguel, V.; Guinda Jiménez, M.; Cigarrán Guldrís, S.; López Franco, M.M.; Estany Gestal, A.; Couce, M.L.; Leis Trabazo, M.R. Early Cardiac Abnormalities in Obese Children and Their Relationship with Adiposity. Nutrition 2018, 46, 83–89. [Google Scholar] [CrossRef]
- Kinik, S.T.; Varan, B.; Yildirim, S.V.; Tokel, K. The Effect of Obesity on Echocardiographic and Metabolic Parameters in Childhood. J. Pediatr. Endocrinol. Metab. 2006, 19, 1007–1014. [Google Scholar] [CrossRef]
- Muiesan, M.L.; Lupia, M.; Salvetti, M.; Grigoletto, C.; Sonino, N.; Boscaro, M.; Agabiti Rosei, E.; Mantero, F.; Fallo, F. Left Ventricular Structural Andnfunctional Characteristics in Cushing’s Syndrome. J. Am. Coll. Cardiol. 2003, 41, 2275–2279. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.; Delgado, V.; Romijn, J.A.; Smit, J.W.A.; Bax, J.J.; Feelders, R.A. Cardiac Dysfunction Is Reversed upon Successful Treatment of Cushing’s Syndrome. Eur. J. Endocrinol. 2010, 162, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Pivonello, R.; De Martino, M.C.; Iacuaniello, D.; Simeoli, C.; Muscogiuri, G.; Carlomagno, F.; De Leo, M.; Cozzolino, A.; Colao, A. Metabolic Alterations and Cardiovascular Outcomes of Cortisol Excess. Front. Horm. Res. 2016, 46, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Adolf, C.; Köhler, A.; Franke, A.; Lang, K.; Riester, A.; Löw, A.; Heinrich, D.A.; Bidlingmaier, M.; Treitl, M.; Ladurner, R.; et al. Cortisol Excess in Patients with Primary Aldosteronism Impacts Left Ventricular Hypertrophy. J. Clin. Endocrinol. Metab. 2018, 103, 4543–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, E.E.; Eisenmann, J.C.; Gentile, D.; Holmes, M.E.; Walsh, D. The Association between Morning Cortisol and Adiposity in Children Varies by Weight Status. J. Pediatr. Endocrinol. Metab. 2011, 24, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Toprak, A.; Wang, H.; Chen, W.; Paul, T.; Srinivasan, S.; Berenson, G. Relation of Childhood Risk Factors to Left Ventricular Hypertrophy (Eccentric or Concentric) in Relatively Young Adulthood (from the Bogalusa Heart Study). Am. J. Cardiol. 2008, 101, 1621–1625. [Google Scholar] [CrossRef]
- Falkner, B.; Deloach, S.; Keith, S.W.; Gidding, S.S. High Risk Blood Pressure and Obesity Increase the Risk for Left Ventricular Hypertrophy in African-American Adolescents. J. Pediatr. 2013, 162, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, A.; Martins, P.; Pereira, A.M.; Silva, P.V.; Marinho, J.; Marques, M.; Castela, E.; Sena, C.; Seiça, R. Insulin Resistance, Dyslipidemia and Cardiovascular Changes in a Group of Obese Children. Arq. Bras. Cardiol. 2015, 104, 266–273. [Google Scholar] [CrossRef]
- Jing, L.; Binkley, C.M.; Suever, J.D.; Umasankar, N.; Haggerty, C.M.; Rich, J.; Nevius, C.D.; Wehner, G.J.; Hamlet, S.M.; Powell, D.K.; et al. Cardiac Remodeling and Dysfunction in Childhood Obesity: A Cardiovascular Magnetic Resonance Study. J. Cardiovasc. Magn. Reson. 2016, 18. [Google Scholar] [CrossRef] [Green Version]
- Khositseth, A.; Suthutvoravut, U.; Chongviriyaphan, N. Left Ventricular Mass and Geometry in Obese Children. Asian J. Clin. Nutr. 2009, 1, 58–64. [Google Scholar] [CrossRef]
- Ghandi, Y.; Sharifi, M.; Habibi, D.; Dorreh, F.; Hashemi, M. Evaluation of Left Ventricular Function in Obese Children without Hypertension by a Tissue Doppler Imaging Study. Ann. Pediatr. Cardiol. 2018, 11, 28–33. [Google Scholar] [CrossRef]
- Kibar, A.E.; Pac, F.A.; Balli, S.; Oflaz, M.B.; Ece, I.; Bas, V.N.; Aycan, Z. Early Subclinical Left-Ventricular Dysfunction in Obese Nonhypertensive Children: A Tissue Doppler Imaging Study. Pediatr. Cardiol. 2013, 34, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, C.; Armeno, M.; Mazza, C.S. Waist-to-Height Ratio as a Marker of Low-Grade Inflammation in Obese Children and Adolescents. J. Pediatr. Endocrinol. Metab. 2016, 29, 543–551. [Google Scholar] [CrossRef]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Cañete, R.; Tojo, R.; Moreno, L.A.; Gil, A. Waist-to-Height Ratio, Inflammation and CVD Risk in Obese Children. Public Health Nutr. 2013, 17, 2378–2385. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Saitou, E.; Iwata, F.; Okada, T.; Harada, K. Waist-to-Height Ratio Is the Best Predictor of Cardiovascular Disease Risk Factors in Japanese Schoolchildren. J. Atheroscler. Thromb. 2002, 9, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A Systematic Review of Waist-to-Height Ratio as a Screening Tool for the Prediction of Cardiovascular Disease and Diabetes: 05 Could Be a Suitable Global Boundary Value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M. Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef]
- Shah, S.J.; Marcus, G.M.; Gerber, I.L.; McKeown, B.H.; Vessey, J.C.; Jordan, M.V.; Huddleston, M.; Foster, E.; Chatterjee, K.; Michaels, A.D. High-Sensitivity C-Reactive Protein and Parameters of Left Ventricular Dysfunction. J. Card. Fail. 2006, 12, 61–65. [Google Scholar] [CrossRef]
- Masugata, H.; Senda, S.; Inukai, M.; Murao, K.; Tada, S.; Hosomi, N.; Iwado, Y.; Noma, T.; Kohno, M.; Himoto, T.; et al. Association between High-Sensitivity C-Reactive Protein and Left Ventricular Diastolic Function Assessed by Echocardiography in Patients with Cardiovascular Risk Factors. Tohoku J. Exp. Med. 2011, 223, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.-T.; Liu, Y.-Y.; Sung, K.-T.; Liu, C.-C.; Su, C.-H.; Hung, T.-C.; Hung, C.-L.; Chien, C.-Y.; Yeh, H.-I. Circulating Monocyte Count as a Surrogate Marker for Ventricular-Arterial Remodeling and Incident Heart Failure with Preserved Ejection Fraction. Diagnostics 2020, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Saiedi, S.A.; Mira, M.F.; Sharaf, S.A.; Al Musaddar, M.M.; El Kaffas, R.M.H.; Abdelmassih, A.F.; Barsoum, I.H.Y. Left Ventricular Diastolic Dysfunction without Left Ventricular Hypertrophy in Obese Children and Adolescents: A Tissue Doppler Imaging and Cardiac Troponin I Study. Cardiol. Young 2018, 28, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.A.A.; Mota, C.C.C.; Simões e Silva, A.C.; Nunes, M.d.C.P.; Barbosa, M.M. Assessing Pre-Clinical Ventricular Dysfunction in Obese Children and Adolescents: The Value of Speckle Tracking Imaging. Eur. Hear. J. Cardiovasc. Imaging 2013, 14, 882–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajraktari, G.; Koltai, M.S.; Ademaj, F.; Rexhepaj, N.; Qirko, S.; Ndrepepa, G.; Elezi, S. Relationship between Insulin Resistance and Left Ventricular Diastolic Dysfunction in Patients with Impaired Glucose Tolerance and Type 2 Diabetes. Int. J. Cardiol. 2006, 110, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Stabouli, S.; Kotsis, V.; Toumanidis, S.; Papamichael, C.; Constantopoulos, A.; Zakopoulos, N. White-Coat and Masked Hypertension in Children: Association with Target-Organ Damage. Pediatr. Nephrol. 2005, 20, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Tobisch, B.; Blatniczky, L.; Barkai, L. Cardiometabolic Risk Factors and Insulin Resistance in Obese Children and Adolescents: Relation to Puberty. Pediatr. Obes. 2015, 10, 37–44. [Google Scholar] [CrossRef] [PubMed]
Parameters | NW (n = 26) | OB (n = 36) | p |
---|---|---|---|
Sex (Male/Female) | 16/10 | 24/12 | 0.79 |
Age (years) | 9.65 ± 1.57 | 9.76 ± 1.28 | 0.772 |
BMI (kg/m2) | 17.09 ± 1.54 | 26.5 ± 3.43 | 0.000 |
BMI z score | 0.11 ± 0.66 | 2.14 ± 0.32 | 0.000 |
NC (cm) | 28.99 ± 1.93 | 33.29 ± 1.96 | 0.000 |
WHR | 0.87 ± 0.05 | 0.93 ± 0.04 | 0.000 |
WHtR | 0.44 ± 0.03 | 0.59 ± 0.05 | 0.000 |
Triceps fold (mm) | 8.12 ± 2.43 | 20.28 ± 3.9 | 0.000 |
Subscapular fold (mm) | 6.17 ± 1.62 | 20.46 ± 5.51 | 0.000 |
Suprailiac fold (mm) | 5.95 ± 1.87 | 19.3 ± 4.04 | 0.000 |
Parameters | Non Overweight (n = 26) | Overweight (n = 36) | p |
---|---|---|---|
UA (mg/dL) | 3.29 ± 0.63 | 4.9 ± 1.04 | 0.000 |
TC (mg/dL) | 163.59 ± 27.16 | 170.67 ± 38.26 | 0.452 |
HDL (mg/dL) | 73.72 ± 20.59 | 54.53 ± 14.73 | 0.001 |
LDL (mg/dL) | 77.18 ± 18.18 | 98.14 ± 28.93 | 0.004 |
TG (mg/dL) | 64.59 ± 26.65 | 89.5 ± 45.50 | 0.023 |
hs-CRP(mg/dL) | 0.04 ± 0.05 | 0.28 ± 0.19 | 0.000 |
HbA1c (%) | 5.15 ± 0.31 | 5.26 ± 0.29 | 0.225 |
Cortisol (μg/dL) | 9.44 ± 5.05 | 8.73 ± 4.93 | 0.601 |
HOMA-IR | 1.66 ± 0.68 | 2.95 ± 1.51 | 0.000 |
Insulin (μIU/mL) | 7.83 ± 3.27 | 14.4 ± 7.38 | 0.000 |
Parameters | NW (n = 26) | OB (n = 36) | p |
---|---|---|---|
SBP (mmHg) | 101.15 ± 10.23 | 107.58 ± 7.84 | 0.07 |
DBP (mmHg) | 64.35 ± 11.15 | 66.25 ± 7.7 | 0.43 |
LAD (mm) | 24.7 ± 3.29 | 29.13 ± 3.44 | 0.000 |
IVSd (mm) | 6.63 ± 0.67 | 8.05 ± 1.03 | 0.000 |
LVIDd (mm) | 38.19 ± 4.05 | 42.64 ± 3.50 | 0.000 |
LVPWd (mm) | 6.77 ± 0.68 | 8.26 ± 1.02 | 0.000 |
EF% | 72.46 ± 5.05 | 72.85 ± 4.22 | 0.747 |
E(m/s) | 1.00 ± 0,16 | 1.08 ± 0.20 | 0.124 |
A(m/s) | 0.49 ± 0.09 | 0.62 ± 0.12 | 0.000 |
E/A | 2.08 ± 0.56 | 1.76 ± 0.33 | 0.013 |
e’(m/s) | 0.18 ± 0.03 | 0.18 ± 0.02 | 0.345 |
a’(m/s) | 0.08 ± 0.16 | 0.08 ± 0.02 | 0.139 |
E/e’ | 5.43 ± 0.96 | 6.04 ± 1.13 | 0.032 |
LVM (gr) | 70.19 ± 19.32 | 109.04 ± 31.94 | 0.000 |
LVMI | 28.31 ± 6.22 | 40.05 ± 9.44 | 0.000 |
Parameters | HOMA-IR | LVMI | E/A | E/e’ | ||||
---|---|---|---|---|---|---|---|---|
All | Obese | All | Obese | All | Obese | All | Obese | |
HOMA-IR | - | - | 0.167 | −0.028 | −0.086 | 0.239 | 0.031 | −0.074 |
LVMI | 0.167 | −0.028 | - | - | −0.174 | −0.083 | 0.175 | −0.030 |
E/A | −0.086 | 0.239 | −0.174 | −0.083 | - | - | 0.236 | 0.277 |
E/e’ | 0.031 | −0.074 | 0.175 | −0.030 | 0.210 | 0.277 | - | - |
BMI | 0.528 ** | 0.236 | 0.585 ** | 0.387 * | −0.369 ** | −0.232 | 0.114 | −0.146 |
NC | 0.577 ** | 0.273 | 0.578 ** | 0.429 * | −0.287 * | −0.200 | 0.234 | −0.104 |
WC | 0.555 ** | 0.250 | 0.580 ** | 0.280 | −0.376 ** | −0.357 * | 0.158 | −0.126 |
WHR | 0.187 | −0.100 | 0.483 ** | 0.280 | −0.275 * | −0.307 | 0.358 ** | 0.021 |
WHtR | 0.412 ** | −0.030 | 0.632 ** | 0.414 * | −0.439 ** | −0.347 * | 0.166 | −0.091 |
Triceps | 0.543 ** | 0.306 | 0.573 ** | 0.375 * | −0.377 ** | −0.231 | 0.205 | −0.047 |
Subscapular | 0.525 ** | 0.299 | 0.534 ** | 0.205 | −0.398 ** | −0.272 | 0.288 ** | −0.026 |
Suprailiac | 0.545 ** | 0.335 | 0.590 ** | 0.333 | −0.242 | 0.162 | 0.364 ** | −0.053 |
SAP | 0.319 * | 0.477** | 0.269 * | 0.114 | 0.072 | 0.056 | 0.161 | 0.073 |
UA | 0.628 ** | 0.263 | 0.447 ** | 0.021 | −0.184 | −0.028 | 0.346 ** | 0.050 |
TC | −0.131 | −0.351 | −0.100 | −0.100 | −0.079 | −0.212 | 0.000 | −0.048 |
HDL | −0.569 ** | −0.252 | −0.308 * | 0.044 | 0.355 * | 0.274 | −0.096 | 0.329 |
LDL | 0.199 | −0.378 | 0.191 | −0.050 | −0.248 | 0.160 | 0.123 | −0.030 |
TG | 0.406 ** | 0.437* | 0.039 | −0.023 | −0.188 | −0.009 | −0.015 | −0.186 |
hs-CRP | 0.708 ** | 0.002 | 0.510 ** | 0.232 | 0.510 ** | 0.232 | 0.122 | −0.129 |
Cortisol | −0.088 | −0.038 | 0.160 | 0.252 | 0.160 | 0.252 | 0.122 | −0.084 |
Variables | Beta (OR) | S.E | p |
---|---|---|---|
Sex | −1.609 (0.2) | 1.044 | 0.123 |
SBP | −0.053 (0.948) | 0.057 | 0.354 |
Cortisol * | 2.851 (17.305) | 1.0209 | 0.018 |
WHtR | 0.259 (1.296) | 0.109 | 0.018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannisi, F.; Keivanidou, A.; Sakellari, I.; Balala, S.; Hassapidou, M.; Hitoglou-Makedou, A.; Giannopoulos, A. Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children. Diagnostics 2020, 10, 468. https://doi.org/10.3390/diagnostics10070468
Giannisi F, Keivanidou A, Sakellari I, Balala S, Hassapidou M, Hitoglou-Makedou A, Giannopoulos A. Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children. Diagnostics. 2020; 10(7):468. https://doi.org/10.3390/diagnostics10070468
Chicago/Turabian StyleGiannisi, Filippina, Anastasia Keivanidou, Ioanna Sakellari, Sofia Balala, Maria Hassapidou, Areti Hitoglou-Makedou, and Andreas Giannopoulos. 2020. "Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children" Diagnostics 10, no. 7: 468. https://doi.org/10.3390/diagnostics10070468
APA StyleGiannisi, F., Keivanidou, A., Sakellari, I., Balala, S., Hassapidou, M., Hitoglou-Makedou, A., & Giannopoulos, A. (2020). Anthropometric and Biochemical Markers as Possible Indicators of Left Ventricular Abnormal Geometric Pattern and Function Impairment in Obese Normotensive Children. Diagnostics, 10(7), 468. https://doi.org/10.3390/diagnostics10070468