Laser Doppler Spectrum Analysis Based on Calculation of Cumulative Sums Detects Changes in Skin Capillary Blood Flow in Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Protocol
2.2. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Braverman, I.M. The Cutaneous Microcirculation: Ultrastructure and Microanatomical Organization. Microcirculation 1997, 4, 329–340. [Google Scholar] [CrossRef]
- Stefanovska, A.; Bracic, M.; Kvernmo, H.D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 1999, 46, 1230. [Google Scholar] [CrossRef]
- Kvandal, P.; Landsverk, S.; Bernjak, A.; Stefanovska, A.; Kvernmo, H.; Kirkebøen, K. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvasc. Res. 2006, 72, 120. [Google Scholar] [CrossRef]
- Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul. Health Manag. 2017, 20, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Dremin, V.V.; Zherebtsov, E.A.; Sidorov, V.V.; Krupatkin, A.I.; Makovik, I.N.; Zherebtsova, A.I.; Zharkikh, E.V.; Potapova, E.V.; Dunaev, A.V.; Doronin, A.A.; et al. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus. J. Biomed. Opt. 2017, 22, 1–10. [Google Scholar] [CrossRef]
- Potapova, E.V.; Dremin, V.V.; Zherebtsov, E.A.; Makovik, I.N.; Zherebtsova, A.I.; Dunaev, A.V.; Podmasteryev, K.V.; Sidorov, V.V.; Krupatkin, A.I.; Khakhicheva, L.S.; et al. Evaluation of microcirculatory disturbances in patients with rheumatic diseases by the method of diffuse reflectance spectroscopy. Hum. Physiol. 2017, 43. [Google Scholar] [CrossRef]
- Jonasson, H.; Fredriksson, I.; Bergstrand, S.; Östgren, C.J.; Larsson, M.; Strömberg, T. In vivo characterization of light scattering properties of human skin in the 475- to 850-nm wavelength range in a Swedish cohort. J. Biomed. Opt. 2018, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredriksson, I.; Larsson, M.; Strömberg, T. Machine learning for direct oxygen saturation and hemoglobin concentration assessment using diffuse reflectance spectroscopy. J. Biomed. Opt. 2020, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hultman, M.; Larsson, M.; Strömberg, T.; Fredriksson, I. Real-time video-rate perfusion imaging using multi-exposure laser speckle contrast imaging and machine learning. J. Biomed. Opt. 2020, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Volkov, M.V.; Margaryants, N.B.; Potemkin, A.V.; Volynsky, M.A.; Gurov, I.P.; Mamontov, O.V.; Kamshilin, A.A. Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance. Sci. Rep. 2017, 7, 13298. [Google Scholar] [CrossRef] [PubMed]
- Dremin, V.; Kozlov, I.; Volkov, M.; Margaryants, N.; Potemkin, A.; Zherebtsov, E.; Dunaev, A.; Gurov, I. Dynamic evaluation of blood flow microcirculation by combined use of the laser Doppler flowmetry and high-speed videocapillaroscopy methods. J. Biophotonics 2019, 12, e201800317. [Google Scholar] [CrossRef] [Green Version]
- De Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 2015, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Beckmann, L.J.; Zhang, H.F. Visible-light optical coherence tomography: A review. J. Biomed. Opt. 2017, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Forrester, A.T. Photoelectric Mixing As a Spectroscopic Tool. J. Opt. Soc. Am. 1961, 51, 253–259. [Google Scholar] [CrossRef]
- Cummins, H.Z.; Swinney, H.L. III light beating spectroscopy. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 1970; Volume 8, pp. 133–200. [Google Scholar]
- Humeau-Heurtier, A.; Mahe, G.; Durand, S.; Abraham, P. Skin perfusion evaluation between laser speckle contrast imaging and laser Doppler flowmetry. Opt. Commun. 2013, 291, 482–487. [Google Scholar] [CrossRef]
- Wang, G.; Jia, S.; Liu, M.; Song, X.; Li, H.; Chang, X.; Zhang, W. Impact of local thermal stimulation on the correlation between oxygen saturation and speed-resolved blood perfusion. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Dzeletovic, B.; Stratimirovic, D.; Stojic, D.; Djukic, L. Linear and nonlinear analysis of dental pulp blood flow oscillations in ageing. Int. Endod. J. 2020, 53, 1033–1039. [Google Scholar] [CrossRef]
- Sorelli, M.; Francia, P.; Bocchi, L.; De Bellis, A.; Anichini, R. Assessment of cutaneous microcirculation by laser Doppler flowmetry in type 1 diabetes. Microvasc. Res. 2019, 124, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Mizeva, I.; Makovik, I.; Dunaev, A.; Krupatkin, A.; Meglinski, I. Analysis of skin blood microflow oscillations in patients with rheumatic diseases. J. Biomed. Opt. 2017, 22, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Berge, S.T.; Safi, N.; Medhus, A.W.; Ånonsen, K.; Sundhagen, J.O.; Hisdal, J.; Kazmi, S.S.H. Gastroscopy assisted laser Doppler flowmetry and visible light spectroscopy in patients with chronic mesenteric ischemia. Scand. J. Clin. Lab. Investig. 2019, 79, 541–549. [Google Scholar] [CrossRef]
- Zherebtsov, E.; Zajnulina, M.; Kandurova, K.; Potapova, E.; Dremin, V.; Mamoshin, A.; Sokolovski, S.; Dunaev, A.; Rafailov, E.U. Machine Learning Aided Photonic Diagnostic System for Minimally Invasive Optically Guided Surgery in the Hepatoduodenal Area. Diagnostics 2020, 10, 873. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Jan, Y.K. Nonlinear dynamics of skin blood flow response to mechanical and thermal stresses in the plantar foot of diabetics with peripheral neuropathy. Clin. Hemorheol. Microcirc. 2017, 66, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Sorelli, M.; Perrella, A.; Francia, P.; De Bellis, A.; Anichini, R.; Bocchi, L. Multi-gaussian Decomposition of the Microvascular Pulse Detects Alterations in Type 1 Diabetes BT. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018, Prague, Czech Republic, 3–8 June 2018; Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S., Eds.; Springer: Singapore, 2019; pp. 173–176. [Google Scholar]
- Vandersee, S.; Erdmenger, U.; Patzelt, A.; Beyer, M.; Meinke, M.; Darvin, M.; Koscielny, J.; Lademann, J. Significance of the follicular pathway for dermal substance penetration quantified by laser Doppler flowmetry. J. Biophotonics 2016, 9, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Wu, Q.; Shang, F.; Li, B.; Liu, M.; Wang, B.; Sheng, Y.; Zhang, H.; Xiu, R. A comparison of the cutaneous microvascular properties of the Spontaneously Hypertensive and the Wistar-Kyoto rats by Spectral analysis of Laser Doppler. Clin. Exp. Hypertens. 2019, 41, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, I.; Larsson, M.; Strömberg, T. Model-based quantitative laser Doppler flowmetry in skin. J. Biomed. Opt. 2010, 15, 57002–57012. [Google Scholar] [CrossRef]
- Jonasson, H.; Fredriksson, I.; Larsson, M.; Strömberg, T. Validation of speed-resolved laser Doppler perfusion in a multimodal optical system using a blood-flow phantom. J. Biomed. Opt. 2019, 24, 1–8. [Google Scholar] [CrossRef]
- Wojtkiewicz, S.; Liebert, A.; Rix, H.; Maniewski, R. Evaluation of algorithms for microperfusion assessment by fast simulations of laser Doppler power spectral density. Phys. Med. Biol. 2011, 56, 7709. [Google Scholar] [CrossRef]
- Liebert, A.; Zolek, N.; Wojtkiewicz, S.; Maniewski, R. Estimation of Speed Distribution of Particles Moving in an Optically Turbid Medium Using Decomposition of a Laser-Doppler Spectrum. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 4080–4082. [Google Scholar]
- Bonner, R.; Nossal, R. Model for laser Doppler measurements of blood flow in tissue. Appl. Opt. 1981, 20, 2097–2107. [Google Scholar] [CrossRef]
- Nilsson, G.E.; Tenland, T.; Oberg, P.A. Evaluation of a Laser Doppler Flowmeter for Measurement of Tissue Blood Flow. IEEE Trans. Biomed. Eng. 1980, BME-27, 597–604. [Google Scholar] [CrossRef]
- Zherebtsov, E.; Kandurova, K.; Seryogina, E.; Kozlov, I.; Dremin, V.; Zherebtsova, A.; Dunaev, A.; Meglinski, I. The influence of local pressure on evaluation parameters of skin blood perfusion and fluorescence. In Progress in Biomedical Optics and Imaging—Proceedings of SPIE; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2017; Volume 10336. [Google Scholar] [CrossRef]
- Kozlov, I.O.; Zherebtsov, E.A.; Dremin, V.V.; Zherebtsova, A.I.; Zharkikh, E.V.; Dunaev, A.V.; Rafailov, E.U. Laser doppler spectrum decomposition applied in diagnostics of microcirculatory disturbances. In Biophotonics: Photonic Solutions for Better Health Care VI; Popp, J., Tuchin, V.V., Pavone, F.S., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2018; Volume 10685, pp. 735–738. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, I.; Zherebtsov, E.; Zherebtsova, A.; Dremin, V.; Dunaev, A. Investigation of Doppler spectra of laser radiation scattered inside hand skin during occlusion test. J. Phys. Conf. Ser. 2017, 929, 012063. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, I.; Hultman, M.; Strömberg, T.; Larsson, M. Machine learning in multiexposure laser speckle contrast imaging can replace conventional laser Doppler flowmetry. J. Biomed. Opt. 2019, 24, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtkiewicz, S.; Wojcik-Sosnowska, E.; Jasik, M.; Maniewski, R.; Karnafel, W.; Liebert, A. Assessment of speed distribution of red blood cells in the microvascular network in healthy volunteers and type 1 diabetes using laser Doppler spectra decomposition. Physiol. Meas. 2014, 35, 283–295. [Google Scholar] [CrossRef]
- Qu, X.; Ikawa, M.; Shimauchi, H. Improvement of the detection of human pulpal blood flow using a laser Doppler flowmeter modified for low flow velocity. Arch. Oral Biol. 2014, 59, 199–206. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lin, Y.H.; Jan, I.C.; Liu, R.S.; Chou, N.K.; Jan, G.J. Adaptive processing bandwidth adjustment for laser Doppler flowmetry. Med. Biol. Eng. Comput. 2004, 42, 277–281. [Google Scholar] [CrossRef]
- Dremin, V.V.; Zherebtsov, E.A.; Makovik, I.N.; Kozlov, I.O.; Sidorov, V.V.; Krupatkin, A.I.; Dunaev, A.V.; Rafailov, I.E.; Litvinova, K.S.; Sokolovski, S.G.; et al. Laser Doppler flowmetry in blood and lymph monitoring, technical aspects and analysis. Proc. SPIE 2017, 10063, 1006303–1006308. [Google Scholar]
- Malanin, K.; Havu, V.K.; Kolari, P.J. Dynamics of Cutaneous Laser Doppler Flux with Concentration of Moving Blood Cells and Blood Cell Velocity in Legs with Venous Ulcers and in Healthy Legs. Angiology 2004, 55, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, D.M.G.; Larsson, M.; Stroemberg, T.; Wardell, K. Influence of tissue movements on laser Doppler perfusion imaging. In Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II; Priezzhev, A.V., Cote, G.L., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2002; Volume 4624, pp. 106–114. [Google Scholar] [CrossRef]
- Bodo, M.; Mahon, R.; Razumovsky, A.; Kouperberg, E.; Crimmins, M.; Armonda, R.; Baruch, M. Comparison of cerebrovascular reactivity tests: A pilot human study. J. Electr. Bioimpedance 2019, 8, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Lenoir, C.; Plaghki, L.; Mouraux, A.; van den Broeke, E.N. Quickly responding C-fibre nociceptors contribute to heat hypersensitivity in the area of secondary hyperalgesia. J. Physiol. 2018, 596, 4443–4455. [Google Scholar] [CrossRef]
- Filina, M.A.; Potapova, E.V.; Makovik, I.N.; Zharkih, E.V.; Dremin, V.V.; Zherebtsov, E.A.; Dunaev, A.V.; Sidorov, V.V.; Krupatkin, A.I.; Alimicheva, E.A.; et al. Functional Changes in Blood Microcirculation in the Skin of the Foot during Heating Tests in Patients with Diabetes Mellitus. Hum. Physiol. 2017, 43, 693–699. [Google Scholar] [CrossRef]
- Zherebtsova, A.I.; Zherebtsov, E.A.; Dunaev, A.V.; Podmasteryev, K.V.; Pilipenko, O.V.; Krupatkin, A.I.; Khakhicheva, L.S.; Muradyan, V.F. Study of the functional state of peripheral vessels in fingers of rheumatological patients by means of laser Doppler flowmetry and cutaneous thermometry measurements. Proc. SPIE 2016, 9917, 99170M–99170M-7. [Google Scholar]
- Nieuwenhoff, M.; Wu, Y.; Huygen, F.; Schouten, A.; van der Helm, F.; Niehof, S. Reproducibility of axon reflex-related vasodilation assessed by dynamic thermal imaging in healthy subjects. Microvasc. Res. 2016, 106, 1–7. [Google Scholar] [CrossRef]
- Liebert, A.; Zołek, N.; Maniewski, R. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study. Phys. Med. Biol. 2006, 51. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, G.; Guerrero, R.; Paredes, C.; Ríos, C. Nailfold capillaroscopy in diabetes mellitus. Microvasc. Res. 2017, 112. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.C.; Zhang, G.; Wu, C.C.; Hsiao, H.D.; Wu, T.H.; Lin, K.P.; Huang, T.C. Hemodynamic analysis of capillary in finger nail-fold using computational fluid dynamics and image estimation. Microvasc. Res. 2011, 81, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, I.; Larsson, M. Vessel packaging effect in laser speckle contrast imaging and laser Doppler imaging. J. Biomed. Opt. 2017, 22, 1–7. [Google Scholar] [CrossRef]
- Chang, C.H.; Tsai, R.K.; Wu, W.C.; Kuo, S.L.; Yu, H.S. Use of dynamic capillaroscopy for studying cutaneous microcirculation in patients with diabetes mellitus. Microvasc. Res. 1997, 53. [Google Scholar] [CrossRef]
- Wang, G.; Jia, S.; Li, H.; Song, X.; Zhang, W. Exploring the relationship between the speed-resolved perfusion of blood flux and HRV following different thermal stimulations using MSE and MFE analyses. PLoS ONE 2019, e0217973. [Google Scholar] [CrossRef]
Parameters | Patients | Group 1 | Group 2 |
---|---|---|---|
Age (y) | 61 ± 7 * | 22 ± 0.5 * | 51 ± 6 * |
Sex (M/F) | 3/7 | 2/5 | 3/3 |
Systolic BP (mmHg) | 125 ± 11 | 122 ± 8 | 120 ± 5 |
Diastolic BP (mmHg) | 75 ± 7 | 70 ± 3 | 77 ± 4 |
Body mass index (kg/m) | 31 ± 4.5 * | 24 ± 3.5 | 25 ± 3.8 |
Fasting glucose (mmol/L) | 10.4 ± 3 | - | - |
Diabetes duration (y) | 11.5 ± 4 | - | - |
HbA1c (%) | 7.1 ± 0.2 | - | - |
Total cholesterol (mmol/L) | 5.2 ± 0.8 | - | - |
Creatinine (mol/L) | 78.6 ± 7.6 | - | - |
Urea (mmol/L) | 6 ± 0.9 | - | - |
ALT (IU/L) | 24.9 ± 5.4 | - | - |
AST (IU/L) | 19.9 ± 4.3 | - | - |
Classifiers | AUC |
---|---|
Group 1 vs. Group 2 | |
DBP classifier | 0.76 |
AbC classifier | 0.64 |
classifier | 0.79 |
Linear classifier (DBP and AbC together) | 0.86 |
Linear classifier (DBP and together) | 0.91 |
Complex classifier (DBP, AbC, ) | 0.928 |
Group 2 vs. Patients | |
DBP classifer | 0.92 |
AbC classifer | 0.65 |
classifier | 0.71 |
Linear classifier (DBP and AbC together) | 0.9 |
Linear classifier (DBP and together) | 0.91 |
Complex classifier (DBP, AbC, ) | 0.933 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlov, I.; Zherebtsov, E.; Masalygina, G.; Podmasteryev, K.; Dunaev, A. Laser Doppler Spectrum Analysis Based on Calculation of Cumulative Sums Detects Changes in Skin Capillary Blood Flow in Type 2 Diabetes Mellitus. Diagnostics 2021, 11, 267. https://doi.org/10.3390/diagnostics11020267
Kozlov I, Zherebtsov E, Masalygina G, Podmasteryev K, Dunaev A. Laser Doppler Spectrum Analysis Based on Calculation of Cumulative Sums Detects Changes in Skin Capillary Blood Flow in Type 2 Diabetes Mellitus. Diagnostics. 2021; 11(2):267. https://doi.org/10.3390/diagnostics11020267
Chicago/Turabian StyleKozlov, Igor, Evgeny Zherebtsov, Galina Masalygina, Konstantin Podmasteryev, and Andrey Dunaev. 2021. "Laser Doppler Spectrum Analysis Based on Calculation of Cumulative Sums Detects Changes in Skin Capillary Blood Flow in Type 2 Diabetes Mellitus" Diagnostics 11, no. 2: 267. https://doi.org/10.3390/diagnostics11020267
APA StyleKozlov, I., Zherebtsov, E., Masalygina, G., Podmasteryev, K., & Dunaev, A. (2021). Laser Doppler Spectrum Analysis Based on Calculation of Cumulative Sums Detects Changes in Skin Capillary Blood Flow in Type 2 Diabetes Mellitus. Diagnostics, 11(2), 267. https://doi.org/10.3390/diagnostics11020267