Optical Diagnostics of the Maxillary Sinuses by Digital Diaphanoscopy Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Study Design
3. Results
3.1. Results of Preliminary Experimental Studies
3.2. Monte Carlo Simulation
3.3. Upgrade of the Experimental Setup
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CT | computed tomography |
MRI | magnetic resonance imaging |
NIR | near infrared |
CMOS | complementary metal oxide semiconductor |
LED | light-emitting diode |
References
- Battisti, A.S.; Pangia, J. Sinusitis. StatPearls—NCBI Bookshelf; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Villarroel, M.; Blackwell, D.; Jen, A. Tables of Summary Health Statistics for U.S. Adults: 2018 National Health Interview Survey. National Center for Health Statistics; NCHS: National Health Interview Survey. 2019. Available online: http://www.cdc.gov/nchs/nhis/SHS/tables.htm (accessed on 19 November 2020).
- Hastan, D.; Fokkens, W.J.; Bachert, C.; Newson, R.B.; Bislimovska, J.; Bockelbrink, A.; Bousquet, P.J.; Brozek, G.; Bruno, A.; Dahlén, S.E.; et al. Chronic rhinosinusitis in Europe—An underestimated disease. A GA 2LEN study. Allergy 2011, 66, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Mafee, M.F.; Farid, N.; Lim, W.Y. Imaging of the Paranasal Sinuses: Plain-Film Radiography, Computed Tomography, and Magnetic Resonance Imaging. In Diseases of the Sinuses; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2014; pp. 295–322. [Google Scholar]
- Kanwar, S.S.; Mital, M.; Gupta, P.K.; Saran, S.; Parashar, N.; Singh, A. Evaluation of paranasal sinus diseases by computed tomography and its histopathological correlation. J. Oral Maxillofac. Radiol. 2017, 5, 46–52. [Google Scholar] [CrossRef]
- Bryanskaya, E.; Makovik, I.; Bukin, A.; Bibikova, O.; Shuraev, B.M.; Minet, O.; Zabarilo, U.; Dunaev, A.; Artyushenko, V. Diagnosis of inflammatory diseases of the paranasal sinuses using digital diaphanoscopy. In Proceedings of the Clinical and Preclinical Optical Diagnostics II, Munich, Germany, 23–25 June 2019; p. 11073. [Google Scholar]
- Bryanskaya, E.O.; Gneushev, R.Y.; Makovik, I.N.; Dremin, V.V.; Bukin, A.G.; Bibikova, O.A.; Shuraev, B.M.; Minet, O.; Zabarilo, U.; Dunaev, A.V.; et al. Monte Carlo simulation of signals in digital diaphanoscopy of the maxillary sinuses. In Saratov Fall Meeting 2019: Optical and Nano-Technologies for Biology and Medicine; SPIE: Saratov, Russia, 2020; Volume 11457, p. 114571K. [Google Scholar]
- Stölzel, K.; Szczepek, A.J.; Olze, H.; Koß, S.; Minet, O.; Zabarylo, U. Digital diaphanoscopy of the maxillary sinuses: A revival of optical diagnosis for rhinosinusitis. Am. J. Otolaryngol. 2020, 41, 102444. [Google Scholar] [CrossRef] [PubMed]
- Beuthan, J. IR-diaphanoscopy in medicine. Med Opt. Tomogr. Funct. Imaging Monit. 1993, 103110H. [Google Scholar] [CrossRef]
- Feldmann, H. Die Geschichte der Diaphanoskopie. Laryngo-Rhino-Otologie 1998, 77, 297–304. [Google Scholar] [CrossRef]
- Koch, F.H.J.; Deuchler, S.; Hessling, M.; Singh, P. Diaphanoskopie am Auge Ophthalmic diaphanoscopy. Der Ophthalmol. 2017, 11, 331–864. [Google Scholar] [CrossRef]
- Schips, L.; Lipsky, K.; Hebel, P.; Hutterer, G.; Gidaro, S.; Petritsch, P.H.; Zigeuner, R.E. Laparoscopic fenestration of lymphoceles after kidney transplantation with diaphanoscopic guidance. Urology 2005, 66, 185–187. [Google Scholar] [CrossRef]
- Linnarz, M.; Hopf, J.U.G.; Prapavat, V.; Beuthan, J. Die IR-Diaphanoskopie—Eine Neue Methode in der Diagnostik der Nasennebenhöhlen-Erkrankungen; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1994; p. 252. [Google Scholar]
- Hopf, M.; Hopf, J.U. Near Infrared Transillumination in Acute Maxillary Sinusitis: Theoretical Background—Clinical Application—Diagnostic Potential—Limitations. Med. Laser Appl. 2003, 18, 217–231. [Google Scholar] [CrossRef]
- Bellemann, V. Digitale Diaphanoskopie der Nasennebenhöhlen. Med. Bildgeb. Master 2012, 1, 30–31. [Google Scholar]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef]
- Peters, V.G.; Wymant, D.R.; Patterson, M.S.; Frank, G.L. Optical properties of normal and diseased human breast tissues in the visible and near infrared in the visible and near infrared. Phys. Med. Biol. Relat. Content 1990, 35, 1317–1334. [Google Scholar] [CrossRef] [PubMed]
- Bashkatov, A.N.; Genina, É.A.; Kochubey, V.I.; Tuchin, V.V.; Chikina, E.É.; Knyazev, A.B.; Mareev, O.V. Optical properties of mucous membrane in the spectral range 350–2000 nm. Opt. Spectrosc. 2004, 97, 978–983. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human cranial bone in the spectral range from 800 to 2000 nm. SPIE Proc. 2006, 616310. [Google Scholar] [CrossRef]
- Genina, E.A.; Bashkatov, A.N.; Tuchin, V.V. Optical Clearing of Cranial Bone. Adv. Opt. Technol. 2008, 2008, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Veen, R.L.P.; Sterenborg, H.J.C.M.; Marinelli, A.W.K.S.; Menke-Pluymers, M. Intraoperatively assessed optical properties of malignant and healthy breast tissue used to determine the optimum wavelength of contrast for optical mammography. J. Biomed. Opt. 2004, 9, 1129–1136. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Tuchin, V.V. Optical properties of skin, subcutaneous, and muscle tissues: A review. J. Innov. Opt. Health Sci. 2011, 4, 9–38. [Google Scholar] [CrossRef]
- Teke, H.Y.; Duran, S.; Canturk, N.; Canturk, G. Determination of gender by measuring the size of the maxillary sinuses in computerized tomography scans. Surg. Radiol. Anat. 2006, 29, 9–13. [Google Scholar] [CrossRef]
- Gracco, A.; Lombardo, L.; Cozzani, M.; Siciliani, G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog. Orthod. 2006, 7, 164–174. [Google Scholar]
- Kang, S.; Lee, S.-J.; Ahn, S.-J.; Heo, M.-S.; Kim, T.-W. Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am. J. Orthod. Dentofac. Orthop. 2007, 131, S74–S81. [Google Scholar] [CrossRef]
- Dremin, V.; Zherebtsov, E.; Bykov, A.; Popov, A.; Doronin, A.; Meglinski, I. Influence of blood pulsation on diagnostic volume in pulse oximetry and photoplethysmography measurements. Appl. Opt. 2019, 58, 9398–9405. [Google Scholar] [CrossRef]
- Zherebtsov, E.; Dremin, V.; Popov, A.; Doronin, A.; Kurakina, D.; Kirillin, M.Y.; Meglinski, I.; Bykov, A. Hyperspectral imaging of human skin aided by artificial neural networks. Biomed. Opt. Express 2019, 10, 3545–3559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wara-Aswapati, N.; Pitiphat, W.; Chandrapho, N.; Rattanayatikul, C.; Karimbux, N. Thickness of Palatal Masticatory Mucosa Associated With Age. J. Periodontol. 2001, 72, 1407–1412. [Google Scholar] [CrossRef] [PubMed]
- Genina, E.A.; Zubkova, E.A.; Korobko, A.A.; Yanina, I.Y.; Bashkatov, A.N.; Kamenskikh, T.G.; Galanzha, V.A.; Tuchin, V.V. Diffusion of Cortexin and Retinalamin in eye sclera. In Proceedings of the Saratov Fall Meeting 2006: Optical Technologies in Biophysics and Medicine VIII, Saratov, Russia, 26–29 September 2006; Volume 65351. [Google Scholar]
- Barghouth, G.; Prior, J.; Lepori, D.; Duvoisin, B.; Schnyder, P.; Gudinchet, F. Paranasal sinuses in children: Size evaluation of maxillary, sphenoid, and frontal sinuses by magnetic resonance imaging and proposal of volume index percentile curves. Eur. Radiol. 2002, 12, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Goto, M.; Katsuki, T.; Akiyoshi, T. Measurement of the maxilla and zygoma as an aid in installing zygomatic implants. J. Oral Maxillofac. Surg. 2001, 59, 1193–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zhao, S.; Liu, H.; Sun, Z.; Wang, J.; Zhang, W. An Anatomical Study of Maxillary-Zygomatic Complex Using Three-Dimensional Computerized Tomography-Based Zygomatic Implantation. BioMed Res. Int. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Greef, S.; Claes, P.; Vandermeulen, D.; Mollemans, W.; Suetens, P.; Willems, G. Large-scale in-vivo Caucasian facial soft tissue thickness database for craniofacial reconstruction. Forensic Sci. Int. 2006, 159, S126–S146. [Google Scholar] [CrossRef] [PubMed]
- Dremin, V.; Dunaev, A. How the melanin concentration in the skin affects the fluorescence-spectroscopy signal formation. J. Opt. Technol. 2016, 83, 43. [Google Scholar] [CrossRef]
- Rafailov, I.E.; Dremin, V.V.; Litvinova, K.S.; Dunaev, A.V.; Sokolovski, S.G.; Rafailov, E.U. Computational model of bladder tissue based on its measured optical properties. J. Biomed. Opt. 2016, 21, 025006. [Google Scholar] [CrossRef] [Green Version]
- Rafailov, I.; Palmer, S.; Litvinova, K.; Dremin, V.; Dunaev, A.; Nabi, G. A novel excitation-emission wavelength model to facilitate the diagnosis of urinary bladder diseases. Photonic Ther. Diagn. XI 2015, 9303, 93030W. [Google Scholar] [CrossRef]
Biological Tissue Layer | Wavelength λ, nm | Absorption Coefficient μa, mm−1 | Scattering Coefficient μs, mm−1 |
---|---|---|---|
Mucous membrane (sinus/palatine bone) [18] | 650 850 | 0.05 0.075 | 0.8 1.2 |
Zygomatic/Palatine bone [19,20] | 650 850 | 0.011 0.007 | 1.873 2.113 |
Cystic fluid [16,17] | 650 850 | 0.022 0.027 | 1.34 0.95 |
Tumor [21] | 650 850 | 0.0391 0.0522 | 2.17 2.67 |
Hypodermis [22] | 650 850 | 0.18 0.1 | 2 2.7 |
Epidermis and dermis [23] | 650 850 | 0.17 0.2 | 3 3.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryanskaya, E.O.; Novikova, I.N.; Dremin, V.V.; Gneushev, R.Y.; Bibikova, O.A.; Dunaev, A.V.; Artyushenko, V.G. Optical Diagnostics of the Maxillary Sinuses by Digital Diaphanoscopy Technology. Diagnostics 2021, 11, 77. https://doi.org/10.3390/diagnostics11010077
Bryanskaya EO, Novikova IN, Dremin VV, Gneushev RY, Bibikova OA, Dunaev AV, Artyushenko VG. Optical Diagnostics of the Maxillary Sinuses by Digital Diaphanoscopy Technology. Diagnostics. 2021; 11(1):77. https://doi.org/10.3390/diagnostics11010077
Chicago/Turabian StyleBryanskaya, Ekaterina O., Irina N. Novikova, Viktor V. Dremin, Roman Yu. Gneushev, Olga A. Bibikova, Andrey V. Dunaev, and Viacheslav G. Artyushenko. 2021. "Optical Diagnostics of the Maxillary Sinuses by Digital Diaphanoscopy Technology" Diagnostics 11, no. 1: 77. https://doi.org/10.3390/diagnostics11010077
APA StyleBryanskaya, E. O., Novikova, I. N., Dremin, V. V., Gneushev, R. Y., Bibikova, O. A., Dunaev, A. V., & Artyushenko, V. G. (2021). Optical Diagnostics of the Maxillary Sinuses by Digital Diaphanoscopy Technology. Diagnostics, 11(1), 77. https://doi.org/10.3390/diagnostics11010077