AZGP1 Protein Expression in Hormone-Naïve Advanced Prostate Cancer Treated with Primary Androgen Deprivation Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Follow-up Protocol
2.2. Endpoints
2.3. AZGP1 Immunohistochemistry
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Helgstrand, J.T.; Røder, M.A.; Klemann, N.; Toft, B.G.; Brasso, K.; Vainer, B.; Iversen, P. Diagnostic characteristics of lethal prostate cancer. Eur. J. Cancer 2017, 84, 18–26. [Google Scholar] [CrossRef] [PubMed]
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.S.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to fi rst-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [Green Version]
- Fizazi, K.; Tran, N.P.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 686–700. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef]
- Pienta, K.J.; Bradley, D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin. Cancer Res. 2006, 12, 1665–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.P.; Mostaghel, E.A.; Nelson, P.S.; Montgomery, B. Androgen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 2009, 6, 76–85. [Google Scholar] [CrossRef]
- Smith, M.R.; Halabi, S.; Ryan, C.J.; Hussain, A.; Vogelzang, N.; Stadler, W.; Hauke, R.J.; Monk, J.P.; Saylor, P.; Bhoopalam, N.; et al. Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: Results of CALGB 90202 (Alliance). J. Clin. Oncol. 2014, 32, 1143–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kristensen, G.; Berg, K.D.; Toft, B.G.; Stroomberg, H.V.; Nolley, R.; Brooks, J.D.; Brasso, K.; Roder, M.A. Predictive value of AZGP1 following radical prostatectomy for prostate cancer: A cohort study and meta-analysis. J. Clin. Pathol. 2019, 72, 696–704. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Grogan, J.S.; Mahon, K.L.; Rasiah, K.; Sved, P.; Eisinger, D.R.; Boulas, J.; Vasilaris, A.; Henshall, S.M.; Stricker, P.D.; et al. A prospective multicentre phase III validation study of AZGP1 as a biomarker in localized prostate cancer. Ann. Oncol. 2017, 28, 1903–1909. [Google Scholar] [CrossRef]
- Brooks, J.D.; Wei, W.; Pollack, J.R.; West, R.B.; Shin, J.H.; Sunwoo, J.B.; Hawley, S.J.; Auman, H.; Newcomb, L.F.; Simko, J.; et al. Loss of Expression of AZGP1 Is Associated With Worse Clinical Outcomes in a Multi-Institutional Radical Prostatectomy Cohort. Prostate 2016, 76, 1409–1419. [Google Scholar] [CrossRef] [Green Version]
- Berg, K.D.; Røder, M.A.; Thomsen, F.B.; Vainer, B.; Gerds, T.A.; Brasso, K.; Iversen, P. The predictive value of ERG protein expression for development of castration-resistant prostate cancer in hormone-naïve advanced prostate cancer treated with primary androgen deprivation therapy. Prostate 2015, 75, 1499–1509. [Google Scholar] [CrossRef]
- Epstein, J.I.; Allsbrook, W.C.; Amin, M.B.; Egevad, L.L. ISUP Grading Committee The 2005 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2005, 29, 1228–1242. [Google Scholar] [CrossRef] [Green Version]
- Mcshane, L.M.; Altman, D.G.; Sauerbrei, W.; Taube, S.E.; Gion, M.; Clark, G.M. REporting recommendations for tumor MARKer prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2005, 2, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Cornford, P.; De Santis, M.; Fanti, S.; Gillessen, S.; Grummet, J.; Henry, A.M.; Lam, T.B.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Eur. Urol. 2019, 76, 790–813. [Google Scholar]
- Simon, R.; Mirlacher, M.; Sauter, G. Immunohistochemical analysis of tissue microarrays. Methods Mol. Biol. 2010, 664, 113–126. [Google Scholar] [PubMed]
- Burdelski, C.; Kleinhans, S.; Kluth, M.; Hube-Magg, C.; Minner, S.; Koop, C.; Graefen, M.; Heinzer, H.; Tsourlakis, M.C.; Wilczak, W.; et al. Reduced AZGP1 expression is an independent predictor of early PSA recurrence and associated with ERG-fusion positive and PTEN deleted prostate cancers. Int. J. Cancer 2016, 138, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Liu, X.; Tan, C.; Mo, L.; Wang, H.; Peng, X.; Deng, F.; Chen, L. Expression and Function of Zinc-α2-Glycoprotein. Neurosci. Bull. 2019, 35, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Nelson, P.S.; Clegg, N.; Arnold, H.; Ferguson, C.; Bonham, M.; White, J.; Hood, L.; Lin, B. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc. Natl. Acad. Sci. USA 2002, 99, 11890–11895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, M.; Locke, W.J.; Sutherland, R.L.; Kench, J.G.; Henshall, S.M. A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 2009, 28, 3847–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, L.P.; Price, D.T.; Sanchez, L.M.; Demark-Wahnefried, W.; Madden, J.F. Zinc alpha-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer. Clin. Cancer Res. 2001, 7, 846–853. [Google Scholar]
- Huang, Y.; Li, L.-Z.; Zhang, C.; Yi, C.; Liu, L.-L.; Zhou, X.; Xie, G.-B.; Cai, M.-Y.; Li, Y.; Yun, J.-P. Decreased expression of zinc-alpha2-glycoprotein in hepatocellular carcinoma associates with poor prognosis. J. Transl. Med. 2012, 10, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Zhao, J.; Lv, L.; Chen, Y.; Li, Y.; Jiang, S.; Wang, W.; Pan, K.; Zheng, Y.; Zhao, B.; et al. Decreased Expression of AZGP1 Is Associated with Poor Prognosis in Primary Gastric Cancer. PLoS ONE 2013, 8, e69155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, V.; Delort, L.; Mishellany, F.; Jarde, T.; Billard, H.; Lequeux, C.; Damour, O.; Penault-Llorca, F.; Vasson, M.P.; Caldefie-Chezet, F. Zinc-alpha2-glycoprotein: A new biomarker of breast cancer? Anticancer Res. 2010, 30, 2919–2925. [Google Scholar] [PubMed]
- Grillo, F.; Bruzzone, M.; Pigozzi, S.; Prosapio, S.; Migliora, P.; Fiocca, R.; Mastracci, L. Immunohistochemistry on old archival paraffin blocks: Is there an expiry date? J. Clin. Pathol. 2017, 70, 988–993. [Google Scholar] [CrossRef]
- Epstein, J.I.; Feng, Z.; Trock, B.J.; Pierorazio, P.M. Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: Incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur. Urol. 2012, 61, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Freedland, S.J.; Kane, C.J.; Amling, C.L.; Aronson, W.J.; Terris, M.K.; Presti, J.C. SEARCH Database Study Group Upgrading and downgrading of prostate needle biopsy specimens: Risk factors and clinical implications. Urology 2007, 69, 495–499. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Dai, B.; Ye, D.; Kong, Y.; Chang, K.; Jia, Z.; Yang, X.; Zhang, H.; Zhu, Y.; Shi, G. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci. Rep. 2015, 5, 7654. [Google Scholar] [CrossRef] [Green Version]
- Crippa, A.; De Laere, B.; Discacciati, A.; Larsson, B.; Connor, J.T.; Gabriel, E.E.; Thellenberg, C.; Jänes, E.; Enblad, G.; Ullen, A.; et al. The ProBio trial: Molecular biomarkers for advancing personalized treatment decision in patients with metastatic castration-resistant prostate cancer. Trials 2020, 21, 579. [Google Scholar] [CrossRef]
- Cann, G.M.; Gulzar, Z.G.; Cooper, S.; Li, R.; Luo, S.; Tat, M.; Stuart, S.; Schroth, G.; Srinivas, S.; Ronaghi, M.; et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS ONE 2012, 7, e49144. [Google Scholar] [CrossRef]
- Josefsson, A.; Larsson, K.; Freyhult, E.; Damber, J.-E.; Welén, K. Gene Expression Alterations during Development of Castration-Resistant Prostate Cancer Are Detected in Circulating Tumor Cells. Cancers 2019, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Lu, Y.T.; Ho, H.; Li, B.; Chen, J.F.; Lin, M.; Li, F.; Wu, K.; Wu, H.; Lichterman, J.; et al. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget 2015, 6, 44781–44793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, L.A.; Bardelli, A. Liquid biopsies: Genotyping circulating tumor DNA. J. Clin. Oncol. 2014, 32, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Cremaschi, P.; Wetterskog, D.; Conteduca, V.; Franceschini, G.M.; Kleftogiannis, D.; Jayaram, A.; Sandhu, S.; Wong, S.Q.; Benelli, M.; et al. Genome-wide plasma DNA methylation features of metastatic prostate cancer. J. Clin. Investig. 2020, 130, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
Study Population (n = 191) | High AZGP1 (n = 97) | Low AZGP1 (n = 94) | p-Value | |
---|---|---|---|---|
Age at treatment start, years, median (range) | 70.0 (52.4–89.7) | 70.6 (52.4–89.7) | 69.5 (52.5–89.1) | 0.3 |
PSA at treatment start, µg/L, median (IQR) | 62.0 (30.0–202.5) | 68.0 (30.0–187.0) | 57.5 (30.0–228.0) | 0.9 |
Clinical tumor category, n (%) | 0.05 | |||
≤cT2 | 32 (16.8) | 22 (22.7) | 10 (10.6) | |
cT3a | 61 (31.9) | 34 (35.1) | 27 (28.7) | |
cT3b | 59 (30.9) | 25 (25.8) | 34 (36.2) | |
cT4 | 39 (20.4) | 16 (16.5) | 23 (24.5) | |
Diagnostic Gleason score, n (%) | 0.002 | |||
≤7 | 38 (19.9) | 28 (28.9) | 10 (10.6) | |
8 | 59 (30.9) | 31 (32.0) | 28 (29.8) | |
9–10 | 94 (49.2) | 38 (39.2) | 56 (59.6) | |
Lymph node stage, n (%) | 0.4 | |||
N0 | 1 (0.5) | 0 (0.0) | 1 (1.1) | |
N1 | 54 (28.3) | 25 (25.8) | 29 (30.9) | |
Nx | 136 (71.2) | 72 (74.2) | 64 (68.1) | |
Metastasis at diagnosis, n (%) | 0.1 | |||
M0 | 70 (36.6) | 38 (39.2) | 32 (34.0) | |
M1 | 114 (59.7) | 53 (54.6) | 61 (64.9) | |
Mx | 7 (3.7) | 6 (6.2) | 1 (1.1) | |
Stage of disease *, n (%) | 0.3 | |||
Locally advanced | 40 (20.9) | 22 (22.7) | 18 (19.1) | |
Lymph node metastases only | 37 (19.4) | 22 (22.7) | 15 (16.0) | |
Distant metastases | 114 (59.7) | 53 (54.6) | 61 (64.9) | |
Primary ADT treatment, n (%) | 0.2 | |||
LHRH treatment | 176 (92.1) | 89 (91.8) | 87 (92.6) | |
Maximal androgen blockade | 8 (4.2) | 6 (6.2) | 2 (2.1) | |
Orchiectomy | 7 (3.7) | 2 (2.1) | 5 (5.3) |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
AZGP1 expression | ||||
High | REF | REF | ||
Low | 1.5 (1.0–2.1) | 0.03 | 1.3 (0.9–1.9) | 0.2 |
Age at treatment start | 1.0 (1.0–1.02) | 0.5 | 1.0 (1.0–1.02) | 0.6 |
PSA for 2-fold diff. | 1.2 (1.1–1.4) | <0.0001 | 1.2 (1.1–1.4) | <0.0001 |
Clinical tumor category | ||||
≤cT2 | REF | REF | ||
cT3a | 1.2 (1.0–8.4) | 0.5 | 0.9 (0.5–1.6) | 0.7 |
cT3b | 2.0 (0.6–6.4) | 0.2 | 1.0 (0.5–1.7) | 0.9 |
cT4 | 2.9 (0.9–9.6) | 0.07 | 1.1 (0.5–2.0) | 0.9 |
Diagnostic Gleason score | ||||
≤7 | REF | REF | ||
8 | 1.4 (0.8–2.4) | 0.2 | 1.1 (0.6–1.8) | 0.9 |
9–10 | 1.8 (1.1–2.9) | 0.02 | 1.5 (0.9–2.5) | 0.1 |
Stage of disease * | ||||
Locally advanced | REF | REF | ||
Lymph node metastases only | 0.8 (0.7–1.8) | 0.4 | 1.1 (0.6–2.0) | 0.8 |
Distant metastases | 1.2 (0.5–1.4) | 0.5 | 1.0 (0.6–1.6) | 1.0 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | |
AZGP1 expression | ||||
High | REF | REF | ||
Low | 1.5 (1.0–2.4) | 0.06 | 1.2 (0.7–1.9) | 0.6 |
Age at treatment start | 1.0 (1.0–1.0) | 0.6 | 1.0 (1.0–1.0) | 0.5 |
PSA for 2-fold diff. | 1.2 (1.1–1.4) | <0.0001 | 1.2 (1.1–1.4) | 0.001 |
Clinical tumor category | ||||
≤cT2 | REF | REF | ||
cT3a | 1.6 (0.7–3.4) | 0.3 | 1.1 (0.5–2.6) | 0.8 |
cT3b | 2.3 (1.1–5.0) | 0.03 | 1.6 (0.7–3.5) | 0.3 |
cT4 | 2.5 (1.1–5.6) | 0.02 | 1.2 (0.5–3.0) | 0.7 |
Diagnostic Gleason score | ||||
≤7 | REF | REF | ||
8 | 1.5 (0.7–2.9) | 0.3 | 0.9 (0.4–1.9) | 0.8 |
9–10 | 2.0 (1.1–3.8) | 0.0 | 1.5 (0.7–2.8) | 0.3 |
Stage of disease * | ||||
Locally advanced | REF | REF | ||
Lymph node metastases only | 0.7 (0.3–1.6) | 0.4 | 0.9 (0.4–2.1) | 0.8 |
Distant metastases | 1.5 (0.9–2.8) | 0.2 | 1.3 (0.7–2.4) | 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winther, M.D.; Kristensen, G.; Stroomberg, H.V.; Berg, K.D.; Toft, B.G.; Brooks, J.D.; Brasso, K.; Røder, M.A. AZGP1 Protein Expression in Hormone-Naïve Advanced Prostate Cancer Treated with Primary Androgen Deprivation Therapy. Diagnostics 2020, 10, 520. https://doi.org/10.3390/diagnostics10080520
Winther MD, Kristensen G, Stroomberg HV, Berg KD, Toft BG, Brooks JD, Brasso K, Røder MA. AZGP1 Protein Expression in Hormone-Naïve Advanced Prostate Cancer Treated with Primary Androgen Deprivation Therapy. Diagnostics. 2020; 10(8):520. https://doi.org/10.3390/diagnostics10080520
Chicago/Turabian StyleWinther, Mads Dochedahl, Gitte Kristensen, Hein Vincent Stroomberg, Kasper Drimer Berg, Birgitte Grønkær Toft, James D. Brooks, Klaus Brasso, and Martin Andreas Røder. 2020. "AZGP1 Protein Expression in Hormone-Naïve Advanced Prostate Cancer Treated with Primary Androgen Deprivation Therapy" Diagnostics 10, no. 8: 520. https://doi.org/10.3390/diagnostics10080520
APA StyleWinther, M. D., Kristensen, G., Stroomberg, H. V., Berg, K. D., Toft, B. G., Brooks, J. D., Brasso, K., & Røder, M. A. (2020). AZGP1 Protein Expression in Hormone-Naïve Advanced Prostate Cancer Treated with Primary Androgen Deprivation Therapy. Diagnostics, 10(8), 520. https://doi.org/10.3390/diagnostics10080520