The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer’s Disease and Parkinson’s Disease
Abstract
:1. Introduction
2. Biomarkers in the Diagnosis of Alzheimer’s Disease
Salivary Biomarkers in the Diagnosis of Alzheimer’s Disease
3. Parkinson’s Disease
Salivary Biomarkers in the Diagnosis of Parkinson’s Disease
4. Limitations of Salivary Biomarkers
5. Future Perspectives in the Use of Salivary Biomarkers
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a028035. [Google Scholar] [CrossRef]
- Farah, R.; Haraty, H.; Salame, Z.; Fares, Y.; Ojcius, D.M.; Said Sadier, N. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed. J. 2018, 41, 63–87. [Google Scholar] [CrossRef]
- Liu, J.; Hlávka, J.; Hillestad, R.J.; Mattke, S. 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef]
- Hanagasi, H.A.; Tufekcioglu, Z.; Emre, M. Dementia in Parkinson's disease. J. Neurol. Sci. 2017, 374, 26–31. [Google Scholar] [CrossRef]
- Aarsland, D.; Creese, B.; Politis, M.; Chaudhuri, K.R.; Ffytche, D.H.; Weintraub, D.; Ballard, C. Cognitive decline in Parkinson disease. Nat. Rev. Neurol. 2017, 13, 217–231. [Google Scholar] [CrossRef] [Green Version]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol 2018, 25, 59–70. [Google Scholar] [CrossRef]
- Beitz, J.M. Parkinson’s disease a review. Front. Biosci. 2014, 6, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Molinuevo, J.L.; Ayton, S.; Batrla, R.; Bednar, M.M.; Bittner, T.; Cummings, J.; Fagan, A.M.; Hampel, H.; Mielke, M.M.; Mikulskis, A.; et al. Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol. 2018, 136, 821–853. [Google Scholar] [CrossRef] [Green Version]
- Alzheimer’s Diagnostic Guidelines Updated for First Time in Decades. National Institute on Aging. Available online: www.nia.nih.gov/alzheimers (accessed on 15 January 2021).
- Albert, M.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Htike, T.T.; Mishra, S.; Kumar, S.; Padmanabhan, P.; Gulyás, B. Peripheral Biomarkers for Early Detection of Alzheimer’s and Parkinson’s Diseases. Mol. Neurobiol. 2019, 56, 2256–2277. [Google Scholar] [CrossRef]
- Dixit, A.; Metha, R.; Singh, A.K. Proteomics in human Parkinson’s disease: Present scenario and future direction. Cell. Mol. Neurobiol. 2019, 39, 901–915. [Google Scholar] [CrossRef]
- Lee, J.C.; Kim, S.J.; Hong, S.; Kim, Y.S. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarkers. Exp. Mol. Med. 2019, 51, 53. [Google Scholar] [CrossRef] [Green Version]
- Zetterberg, H.; Burnham, S.C. Blood-based molecular biomarkers for Alzheimer’s disease. Mol. Brain. 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidi, M.; Allsop, D.; Karim, S.; Martin, F.L.; Crean, S.J. Diagnostic Biomarkers for Alzheimer’s Disease Using Non-Invasive Specimens. J. Clin. Med. 2020, 9, 1673. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, S.; Ledur Kist, T.B. A review of biomarkers of Alzheimer’s disease in noninvasive samples. Biomark. Med. 2018, 12, 677–690. [Google Scholar] [CrossRef]
- Carro, E.; Bartolomé, F.; Bermejo-Pareja, F.; Villarejo-Galende, A.; Molina, J.A.; Ortiz, P.; Calero, M.; Rabano, A.; Cantero, J.L.; Orive, G. Early diagnosis of mild cognitive impairment and Alzheimer’s disease based on salivary lactoferrin. Alzheimers Dement. (Amst.) 2017, 8, 131–138. [Google Scholar] [CrossRef]
- Nunes, L.A.S.; Mussavira, S.; Sukumaran Bindhu, O. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: A systematic review. Biochem. Med. (Zagreb) 2015, 25, 177–192. [Google Scholar] [CrossRef]
- Kubala, E.; Strzelecka, P.; Grzegocka, M.; Lietz-Kijak, D.; Gronwald, H.; Skomro, P.; Kijak, E. A Review of Selected Studies That Determine the Physical and Chemical Properties of Saliva in the Field of Dental Treatment. Biomed. Res. Int. 2018, 2018, 6572381. [Google Scholar] [CrossRef]
- Samborska-Mazur, J.; Kostiukow, A.; Miechowicz, I.; Sikorska, D.; Rutkowski, R.; Wyganowska-Światkowska, M.; Błochowiak, K. Salivary Cytokine Profile as a Possible Predictor of Autism Spectrum Disorder. J. Clin. Med. 2020, 9, 3101. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Cheng, X.Q.; Li, J.Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.D. Saliva in the diagnosis of diseases. Int. J. Oral Sci. 2016, 8, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Bellagambi, F.G.; Lomonaco, T.; Salvo, P.; Vivaldi, F.; Hangouet, M.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Fuoco, R.; Errachid, A. Saliva sampling: Methods and Devices. An overview. J. Trac. 2020, 124, 115781. [Google Scholar] [CrossRef]
- Hodgson, N.A.; Granger, D.A. Collecting Saliva and Measuring Salivary Cortisol and Alpha-amylase in Frail Community Residing Older Adults via Family Caregivers. J. Vis. Exp. 2013, 82, e50815. [Google Scholar] [CrossRef] [Green Version]
- Tiuca Gug, I.; Tertis, M.; Hosu, O.; Cristea, C. Salivary biomarkers detection: Analytical and immunological methods overview. J. Trac. 2019, 113, 301–316. [Google Scholar] [CrossRef]
- Bronzuoli, M.R.; Iacomino, A.; Sterdo, L. Targeting neuroinflammation in Alzheimer’s disease. J. Inflamm. Res. 2016, 9, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Scheltens, P.; Blennow, K.; Breteler, M.M. Alzheimer’s disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Bălasa, A.F.; Chirkov, C.; Grumezescu, A.M. Body fluid biomarkers for Alzheimer’s disease-an up-to-date overview. Biomed. 2020, 8, 421. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Thoson, R.; Zhang, H.; Xu, H.X. APP processing in Alzheimer’s disease. Mol. Brain. 2011, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Katakowski, M.; Wang, F.; Qian, J.Y.; Liu, X.S.; Ali, M.M.; Buller, B.; Zhang, Z.G.; Chopp, M. MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats. Stroke 2017, 48, 747–753. [Google Scholar] [CrossRef]
- Muller, U.C.; Deller, T.; Korte, M. Not just amyloid: Physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017, 18, 281–298. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Q.; Zhang, Y.W.; Xu, H. Proteolytic processing of Alzheimer’s β-amyloid precursor protein. J. Neurochem. 2012, 120, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Naslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between elevated levels of amyloid beta peptide in the brain and cognitive decline. J. Am. Med. Assoc. 2000, 283, 1571–1577. [Google Scholar] [CrossRef]
- Schepici, G.; Silvestro, S.; Trubiani, O.; Bramanti, P.; Mazzon, E. Salivary biomarkers: Future approaches for early diagnosis of neurodegenerative diseases. Brain Sci. 2020, 10, 245. [Google Scholar] [CrossRef]
- Hyman, B.T.; Augustinack, J.C.; Ingelsson, M. Transcriptional and conformational changes of the tau molecule in Alzheimer’s disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2005, 1739, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Omar, S.H.; Preddy, J. Advantages and pitfalls in fluid biomarkers for diagnosis of Alzheimer’s disease. J. Pers. Med. 2020, 10, 63. [Google Scholar] [CrossRef]
- Khoury, R.; Ghossoub, E. Diagnostic biomarkers of Alzheimer’s disease: A state of the art review. Bionps 1 2019, 100005. [Google Scholar] [CrossRef]
- Harrison, O.; Zettenber, H. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment a follow up study. Lancet Neurol. 2006, 5, 228–234. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K.; Dubois, B.; Fagan, A.M.; Lewczuk, P.; de Leon, M.J.; Hampel, H. Clinical utility of CSF biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement. 2015, 11, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Kepe, V.; Moghbel, M.C.; Langstrom, B.; Zaidi, H.; Vinters, H.V.; Huang, S.C. Amyloid beta positron emission tomography imaging probes: A critical review. J. Alzheimers Dis. 2013, 36, 613–631. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Y.; Chiu, M.J.; Chen, T.F.; Horng, H.E. Detection of plasma biomarkers using immunomagnetic reduction: A promising method for the early diagnosis of Alzheimer’s disease. Neurol. Ther. 2017, 6 (Suppl 1), 37–56. [Google Scholar] [CrossRef]
- Park, S.A.; Han, S.M.; Kim, C.E. New fluid biomarkers tracking non-amyloid-β and non-tau pathology in Alzheimer’s disease. Exp. Mol. Med. 2020, 52, 556–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Guo, J.P.; Kennedy, K.; McGeer, E.G.; McGeer, P.L. A method for diagnosing Alzheimer’s disease based on salivary amyloid-β protein 42 levels. J. Alzheimers Dis. 2017, 55, 11. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.N.; Shi, J.; Lee, M.; Arnold, L.; Al-Hasan, Y.; Heim, J.; McGeer, P. Salivary beta amyloid protein levels are detectable and differentiate patients with Alzheimer’s disease dementia from normal controls: Preliminary findings. BMC Neurol. 2018, 18, 155. [Google Scholar] [CrossRef] [Green Version]
- Bermejo-Pareja, F.; Antequera, D.; Vargas, T.; Molina, J.A.; Carro, E. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s disease: A pilot study. BMC Neurol. 2010, 10, 108. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Choi, Y.Y.; Song, W.K.; Song, K.B. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer’s disease pathogenic factor. J. Biomed. Opt. 2014, 19, 051205. [Google Scholar] [CrossRef] [PubMed]
- McGeer, P.L.; Lee, M.; Kennedy, K.; McGee, E.G. Saliva Diagnosis as a Disease Predictor. J. Clin. Med. 2020, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Ashton, N.J.; Ide, M.; Zetterberg, H.; Blennow, K. Salivary biomarkers for Alzheimer’s disease and related disorders. Neurol Ther. 2019, 8 (Suppl 2), S83–S94. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Sui, Y.T.; Peskind, E.R.; Ge Li, G.; Hwang, H.; Devic, I.; Ginghina, C.; Edgar, J.S.; Pan, C.; Goodlett, D.R.; et al. Salivary tau species are potential biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2011, 27, 299–305. [Google Scholar] [CrossRef]
- Pekeles, H.; Qureshi, H.Y.; Paudel, H.K.; Schipper, H.M.; Gornistky, M.; Chertkow, H. Development and validation of a salivary tau biomarker in Alzheimer’s disease. Alzheimers Dement. (Amst.) 2019, 11, 53–60. [Google Scholar] [CrossRef]
- González-Sánchez, M.; Bartolome, F.; Antequera, D.; Puertas-Martín, V.; González, P.; Gómez-Grande, A.; Llamas-Velasco, S.; Herrero-San Martín, A.; Pérez-Martínez, D.; Villarejo-Galende, A.; et al. Decreased salivary lactoferrin levels are specific to Alzheimer’s disease. EBioMedicine 2020, 57, 102834. [Google Scholar] [CrossRef]
- Jann, M.W. Rivastigmine, a new-generation cholinesterase inhibitor for the treatment of Alzheimer’s disease. Pharmacother: J. Hum. Pharmacol. Drug Ther. 2000, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiari, S.; Beladi Moghadam, N.; Ehsani, M.; Mortazavi, H.; Sabour, S.; Bakhshi, M. Can Salivary Acetylcholinesterase be a Diagnostic Biomarker for Alzheimer? J. Clin. Diagn. Res. 2017, 11, ZC58–ZC60. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi-Motamayel, F.; Goodarzi, M.T.; Tarazi, S.; Vahabian, M. Evaluation of salivary acetylcholinesterase and pseudocholinesterase in patients with Alzheimer’s disease: A case–control study. Spec. Care Dentist. 2019, 39, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boston, P.F.; Gopalkaje, K.; Manning, L.; Middleton, L.; Loxley, M. Developing a simple laboratory test for Alzheimer’s disease: Measuring acetylcholinesterase in saliva a pilot study. Int. J. Geriatr. Psychiatry 2008, 23, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Sayer, R.; Law, E.; Connelly, P.J.; Breen, K.C. Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors. Clin. Biochem. 2004, 37, 98–104. [Google Scholar] [CrossRef]
- Peña-Bautista, C.; Torres-Cuevas, I.; Baquero, M.; Ferrer, I.; Garcia, L.; Vento, M.; Cháfer-Pericás, C. Early neurotransmission impairment in non-invasive Alzheimer Disease detection. Sci. Rep. 2020, 10, 16396. [Google Scholar] [CrossRef]
- Choromańska, M.; Klimiuk, A.; Kostecka-Sochoń, P.; Wilczyńska, K.; Kwiatkowski, M.; Okuniewska, N.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M. Antioxidant Defence, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia. Int. J. Mol. Sci. 2017, 18, 2205. [Google Scholar] [CrossRef] [Green Version]
- Klimiuk, A.; Maciejczyk, M.; Choromanska, M.; Fejfer, K.; Waszkiewicz, N.; Zalewska, A. Salivary redox biomarkers in different stages of dementia severity. Int. J. Mol. Sci. 2019, 8, 840. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Liu, H.; Zhang, T.; Jiang, Y.; Xing, H.; Zhang, A. Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzheimer’s disease. RSC Adv. 2015, 5, 96074–96079. [Google Scholar] [CrossRef]
- Gleerup, H.S.; Hasselbalch, S.G.; Simonsen, A.H. Biomarkers for Alzheimer’s disease in saliva: A systematic review. Dis. Mark 2019, 4761054. [Google Scholar] [CrossRef]
- Huan, T.; Tran, T.; Zheng, J.; Sapkota, S.; MacDonald, S.W.; Camicioli, R.; Dixon, R.A.; Li, L. Metabolomics Analyses of Saliva Detect Novel Biomarkers of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 65, 1401–1416. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.C.; Lee, I.K.; Ko, W.; Lee, H.W.; Huh, J.S.; Cho, W.J.; Lim, J.O. Non-Invasive Screening for Alzheimer’s Disease by Sensing Salivary Sugar Using Drosophila Cells Expressing Gustatory Receptor (Gr5a) Immobilized on an Extended Gate Ion-Sensitive Field-Effect Transistor (EG-ISFET) Biosensor. PLoS ONE 2015, 2, e0117810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichmann, H. Diagnosis and treatment of Parkinson’s disease. MMW Fortschr. Med. 2017, 159, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Vivacqua, G.; Latorre, A.; Suppa, A.; Nardi, M.; Pietracupa, S.; Mancinelli, R.; Fabbrini, G.; Colosimo, C.; Gaudio, E.; Berardelli, A. Abnormal salivary total and oligomeric alpha-synuclein in Parkinson’s disease. PLoS ONE 2016, 11, e0151156. [Google Scholar] [CrossRef] [Green Version]
- Vivacqua, G.; Suppa, A.; Mancinelli, R.; Belvisi, D.; Fabbrini, A.; Costanzo, M.; Formica, A.; Onori, P.; Fabbrini, G.; Berardelli, A.; et al. Salivary alpha-synuclein in the diagnosis of Parkinson’s disease and progressive supranuclear palsy. Parkinsonism Relat. Disord. 2019, 63, 143–148. [Google Scholar] [CrossRef]
- Atik, A.; Stewart, T.; Zhang, J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 2016, 26, 410–418. [Google Scholar] [CrossRef]
- Goldman, J.G.; Andrews, H.; Amara, A.; Naito, A.; Alcalay, R.N.; Shaw, L.M.; Taylor, P.; Xie, T.; Tuite, P.; Kang, U.J.; et al. Cerebrospinal fluid, plasma, and saliva in the BioFIND study: Relationships among biomarkers and Parkinson’s disease Features. Mov. Disord. 2018, 33, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Wu, Y.; Liu, G.; Jiang, Y.; Wang, X.; Wang, Z.; Zhang, J.; Feng, T. α-synuclein in salivary extracellular vesicles as a potential biomarker of Parkinson’s disease. Neurosci. Lett. 2018, 12, 30. [Google Scholar] [CrossRef]
- Bougea, A.; Koros, C.; Stefanis, L. Salivary alpha-synuclein as a biomarker for Parkinson’s disease: A systematic review. J. Neural. Transm. (Vienna) 2019, 126, 1373–1382. [Google Scholar] [CrossRef]
- Al-Nimer, M.S.; Mshatat, S.F.; Abdull, H.I. Saliva alpha-synuclein and a high extinction coefficient proteins: A novel approach in assessment biomarkers of Parkinson’s disease. New Am. J. Med. Sci. 2014, 6, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Kang, W.; Chen, W.; Yang, Q.; Zhang, L.; Zhang, L.; Wang, X.; Dong, F.; Zhao, Y.; Chen, S.; Quinn, T.J.; et al. Salivary total α-synuclein, oligomeric α-synuclein and SNCA variants in Parkinson’s disease patients. Sci. Rep. 2016, 6, 28143. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, H.; Sobhy, S.; El Mously, S.; Abuomira, M.; Mansour, M. Salivary alpha-synuclein (total and oligomeric form): Potential biomarkers in Parkinson’s disease. Egypt J. Neurol. Psychiatry Neurosurg. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Devic, I.; Hwang, H.J.; Edgar, J.S.; Izutsu, K.; Presland, R.; Pan, C.; Goodlett, D.R.; Wang, Y.; Armaly, J.; Tumas, V.; et al. Salivary alpha-synuclein and DJ-1: Potential biomarkers for Parkinson’s disease. Brain 2011, 134, e178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masters, J.M.; Noyce, A.J.; Warner, T.T.; Giovannoni, G.; Proctor, G.B. Elevated salivary protein in Parkinson’s disease and salivary DJ-1 as a potential marker of disease severity. Park Relat. Disord. 2015, 21, 1251–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, W.Y.; Yang, Q.; Jiang, X.F.; Chen, W.; Zhang, L.Y.; Wang, X.Y.; Zhang, L.N.; Quinn, T.J.; Liu, J.; Chen, S.D. Salivary DJ-1 could be an indicator of Parkinson’s disease progression. Front. Aging Neurosci. 2014, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Maciejczyk, M.; Zalewska, A.; Gerreth, K. Salivary Redox Biomarkers in Selected Neurodegenerative Diseases. J. Clin. Med. 2020, 9, 497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Kothari, V.; Velly, A.M.; Cressatti, M.; Liberman, A.; Gornitsky, M.; Schipper, H.M. Evaluation of salivary heme oxygenase-1 as a potential biomarker of early Parkinson’s disease. Movem. Dis. 2018, 33, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Fedorova, T.; Soendersoe Knudsen, C.; Mouridsen, K.; Nexo, E.; Borghammer, P. Salivary acetylcholinesterase activity is increased in Parkinson’s disease: A potential marker of parasympathetic dysfunction. Parkinson’s Dis 2015, 79, 156479. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.; Lavitrano, M.; Salvatore, E.; Combi, R. Molecular and Imaging Biomarkers in Alzheimer’s Disease: A Focus on Recent Insights. J. Pers. Med. 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Gozes, I. Specific protein biomarker patterns for Alzheimer’s disease: Improved diagnostics in progress. EPMA J. 2017, 8, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Rani, K.; Rastogi, S.; Vishwakarma, P.; Bharti, P.S.; Sharma, V.; Renu, K.; Modib, G.P.; Vishnu, V.Y.; Chatterjee, P.; Dey, A.B.; et al. A novel approach to correlate the salivary exosomes and their protein cargo in the progression of cognitive impairment into Alzheimer’s disease. J. Neurosci. Methods 2020, 347, 108980. [Google Scholar] [CrossRef] [PubMed]
- Martande, S.S.; Pradeep, A.R.; Pal Singh, S.; Kumari, M.; Suke, D.K.; Raju, A.P.; Naik, S.B.; Singh, P.; Guruprasad, C.N.; Chatterji, A. Periodontal health condition in patients with Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2014, 6, 498–502. [Google Scholar] [CrossRef] [PubMed]
- Orr, M.E.; Reveles, K.R.; Yeh, C.K.; Young, E.H. Can oral health and oral-derived biospecimens predict progression of dementia. Oral Dis. 2020, 26, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamer, A.R.; Craig, R.G.; Pirraglia, E.; Dasanayake, A.P.; Norman, R.G.; Boylan, R.J.; Nehorayoff, A.; Glodzik, L.; Brys, M.; De Leon, M.J. TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J. Neuroimmunol. 2009, 30, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Poole, S.; Singhrao, S.K.; Kesavalu, L.; Curtis, M.A.; Crean, S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J. Alzheimers Dis. 2013, 36, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Xicoy, H.; Peñuelas, N.; Vila, M.; Laguna, A. Autophagic- and lysosomal-related biomarkers for Parkinson’s disease: Lights and shadows. Cells 2019, 8, 1317. [Google Scholar] [CrossRef] [Green Version]
CSF | Blood | Saliva | |
---|---|---|---|
Advantages |
|
|
|
Disadvantages |
|
|
|
Biomarker | CSF | Blood/Plasma | Saliva | |
---|---|---|---|---|
AD specific biomarkers (Aβ and TAU) | Aβ isoforms: | |||
Aβ1-42 | ↓ | Inconsistency | ↑ | |
Aβ1-40 | Inconsistency | Inconsistency | Unchanged | |
Aβ1-38 | Inconsistency | Inconsistency | No data | |
Aβ1-42/Aβ1-40 ratio | ↓ | ↓ | No data | |
Aβ1-42/Aβ1-38 ratio | ↓ | No data | No data | |
TAU | ||||
t-TAU | ↑ | ↑ | ↓ | |
p-TAU | ↑ | ↑ | ↑ | |
AD non-specific biomarkers Non-Aβ and non-TAU biomarkers | Inflammation/neuroinflammation biomarkers: | |||
TREM2 | ↑ | No change | No data | |
YKL-40 | ↑ | ↑ | No data | |
IP-10 | Inconsistent | Inconsistent | No data | |
ICAM1 | ↑ | No data | No data | |
Synaptic dysfunction biomarkers: | ||||
Neurogranin * | ↑ | No change | No data | |
SNAP-25 | ↑ | No data | No data | |
Synaptotagmin | ↑ | ↓ (limited data) | No data | |
Secretogranin-2 | ↓ | No data | No data | |
Neuronal pentraxin 1 | ↓ | No data | No data | |
Neurofascin | ↓ | No data | No data | |
Myelin basic protein | ↑ | No data | No data | |
BACE1 | ↑ | ↑ | No data | |
α-Synuclein | ↑ | No change | No data | |
TDP-43 | No data | ↑ | No data | |
Lactoferrin | No data | No data | ↓ | |
Acetylcholinesterase | No data | No data | ↓ | |
Neuronal injury biomarkers: | ||||
NFL | ↑ | ↑ | No data | |
VILIP-1 | ↑ | ↑ | No data | |
Iron toxicity biomarkers: | ||||
Ferritin | ↑ | No change | No data | |
hFABP | ↑ | No change | No data |
Potential. Biomarker | Cohort (n) | Methods | Results | References |
---|---|---|---|---|
A-β42 | AD: 10 with severe AD | ELISA assay | ↑Aβ42 in AD, no significant difference in stages of disease | Lee et al. [43] |
AD: 15 with mild to moderate AD HS: 8 | ELISA assay | ↑Aβ42 in AD than in HS (AD patients have a 2.45-fold increase) | Sabbagh et al. [44] | |
AD: 70 (29 mild, 24 moderate and 17 severe) PD: 51 HS: 56 | ELISA assay | ↑ Aβ42 in AD than in PD and HS but not statistically significant ↑ Aβ42 in mild and moderate AD ↑ Aβ42 in mild AD vs HS p = 0.043 | Bermejo-Pareja et al. [45] | |
AD: 28 HS: 17 | Antibody-based magnet nanoparticles immunoassay | ↑ Aβ42 in severe AD vs. HS, ↑ Aβ42 in severe AD vs. MCI | Kim et al. [46] | |
AD: 21 HS: 38 | Luminex assay | Undetectable | Shi et al. [49] | |
AD: 23 Low controls: 25 High controls (risk for AD) 6 | ELISA assay | ↑ Aβ42 in AD compared to high controls and low controls, AD > high controls > low controls | McGeer et al. [47] | |
A-β40 | 70 AD (29 mild, 24 moderate and 17 severe) PD: 51 HS: 56 | ELISA assay | Unchanged expression between AD, PD, and HS group | Bermejo-Pareja et al. [45] |
t-TAU | AD: 21 HS: 38 | Luminex assay | Trend for ↓ t-TAU in AD compared to HS | Shi et al. [49] |
p-TAU | AD: 21 HS: 38 | Luminex assay | Trend for ↑ p-TAU in AD compared to HS | Shi et al. [49] |
p-TAU/t-TAU ratio | AD: 21 HS: 38 | Luminex assay | ↑significantly in AD | Shi et al. [49] |
AD: 46 MCI: 55 HS: 47 | Western Blot analysis | ↑significantly in t-TAU/p-TAU ratio in AD vs. MCI and HS | Pekeles et al. [50] | |
Lactoferrin | AD: 80 MCI (amnestic MCI): 44 PD: 59 HS: 80 | ELISA assay | ↓ lactoferrin in AD and MCI compared to HS ↑ lactoferrin in PD compared to HS | Caro et al [17] |
1 cohort: 116 MCI-PET+: 21 AD dementia: 25 FTD -PET: 18 HS: 52 (4 PET+, 48 PET-) 2 cohort: 142 HS (cognitively normal): 74 (4 PET+ and 70 PET-) MCI: 68 (39 MCI-PET+ due to AD, 29 MCI-PET- not due to AD) | ELISA assay | ↓ lactoferrin in MCI-PET+ and AD compared to HS and FTD ↓ lactoferrin in MCI-PET+ compared to HS and MCI-PET- No differences between HS and MCI-PET- ↑ lactoferrin in the PET- group compared to the MCI-PET+ group | González-Sánchez et al. [51] | |
Acetylcholinesterase (AChE) | AD: 15 HS: 15 | Ellman colorimetric method | ↓ AChE in AD vs. HC, no significant difference in enzymatic activity, no correlation between AChE, age, disease progression | Bakhtiari et al. [53] |
AD: 30 HS: 30 | Ellman colorimetric method | ↑ AChE and and PChE in AD | Ahmadi-Motamayel et al. [54] | |
AD: 15 HS: 13 VD: 13 | Ellman colorimetric method | ↓ AChE in AD | Boston et al. [55] | |
AD: 36 (22 responders to AChE-1; 14 non-responders) HS: 11 | Ellman colorimetric method | ↓ AChE in non-responders vs. responders | Sayer et al. [56] | |
MCI due to AD: 17 Mild to moderate dementia AD: 14 HS: 12 | Chromatography mass spectrometry | ↓ significantly myo-inositol and creatine levels in AD vs. HS, AChE ↑ in AD, no differences in taurine, aspartic acid, glutamic acid, glutamine, GABA, N-Acetyl-L-aspartic acid, acetonitrile | Peña-Bautista et al. [57] | |
Oxidative stress markers | Dementia: 80 (moderate stage) HC: 80 | Redox assay, antioxidant assay (spectrophotometry method) | ↓ salivary uric acid, catalase, peroxidase in dementia, ↑ TOS and OSI in dementia, ↑ salivary levels of DNA products, protein and lipid oxidative damage | Choromanska et al. [58] |
Dementia: 50 (AD-dementia: 15; VD: 19; mixed dementia: 16) HS: 50 | Redox assay, antioxidant assay (spectrophotometry method) | ↓ in superoxide dismutase, catalase, glutathione peroxidase activity in patients with dementia, ↓ glutathione salivary levels (GSH) in patients with severe dementia | Klimiuk et al. [59] | |
Saliva metabolomics | AD: 256 HS: 218 | Fast ultra-HPLC coupled with TOF-MS | ↑ sphinganine-1-phosphate, ornithine, phenyl lactic acid in AD patients compared to HS ↓ inosine, 3-dehydrocarnitine, hypoxanthine in AD patients compared to HS | Liang et al. [60] |
Discovery Phase group: MCI: 25, HS: 35, AD: 22 Validation Phase group: MCI: 10, HS: 10, AD: 7 | Differential chemical isotope labelling liquid chromatography mass spectrometry | Statistically significant difference in methylguanosine, histidylphenylalanine, cholinecytidine, phenylalanyproline between AD and HS, difference between phenylalanylproline and alanylphenylalanine between AD and MCI | Huan et al. [62] | |
AD: 20 PD: 20 HS: 20 | ELISA assay | ↑ trehalose in AD vs. HS (not significant) | Lau et al. [63] |
Potential Biomarker | Cohort (n) | Methods | Results | References |
---|---|---|---|---|
Total α-synuclein | PD: 20 HS: 20 | ELISA assay | ↓ total α-synuclein in PD | Al-Nimer et al. [71] |
PD: 60 HS: 40 | ELISA assay | ↓ total α-synuclein in PD | Vivacque et al. [65] | |
PD: 112 HS: 90 PSP: 20 | ELISA assay | ↓ total α-synuclein in PD, ↑ total α-synuclein in PSP vs. PD | Vivacque et al. [66] | |
PD: 201 HS: 67 | Luminex assay Western blot Magnetic bead- based luminex assay | No significant difference between PD and HC, no correlation with UPDRS score, ↓ with age in PD but not HC, associated with specific g-alleles | Kang et al. [72] | |
PD: 25 HS: 15 | ELISA assay | ↓ total α-synuclein in PD | Shaheen et al. [73] | |
Oligomeric α-synuclein | PD: 60 HS: 40 | ELISA assay | ↑ oligomeric α-synuclein in PD | Vivacque et al. [65] |
PD: 25 HS: 15 | ELISA assay | ↑ oligomeric α-synuclein/total α-synuclein in PD | Shaheen et al. [73] | |
PD: 112 HS: 90 PSP: 20 | ELISA assay | ↑ oligomeric α-synuclein/total α-synuclein in PD | Vivacque et al. [66] | |
Oligomeric α-synuclein/total α-synuclein ratio | PD: 60 HS: 40 | ELISA assay | ↑ oligomeric α-synuclein/total α-synuclein in PD | Vivacque et al. [65] |
PD: 25 HS: 15 | ELISA assay | ↑ oligomeric α-synuclein/total α-synuclein in PD | Shaheen et al. [73] | |
PD: 112 HS: 90 PSP: 20 | ELISA assay | ↑ oligomeric α-synuclein/total α-synuclein in PD | Vivacque et al. [66] | |
PD: 201 HS: 67 | Luminex assay Western blot Magnetic bead- based Luminex assay | ↑ oligomeric α-synuclein/total α-synuclein in PD with disease progression | Kang et al. [72] | |
Deglycase-1 protein (DJ-1) | PD: 24 HS: 25 | Western blot | No significant difference in DJ-1 between PD and HC | Devic et al. [74] |
PD: 16 HS: 22 | ELISA assay | ↑ DJ-1 in PD ↑ total protein in PD | Masters et al. [75] | |
Oxidative stress markers – heme oxygenase-1 (HO-1) | PD: 58 HS: 59 | ELISA assay Western blot | ↑ HO-1 in PD | Song et al. [78] |
Acetylcholinesterase (AChE) and total salivary protein (TP) | PD: 30 HS: 49 | Ellman colorimetric method | ↑ AChE activity in PD ↑ AChE/TP ratio in PD No correlation between AChE, AChE/TP ratio and UPDRS scores | Fedorova et al. [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, P.; Błochowiak, K. The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer’s Disease and Parkinson’s Disease. Diagnostics 2021, 11, 371. https://doi.org/10.3390/diagnostics11020371
Pawlik P, Błochowiak K. The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer’s Disease and Parkinson’s Disease. Diagnostics. 2021; 11(2):371. https://doi.org/10.3390/diagnostics11020371
Chicago/Turabian StylePawlik, Patrycja, and Katarzyna Błochowiak. 2021. "The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer’s Disease and Parkinson’s Disease" Diagnostics 11, no. 2: 371. https://doi.org/10.3390/diagnostics11020371
APA StylePawlik, P., & Błochowiak, K. (2021). The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer’s Disease and Parkinson’s Disease. Diagnostics, 11(2), 371. https://doi.org/10.3390/diagnostics11020371