Association of Inflammatory Metabolic Activity of Psoas Muscle and Acute Myocardial Infarction: A Preliminary Observational Study with 18F-FDG PET/CT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Anthropometric and Laboratory Measurements
2.3. 18F-FDG PET/CT Protocol
2.4. Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. SM Metabolic Activity Is Increased in CAD
3.3. Relationship between SM Metabolic Activity and Arterial and Systemic Inflammation
3.4. Comparison of SM Metabolic Activity and SM Area for the Prediction of AMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vilahur, G.; Badimon, J.; Bugiardini, R.; Badimon, L. Perspectives: The burden of cardiovascular risk factors and coronary heart disease in Europe and worldwide. Eur. Heart J. Suppl. 2014, 16, A7–A11. [Google Scholar] [CrossRef] [Green Version]
- Bruning, R.S.; Sturek, M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog. Cardiovasc. Dis. 2015, 57, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 2013, 368, 2004–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varma, V.; Yao-Borengasser, A.; Rasouli, N.; Nolen, G.T.; Phanavanh, B.; Starks, T.; Gurley, C.; Simpson, P.; McGehee, R.E., Jr.; Kern, P.A.; et al. Muscle inflammatory response and insulin resistance: Synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1300–E1310. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Tabas, I.; Fredman, G.; Fisher, E.A. Inflammation and its resolution as determinants of acute coronary syndromes. Circ. Res. 2014, 114, 1867–1879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Ballantyne, C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017, 127, 43–54. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Jacot, E.; Jequier, E.; Maeder, E.; Wahren, J.; Felber, J.P. The effect of insulin on the disposal of intravenous glucose: Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981, 30, 1000–1007. [Google Scholar] [CrossRef]
- Petersen, K.F.; Shulman, G.I. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am. J. Cardiol. 2002, 90, 11G–18G. [Google Scholar] [CrossRef]
- Osborn, O.; Olefsky, J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 2012, 18, 363–374. [Google Scholar] [CrossRef]
- Joseph, P.; Tawakol, A. Imaging atherosclerosis with positron emission tomography. Eur. Heart J. 2016, 37, 2974–2980. [Google Scholar] [CrossRef]
- Tarkin, J.M.; Joshi, F.R.; Rudd, J.H. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 2014, 11, 443–457. [Google Scholar] [CrossRef]
- van der Valk, F.M.; Verweij, S.L.; Zwinderman, K.A.; Strang, A.C.; Kaiser, Y.; Marquering, H.A.; Nederveen, A.J.; Stroes, E.S.; Verberne, H.J.; Rudd, J.H. Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging: Implications for vascular interventional studies. JACC Cardiovasc. Imaging 2016, 9, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Pahk, K.; Kim, E.J.; Lee, Y.J.; Kim, S.; Seo, H.S. Characterization of glucose uptake metabolism in visceral fat by 18 F-FDG PET/CT reflects inflammatory status in metabolic syndrome. PLoS ONE 2020, 15, e0228602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olefsky, J.M.; Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 2010, 72, 219–246. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Jun, D.W.; Choi, J.; Nam, E.; Son, D.; Choi, Y.Y. Psoas muscle fluorine-18-labelled fluoro-2-deoxy-d-glucose uptake associated with the incidence of existing and incipient metabolic derangement. J. Cachexia Sarcopenia Muscle 2019, 10, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, K.; Alpert, J.S.; White, H.D. Universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2007, 50, 2173–2195. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.J.; Kim, S.; Kang, D.O.; Seo, H.S. Metabolic activity of the spleen and bone marrow in patients with acute myocardial infarction evaluated by 18f-fluorodeoxyglucose positron emission tomograpic imaging. Circ. Cardiovasc. Imaging 2014, 7, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Zuckerman, J.; Ades, M.; Mullie, L.; Trnkus, A.; Morin, J.F.; Langlois, Y.; Ma, F.; Levental, M.; Morais, J.A.; Afilalo, J. Psoas muscle area and length of stay in older adults undergoing cardiac operations. Ann. Thorac. Surg. 2017, 103, 1498–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emami, H.; Singh, P.; MacNabb, M.; Vucic, E.; Lavender, Z.; Rudd, J.H.; Fayad, Z.A.; Lehrer-Graiwer, J.; Korsgren, M.; Figueroa, A.L.; et al. Splenic metabolic activity predicts risk of future cardiovascular events: Demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 2015, 8, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Lackey, D.E.; Olefsky, J.M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 2016, 12, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.M.; Perrard, X.Y.; Brunner, G.; Lui, H.; Sparks, L.M.; Smith, S.R.; Wang, X.; Shi, Z.Z.; Lewis, D.E.; Wu, H.; et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int. J. Obes. 2015, 39, 1607–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, L.N.; Costford, S.R.; Lee, Y.S.; Jensen, T.E.; Bilan, P.J.; Oberbach, A.; Blüher, M.; Olefsky, J.M.; Sams, A.; Klip, A. Pro-inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in humans. Obesity 2014, 22, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Lumeng, C.N.; Deyoung, S.M.; Saltiel, A.R. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E166–E174. [Google Scholar] [CrossRef] [Green Version]
- Freemerman, A.J.; Johnson, A.R.; Sacks, G.N.; Milner, J.J.; Kirk, E.L.; Troester, M.A.; Macintyre, A.N.; Goraksha-Hicks, P.; Rathmell, J.C.; Makowski, L. Metabolic reprogramming of macrophages glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 2014, 289, 7884–7896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Fazakerley, D.J.; Krycer, J.R.; Kearney, A.L.; Hocking, S.L.; James, D.E. Muscle and adipose tissue insulin resistance: Malady without mechanism? J. Lipid Res. 2019, 60, 1720–1732. [Google Scholar] [CrossRef] [PubMed]
- Kewalramani, G.; Fink, L.N.; Asadi, F.; Klip, A. Palmitate-activated macrophages confer insulin resistance to muscle cells by a mechanism involving protein kinase C θ and ε. PLoS ONE 2011, 6, e26947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samokhvalov, V.; Bilan, P.J.; Schertzer, J.D.; Antonescu, C.N.; Klip, A. Palmitate-and lipopolysaccharide-activated macrophages evoke contrasting insulin responses in muscle cells. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E37–E46. [Google Scholar] [CrossRef] [Green Version]
- Takaoka, M.; Uemura, S.; Kawata, H.; Imagawa, K.; Takeda, Y.; Nakatani, K.; Naya, N.; Horii, M.; Yamano, S.; Miyamoto, Y.; et al. Inflammatory response to acute myocardial infarction augments neointimal hyperplasia after vascular injury in a remote artery. Areterioscler. Thromb. Vasc. Biol. 2006, 26, 2083–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.P.; Öhman, M.K.; Hayasaki, T.; Luo, W.; Russo, H.M.; Guo, C.; Eitzman, D.T. Atherosclerosis and leukocyte–endothelial adhesive interactions are increased following acute myocardial infarction in apolipoprotein E deficient mice. Atherosclerosis 2010, 212, 414–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, P.; Courties, G.; Wei, Y.; Leuschner, F.; Gorbatov, R.; Robbins, C.S.; Iwamoto, Y.; Thompson, B.; Carlson, A.L.; Heidt, T.; et al. Myocardial infarction accelerates atherosclerosis. Nature 2012, 487, 325–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, N.V.; Toor, I.; Shah, A.S.; Carruthers, K.; Vesey, A.T.; Alam, S.R.; Sillis, A.; Hoo, T.Y.; Melville, A.J.; Langlands, S.P.; et al. Systemic atherosclerotic inflammation following acute myocardial infarction: Myocardial infarction begets myocardial infarction. J. Am. Heart Assoc. 2015, 4, e001956. [Google Scholar] [CrossRef] [Green Version]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The role of inflammation in age-related sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [Green Version]
- Mourtzakis, M.; Prado, C.M.; Lieffers, J.R.; Reiman, T.; McCargar, L.J.; Baracos, V.E. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 2008, 33, 997–1006. [Google Scholar] [CrossRef]
- Chin, S.O.; Rhee, S.Y.; Chon, S.; Hwang, Y.C.; Jeong, I.K.; Oh, S.; Ahn, K.J.; Chung, H.Y.; Woo, J.T.; Kim, S.W.; et al. Sarcopenia is independently associated with cardiovascular disease in older Korean adults: The Korea National Health and Nutrition Examination Survey (KNHANES) from 2009. PLoS ONE 2013, 8, e60119. [Google Scholar] [CrossRef] [Green Version]
- Ko, B.J.; Chang, Y.; Jung, H.S.; Yun, K.E.; Kim, C.W.; Park, H.S.; Chung, E.C.; Shin, H.; Ryu, S. Relationship between low relative muscle mass and coronary artery calcification in healthy adults. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1016–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.O.; Park, S.Y.; Choi, B.G.; Na, J.O.; Choi, C.U.; Kim, E.J.; Rha, S.W.; Park, C.G.; Hong, S.J.; Seo, H.S. Prognostic impact of low skeletal muscle mass on major adverse cardiovascular events in coronary artery disease: A propensity score-matched analysis of a single center all-comer cohort. J. Clin. Med. 2019, 8, 712. [Google Scholar] [CrossRef] [Green Version]
- Morettini, M.; Storm, F.; Sacchetti, M.; Cappozzo, A.; Mazzà, C. Effects of walking on low-grade inflammation and their implications for Type 2 Diabetes. Prev. Med. Rep. 2015, 2, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Shabani, M.; Sadeghi, A.; Hosseini, H.; Teimouri, M.; Babaei Khorzoughi, R.; Pasalar, P.; Meshkani, R. Resveratrol alleviates obesity-induced skeletal muscle inflammation via decreasing M1 macrophage polarization and increasing the regulatory T cell populaton. Sci. Rep. 2020, 10, 3791. [Google Scholar] [CrossRef]
Control, n = 25 | CSA, n = 33 | AMI, n = 32 | p | |
---|---|---|---|---|
Age, y | 57.1 ± 7.8 | 61.2 ± 11.5 | 57 ± 11.6 | 0.206 |
Men, n (%) | 6 (24) | 24 (72.7) * | 21 (65.6) † | <0.001 |
BMI, kg/m2 | 23.5 ± 2.9 | 26 ± 4 * | 24.6 ± 2.6 | 0.021 |
WC, cm | 80.9 ± 7.5 | 92.3 ± 11.4 * | 83.4 ± 16.3 ‡ | <0.001 |
Hypertension, (%) | 1 (4) | 19 (57.6) * | 15 (46.9) † | <0.001 |
DM (%) | 2 (8) | 13 (39.4) * | 13 (40.6) † | 0.021 |
Dyslipidemia (%) | 2 (8) | 16 (48.5) * | 19 (59.4) † | <0.001 |
Current Smokers, n (%) | 2 (8) | 13 (39.4) * | 13 (40.6) † | 0.021 |
Statin Use (%) | 0 | 11 (33.3) | 9 (28.1) | 0.649 |
Total Cholesterol, mg/dL | 189 ± 25.3 | 156.4 ± 35.2 * | 186.9 ± 43.6 ‡ | 0.001 |
Triglycerides, mg/dL | 86.7 ± 44.3 | 160.4 ± 99.8 * | 136.6 ± 142.1 †‡ | <0.001 |
HDL Cholesterol, mg/dL | 59.4 ± 15.7 | 48.7 ± 15.2 * | 45 ± 11.8 † | 0.001 |
LDL Cholesterol, mg/dL | 115.3 ± 24.1 | 91.9 ± 30.1 * | 124.3 ± 41.7 ‡ | <0.001 |
HbA1c, % | 5.7 ± 0.4 | 7 ± 1.6 * | 6.9 ± 2.1 † | <0.001 |
WBC, ×103/μL | 5 ± 1.3 | 6.5 ± 1.2 * | 10.9 ± 3.3 †‡ | <0.001 |
hsCRP, mg/L | 0.6 ± 0.6 | 1.5 ± 1.6 * | 3.5 ± 3.1 †‡ | <0.001 |
VAT Area, cm2 | 147 ± 57.1 | 261.3 ± 110.6 * | 209.1 ± 80.1 † | <0.001 |
Peak CK-MB, ng/mL | … | … | 145.6 ± 127.3 | … |
Peak Troponin-T, ng/mL | … | … | 3.7 ± 4.6 | … |
Metabolic Parameters | ||||
Carotid Artery TBR | 1.2 ± 0.1 | 1.4 ± 0.4 * | 2.1 ± 0.4 †‡ | <0.001 |
Spleen SUVmax | 1.5 ± 0.3 | 2 ± 0.3 * | 2.6 ± 0.4 †‡ | <0.001 |
BM SUVmax | 0.8 ± 0.4 | 1.2 ± 0.6 * | 1.7 ± 0.2 †‡ | <0.001 |
SM SUVmax | SM Area | |||
---|---|---|---|---|
r | p | r | p | |
Carotid Artery TBR | 0.599 | <0.001 * | −0.341 | 0.001 * |
Spleen SUVmax | 0.581 | <0.001 * | −0.428 | <0.001 * |
BM SUVmax | 0.539 | <0.001 * | −0.432 | <0.001 * |
hsCRP | 0.546 | <0.001 * | −0.295 | 0.006 * |
Univariate | Multivariate | |||
---|---|---|---|---|
Variable | Coefficients (95% CI) | p | Coefficients (95% CI) | p |
Age | −0.004 (−0.017–0.009) | 0.553 | ||
Sex | 0.253 (−0.029–0.535) | 0.078 | ||
BMI | −0.01 (−0.053–0.033) | 0.657 | ||
WC | −0.006 (−0.016–0.005) | 0.318 | ||
HTN | 0.026 (−0.272–0.324) | 0.862 | ||
DM | 0.28 (−0.026–0.585) | 0.072 | ||
Dyslipidemia | 0.33 (0.044–0.615) | 0.024 * | 0.073 (−0.181–0.326) | 0.571 |
Current Smokers | 0.1 (−0.215–0.416) | 0.53 | ||
hsCRP | 0.01 (0.003–0.018) | 0.008 * | 0.004 (−0.003–0.01) | 0.249 |
Spleen SUVmax | 0.744 (0.526–0.962) | <0.001 * | 0.424 (0.139–0.708) | 0.004 * |
BM SUVmax | 0.438 (0.271–0.606) | <0.001 * | 0.03 (−0.198–0.258) | 0.793 |
SM SUVmax | 0.892 (1.225–1.684) | <0.001 * | 0.545 (0.236–0.855) | 0.001 * |
SM area | −0.072 (−0.114–−0.031) | 0.001 * | −0.004 (−0.045–0.037) | 0.843 |
Univariate | Multivariate | |||
---|---|---|---|---|
Variable | OR (95% CI) | p | OR (95% CI) | p |
Age (Continuous) | 0.978 (0.939–1.019) | 0.978 | ||
Sex (Female vs. Male) | 1.782 (0.73–4.352) | 0.205 | ||
BMI (Continuous) | 0.974 (0.853–1.111) | 0.692 | ||
WC (Continuous) | 0.976 (0.941–1.012) | 0.191 | ||
HTN (Negative vs. Positive) | 0.541 (0.707–4.175) | 0.232 | ||
DM (Negative vs. Positive) | 1.87 (0.745–4.696) | 0.183 | ||
Dyslipidemia (Negative vs. Positive) | 3.085 (1.253–7.598) | 0.014 * | 16.197 (1.8–145.765) | 0.013 * |
Current Smokers (None vs. Yes) | 1.733 (0.688–4.369) | 0.244 | ||
SM SUVmax (≤0.9 vs. >0.9) | 55 (13.416–225.475) | <0.001 * | 139.317 (12.843–1511.283) | <0.001 * |
SM Area (>17.3 vs. ≤17.3) | 15.48 (5.047–47.478) | <0.001 * | 8.965 (1.913–42.012) | 0.005 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pahk, K.; Kim, E.J.; Kwon, H.W.; Joung, C.; Seo, H.S.; Kim, S. Association of Inflammatory Metabolic Activity of Psoas Muscle and Acute Myocardial Infarction: A Preliminary Observational Study with 18F-FDG PET/CT. Diagnostics 2021, 11, 511. https://doi.org/10.3390/diagnostics11030511
Pahk K, Kim EJ, Kwon HW, Joung C, Seo HS, Kim S. Association of Inflammatory Metabolic Activity of Psoas Muscle and Acute Myocardial Infarction: A Preliminary Observational Study with 18F-FDG PET/CT. Diagnostics. 2021; 11(3):511. https://doi.org/10.3390/diagnostics11030511
Chicago/Turabian StylePahk, Kisoo, Eung Ju Kim, Hyun Woo Kwon, Chanmin Joung, Hong Seog Seo, and Sungeun Kim. 2021. "Association of Inflammatory Metabolic Activity of Psoas Muscle and Acute Myocardial Infarction: A Preliminary Observational Study with 18F-FDG PET/CT" Diagnostics 11, no. 3: 511. https://doi.org/10.3390/diagnostics11030511
APA StylePahk, K., Kim, E. J., Kwon, H. W., Joung, C., Seo, H. S., & Kim, S. (2021). Association of Inflammatory Metabolic Activity of Psoas Muscle and Acute Myocardial Infarction: A Preliminary Observational Study with 18F-FDG PET/CT. Diagnostics, 11(3), 511. https://doi.org/10.3390/diagnostics11030511