A Proposed Procedure for Discriminating between Nasal Secretion and Saliva by RT-qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA Extraction and cDNA Synthesis
2.3. Amplification of Candidate Genes by a qPCR Procedure
2.4. Validation of the Developed RT-qPCR Procedure and Gene Expression Analysis of Candidate Genes
3. Results
3.1. Assay Performance of the Developed RT-qPCR Procedure
3.2. Expression of Candidate Genes in Various Body Fluids
3.3. Establishing the Discrimination Criteria for Nasal Secretion and Saliva
3.4. Proposed Flowchart for Discriminating among Nasal Secretions, Saliva, and Other Biological Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Willott, G.M. An Improved test for the detection of salivary amylase in stains. J. Forensic Sci. Soc. 1974, 14, 341–344. [Google Scholar] [CrossRef]
- Hedman, J.; Gustavsson, K.; Ansell, R. Using the new Phadebas® Forensic Press test to find crime scene saliva stains suitable for DNA analysis. Forensic Sci. Int. Genet. Suppl. 2008, 1, 430–432. [Google Scholar] [CrossRef]
- Casey, D.G.; Price, J. The sensitivity and specificity of the RSID-saliva kit for the detection of human salivary amylase in the Forensic Science Laboratory, Dublin, Ireland. Forensic Sci. Int. 2010, 194, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.H.; Kipps, A.E. The significance of amylase in forensic investigations of body fluids. Forensic Sci. 1975, 6, 137–144. [Google Scholar] [CrossRef]
- Auvdel, M.J. Amylase levels in semen and saliva stains. J. Forensic Sci. 1986, 31, 426–431. [Google Scholar] [CrossRef]
- Wornes, D.J.; Speers, S.J.; Murakami, J.A. The evaluation and validation of Phadebas® paper as a presumptive screening tool for saliva on forensic exhibits. Forensic Sci. Int. 2018, 288, 81–88. [Google Scholar] [CrossRef]
- Pang, B.C.; Cheung, B.K. Applicability of two commercially available kits for forensic identification of saliva stains. J. Forensic Sci. 2008, 53, 1117–1122. [Google Scholar] [CrossRef]
- Juusola, J.; Ballantyne, J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 2005, 152, 1–12. [Google Scholar] [CrossRef]
- Sakurada, K.; Ikegaya, H.; Fukushima, H.; Akutsu, T.; Watanabe, K.; Yoshino, M. Evaluation of mRNA-based approach for identification of saliva and semen. Leg. Med. 2009, 11, 125–128. [Google Scholar] [CrossRef]
- Haas, C.; Klesser, B.; Maake, C.; Bar, W.; Kratzer, A. mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci. Int. Genet. 2009, 3, 80–88. [Google Scholar] [CrossRef]
- Richard, M.L.; Harper, K.A.; Craig, R.L.; Onorato, A.J.; Robertson, J.M.; Donfack, J. Evaluation of mRNA marker specificity for the identification of five human body fluids by capillary electrophoresis. Forensic Sci. Int. Genet. 2012, 6, 452–460. [Google Scholar] [CrossRef]
- Haas, C.; Hanson, E.; Anjos, M.; Ballantyne, K.N.; Banemann, R.; Bhoelai, B.; Borges, E.; Carvalho, M.; Courts, C.; De Cock, G.; et al. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: Results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci. Int. Genet. 2014, 8, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Akutsu, T.; Takamura, A.; Sakurada, K. Practical evaluation of an RNA-based saliva identification method. Sci. Justice 2017, 57, 404–408. [Google Scholar] [CrossRef]
- van den Berge, M.; Bhoelai, B.; Harteveld, J.; Matai, A.; Sijen, T. Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling. Forensic Sci. Int. Genet. 2016, 20, 119–129. [Google Scholar] [CrossRef]
- Carnevali, E.; Lacerenza, D.; Severini, S.; Alessandrini, F.; Bini, C.S.; Nunzio, C.D.; Nunzio, M.D.; Fabbri, M.; Fattorini, P.; Piccinini, A.; et al. A GEFI collaborative exercise on DNA/RNA co-analysis and mRNA profiling interpretation. Forensic Sci. Int. Genet. Suppl. 2017, 6, e18–e20. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bartlett, J.A.; Di, M.E.; Bomberger, J.M.; Chan, Y.R.; Gakhar, L.; Mallampalli, R.K.; McCray, P.B.J.; Di, Y.P. SPLUNC1/BPIFA1 contributes to pulmonary host defense against Klebsiella pneumoniae respiratory infection. Am. J. Pathol. 2013, 182, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Sayeed, S.; Nistico, L.; St Croix, C.; Di, Y.P. Multifunctional role of human SPLUNC1 in Pseudomonas aeruginosa infection. Infect. Immun. 2013, 81, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Lindenbergh, A.; Maaskant, P.; Sijen, T. Implementation of RNA profiling in forensic casework. Forensic Sci. Int. Genet. 2012, 6, 565–577. [Google Scholar] [CrossRef]
- Douglas, W.H.; Reeh, E.S.; Ramasubbu, N.; Raj, P.A.; Bhandary, K.K.; Levine, M.J. Statherin: A major boundary lubricant of human saliva. Biochem. Biophys. Res. Commun. 1991, 180, 91–97. [Google Scholar] [CrossRef]
- Johnsson, M.; Richardson, C.F.; Bergey, E.J.; Levine, M.J.; Nancollas, G.H. The effects of human salivary cystatins and statherin on hydroxyapatite crystallization. Arch. Oral Biol. 1991, 36, 631–636. [Google Scholar] [CrossRef]
- Oppenheim, F.G.; Xu, T.; McMillian, F.M.; Levitz, S.M.; Diamond, R.D.; Offner, G.D.; Troxler, R.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 1988, 263, 7472–7477. [Google Scholar] [PubMed]
- Yin, A.; Margolis, H.C.; Grogan, J.; Yao, Y.; Troxler, R.F.; Oppenheim, F.G. Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral Biol. 2003, 48, 361–368. [Google Scholar] [CrossRef]
- Hay, D.I.; Bennick, A.; Schlesinger, D.H.; Minaguchi, K.; Madapallimattam, G.; Schluckebier, S.K. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f). Biochem. J. 1988, 255, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Hay, D.I.; Carlson, E.R.; Schluckebier, S.K.; Moreno, E.C.; Schlesinger, D.H. Inhibition of calcium phosphate precipitation by human salivary acidic proline-rich proteins: Structure-activity relationships. Calcif. Tissue Int. 1987, 40, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Kousvelari, E.E.; Baratz, R.S.; Burke, B.; Oppenheim, F.G. Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle, and glandular tissue specimens. J. Dent. Res. 1980, 59, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Tissue Expression of PRH2-Summary-The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000134551-PRH2/tissue (accessed on 13 May 2020).
- Igoh, A.; Tomotake, S.; Doi, Y. Detection of proline-rich proteins for the identification of saliva by enzyme-linked immunosorbent assay. Leg. Med. 2015, 17, 210–213. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K. Verification of anti-statherin and proline-rich protein HaeIII subfamily antibodies applicable to identify saliva by indirect enzyme-linked immunosorbent assay. NRIPS Rep. 2019, 68, 9–14. [Google Scholar]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Courts, C.; Pfaffl, M.W.; Sauer, E.; Parson, W. Pleading for adherence to the MIQE-Guidelines when reporting quantitative PCR data in forensic genetic research. Forensic Sci. Int. Genet. 2019, 42, e21–e24. [Google Scholar] [CrossRef]
- Bustin, S.A.; Wittwer, C.T. MIQE: A Step toward more robust and reproducible Quantitative PCR. Clin. Chem. 2017, 63, 1537–1538. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, T.; Ikegaya, H.; Watanabe, K.; Fukushima, H.; Motani, H.; Iwase, H.; Sakurada, K. Evaluation of Tamm-Horsfall protein and uroplakin III for forensic identification of urine. J. Forensic Sci. 2010, 55, 742–746. [Google Scholar] [CrossRef]
- Sakurada, K.; Akutsu, T.; Watanabe, K.; Fujinami, Y.; Yoshino, M. Expression of statherin mRNA and protein in nasal and vaginal secretions. Leg. Med. 2011, 13, 309–313. [Google Scholar] [CrossRef]
- Young, S.T.; Moore, J.R.; Bishop, C.P. A Rapid, Confirmatory Test for Body Fluid Identification. J. Forensic Sci. 2018, 63, 511–516. [Google Scholar] [CrossRef]
- Cepheid. SmartCycler II Operator Manual D1819 Rev D; Cepheid Inc.: Sunnyvale, CA, USA, 1999; p. 81. [Google Scholar]
- van den Berge, M.; Carracedo, A.; Gomes, I.; Graham, E.A.; Haas, C.; Hjort, B.; Hoff-Olsen, P.; Maroñas, O.; Mevåg, B.; Morling, N.; et al. A collaborative European exercise on mRNA-based body fluid/skin typing and interpretation of DNA and RNA results. Forensic Sci. Int. Genet. 2014, 10, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, T.; Yokota, I.; Watanabe, K.; Sakurada, K. Development of a multiplex RT-PCR assay and statistical evaluation of its use in forensic identification of vaginal fluid. Leg. Med. 2020, 45, 101715. [Google Scholar] [CrossRef]
- Hanson, E.; Ingold, S.; Haas, C.; Ballantyne, J. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing. Forensic Sci. Int. Genet. 2018, 34, 206–221. [Google Scholar] [CrossRef]
- Haas, C.; Hanson, E.; Anjos, M.; Banemann, R.; Berti, A.; Borges, E.; Carracedo, A.; Carvalho, M.; Courts, C.; De Cock, G.; et al. RNA/DNA co-analysis from human saliva and semen stains—Results of a third collaborative EDNAP exercise. Forensic Sci. Int. Genet. 2013, 7, 230–239. [Google Scholar] [CrossRef] [Green Version]
Gene | Accession No. | Forward Primer Sequence (5′–3′) | Amplicon Length (bp) | Splicing Variant | Reference |
---|---|---|---|---|---|
Reverse Primer Sequence (5′–3′) | |||||
BPIFA1 | NM_016583.3 | CCTTGGTGACTGCACCCATT | 161 | 1–3 | This study |
CCTCATTGACCAGAGGGCAC | |||||
STATH | NM_003154.2 | TTTGCCTTCATCTTGGCTCT | 93 | 1 | [18] |
CCCATAACCGAATCTTCCAA | |||||
HTN3 | NM_000200.3 | CATGACTGGAGCTGATTCACA | 135 | - | This study |
ATGCCCCGTGATTACTGAAGA | |||||
PRH2 | NM_001110213.1 | GGGCAGTCTCCTCAGTAATCTA | 166 | - | This study |
CCCAAACACTCAGAAGGAGATG | |||||
ACTB | NM_001101.5 | TGGCACCCAGCACAATGAA | 186 | - | Takara Bio 1 |
CTAAGTCATAGTCCGCCTAGAAGCA |
Gene | Slope | Y-Intercept | Lower Limit of Linear Dynamic Range | r2 | Amplification Efficiency | Cutoff Cq Value | Cq Variation 3 |
---|---|---|---|---|---|---|---|
BPIFA11 | −3.51 | 29.17 | 0.0156 | 0.996 | 92.6% | 35.68 | 0.63 |
STATH2 | −3.20 | 9.31 | 1.53 × 10−9 | 0.994 | 105.3% | 36.97 | 0.21 |
HTN32 | −3.05 | 8.99 | 1.53 × 10−9 | 1.000 | 112.6% | 35.84 | 0.54 |
PRH22 | −3.29 | 15.66 | 3.81 × 10−7 | 0.997 | 101.4% | 36.39 | 0.57 |
ACTB2 | −3.19 | 15.61 | 3.81 × 10−7 | 0.996 | 105.8% | 35.54 | 0.20 |
Body Fluid | Number of Tested Samples | Number of Positive Samples 1 | ||||
---|---|---|---|---|---|---|
ACTB | BPIFA1 | STATH | HTN3 | PRH2 | ||
Nasal secretion | 10 | 10 | 7 | 10 | 0 | 0 |
Saliva | 16 | 16 | 0 | 14 | 14 | 1 |
Blood | 7 | 7 | 0 | 0 | 0 | 0 |
Semen | 9 | 9 | 1 | 0 | 0 | 0 |
Vaginal fluid | 8 | 8 | 0 | 0 | 0 | 0 |
Urine | 6 | 1 | 0 | 0 | 0 | 0 |
Target Fluid | Sensitivity | Specificity |
---|---|---|
Nasal secretion | 70% | 100% |
Saliva | 87.5% | 100% |
Others 1 | 83.3% | 80.8% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akutsu, T.; Watanabe, K. A Proposed Procedure for Discriminating between Nasal Secretion and Saliva by RT-qPCR. Diagnostics 2020, 10, 519. https://doi.org/10.3390/diagnostics10080519
Akutsu T, Watanabe K. A Proposed Procedure for Discriminating between Nasal Secretion and Saliva by RT-qPCR. Diagnostics. 2020; 10(8):519. https://doi.org/10.3390/diagnostics10080519
Chicago/Turabian StyleAkutsu, Tomoko, and Ken Watanabe. 2020. "A Proposed Procedure for Discriminating between Nasal Secretion and Saliva by RT-qPCR" Diagnostics 10, no. 8: 519. https://doi.org/10.3390/diagnostics10080519
APA StyleAkutsu, T., & Watanabe, K. (2020). A Proposed Procedure for Discriminating between Nasal Secretion and Saliva by RT-qPCR. Diagnostics, 10(8), 519. https://doi.org/10.3390/diagnostics10080519