Correlation of Genotype and Perinatal Period, Time of Diagnosis and Anthropometric Data before Commencement of Recombinant Human Growth Hormone Treatment in Polish Patients with Prader–Willi Syndrome
Abstract
:1. Introduction
2. Material and Methods
3. Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstone, A.P.; Holland, A.J.; Hauffa, B.P.; Hokken-Koelega, A.C.; Tauber, M. On behalf of speakers and contributors at the Second Expert Meeting of the Comprehensive Care of Patients with PWS. Recommendations for the diagnosis and management of Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2008, 93, 4183–4197. [Google Scholar] [CrossRef]
- Cassidy, S.B.; Schwartz, S.; Miller, J.L.; Driscoll, D.J. Prader-Willi syndrome. Genet. Med. 2012, 14, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Butler, M.G.; Duis, J. Chromosome 15 Imprinting Disorders: Genetic Laboratory Methodology and Approaches. Front. Pediatr. 2020, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Kanber, D.; Giltay, J.; Wieczorek, D.; Zogel, C.; Hochstenbach, R.; Caliebe, A.; Kuechler, A.; Horsthemke, B.; Buiting, K. A paternal deletion of MKRN3, MAGEL2 and NDN does not result in Prader–Willi syndrome. Eur. J. Hum. Genet. 2009, 17, 582–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duis, J.; van Wattum, P.J.; Scheimann, A.; Salehi, P.; Brokamp, E.; Fairbrother, L.; Childers, A.; Shelton, A.R.; Bingham, N.C.; Shoemaker, A.H.; et al. A multidisciplinary approach to the clinical management of Prader–Willi syndrome. Mol. Genet. Genom. Med. 2019, 7, e514. [Google Scholar] [CrossRef] [PubMed]
- Emerick, J.E.; Vogt, K.S. Endocrine manifestations and management of Prader-Willi syndrome. Int. J. Pediatric Endocrinol. 2013, 2013, 14. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.L. Approach to the child with Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2012, 97, 3837–3844. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Franco, R.R. Prader-Willi syndrome: Endocrine manifestations and management. Arch. Endocrinol. Metab. 2020, 64, 3. [Google Scholar] [CrossRef]
- Mann, N.P.; Butler, G.E. Prader-Willi syndrome: Clinical features and management. Paediatr. Child. Health 2009, 19, 473–478. [Google Scholar] [CrossRef]
- Goldstone, A.P. Prader-Willi syndrome: Advances in genetics, pathophysiology and treatment. Trends Endocrinol. Metab. 2004, 15, 12–20. [Google Scholar] [CrossRef]
- Napolitano, L.; Barone, B.; Morra, S.; Celentano, G.; La Rocca, R.; Capece, M.; Morgera, V.; Turco, C.; Caputo, V.F.; Spena, G.; et al. Hypogonadism in Patients with Prader Willi Syndrome: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 1993. [Google Scholar] [CrossRef]
- Gross-Tsur, V.; Hirsch, H.J.; Benarroch, F.; Eldar-Geva, T. The FSH-inhibin axis in Prader-Willi syndrome: Heterogeneity of gonadal dysfunction. Reprod. Biol. Endocrinol. 2012, 10, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirsch, H.J.; Eldar-Geva, T.; Bennaroch, F.; Pollak, Y.; Gross-Tsur, V. Sexual dichotomy of gonadal function in Prader-Willi syndrome from early infancy through the fourth decade. Hum. Reprod. 2015, 30, 2587–2596. [Google Scholar] [CrossRef] [Green Version]
- Lecka-Ambroziak, A.; Wysocka-Mincewicz, M.; Marszałek-Dziuba, K.; Rudzka-Kocjan, A.; Szalecki, M. Premature Adrenarche in Children with Prader-Willi Syndrome Treated with Recombinant Human Growth Hormone Seems to Not Influence the Course of Central Puberty and the Ecacy and Safety of the Therapy. Life 2020, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Kimonis, V.; Dykens, E.; Gold, J.A.; Miller, J.; Tamura, R.; Driscoll, D.J. Prader–Willi syndrome and early-onset morbid obesity NIH rare disease consortium: A review of natural history study. Am. J. Med. Genet. A 2018, 176, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Gerasimidis, K.; Edwards, C.A.; Shaikh, M.G. Mechanisms of Obesity in Prader-Willi Syndrome. J. Ped. Obes. 2018, 13, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crinò, A.; Fintini, D.; Bocchini, S.; Grugni, G. Obesity management in Prader–Willi syndrome: Current perspectives. Diabetes, Metabolic Syndrome and Obesity. Targets Ther. 2018, 11, 579–593. [Google Scholar]
- Gantz, M.G.; Andrews, S.M.; Wheeler, A.C. Food and Non-Food-Related Behavior across Settings in Children with Prader–Willi Syndrome. Genes 2020, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.L.; Lynn, C.H.; Driscoll, D.C.; Goldstone, A.P.; Gold, J.A.; Kimonis, V.; Dykens, E.; Butler, M.G.; Shuster, J.J.; Driscoll, D.J. Nutritional phases in Prader-Willi syndrome. Am. J. Med. Genet. Part A 2011, 155, 1040–1049. [Google Scholar] [CrossRef] [Green Version]
- Butler, J.V.; Whittington, J.E.; Holland, A.J.; McAllister, C.J.; Goldstone, A.P. The transition between the phenotypes of Prader-Willi syndrome during infancy and early childhood. Dev. Med. Child. Neurol. 2010, 52, e88–e93. [Google Scholar] [CrossRef]
- Deal, C.L.; Tony, M.; Hoybye, C.; Allen, D.B.; Tauber, M.; Christiansen, J.S. Growth Hormone in Prader-Willi Syndrome Clinical Care Guidelines Workshop Participants. Growth Hormone Research Society Workshop Summary. Consensus guidelines for recombinant human growth hormone therapy in Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E1072–E1087. [Google Scholar] [CrossRef]
- De Lind van Wijngaarden, R.F.A.; Siemensma, E.P.C.; Festen, D.A.M.; Otten, B.J.; van Mil, E.G.; Rotteveel, J.; Odink, R.J.H.; Bindels-de Heus, G.C.B.K.; van Leeuwen, M.; Haring, D.A.J.P.; et al. Efficacy and safety of long-term continuous growth hormone treatment in children with Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 4205–4215. [Google Scholar] [CrossRef]
- Carrel, A.L.; Myers, S.E.; Whitman, B.Y.; Eickhoff, J.; Allen, D.B. Long-term growth hormone therapy changes the natural history of body composition and motor function in children with Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 2010, 95, 1131–1136. [Google Scholar] [CrossRef] [Green Version]
- Bakker, N.E.; Kuppens, R.J.; Siemensma, E.P.C.; Tummers-de Lind van Wijngaarden, R.F.A.; Festen, D.A.M.; Bindels-de Heus, G.C.B.; Bocca, G.; Haring, D.A.J.P.; Hoorweg-Nijman, J.J.G.; Houdijk, E.C.A.M.; et al. Eight years of growth hormone treatment in children with Prader-Willi syndrome: Maintaining the positive effects. J. Clin. Endocrinol. Metab. 2013, 98, 4013–4022. [Google Scholar] [CrossRef] [Green Version]
- Donze, S.H.; Damen, L.; Mahabier, E.F.; Hokken-Koelega, A.C.S. Improved Mental and Motor Development during 3 Years of GH Treatment in Very Young Children with Prader-Willi Syndrome. J. Clin. Endocrinol. Metab. 2018, 103, 3714–3719. [Google Scholar] [CrossRef] [Green Version]
- Bakker, N.E.; Siemensma, E.P.C.; van Rijn, M.; Festen, D.; Hokken-Koelega, A.C.S. Beneficial Effect of Growth Hormone Treatment on Health-Related Quality of Life in Children with Prader-Willi Syndrome: A Randomized Controlled Trial and Longitudinal Study. Horm. Res. Paediatr. 2015, 84. [Google Scholar] [CrossRef]
- Luo, Y.; Zheng, Z.; Yang, Y.; Bai, X.; Yang, H.; Zhu, H.; Pan, H.; Chen, S. Effects of growth hormone on cognitive, motor, and behavioral development in Prader-Willi syndrome children: A meta-analysis of randomized controlled trials. Endocrine 2021, 71, 321–330. [Google Scholar] [CrossRef]
- Costa, R.A.; Ferreira, I.R.; Cintra, H.A.; Gomes, L.H.F. Guida LdC. Genotype-Phenotype Relationships and Endocrine Findings in Prader-Willi Syndrome. Front. Endocrinol. 2019, 10, 864. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mahmoud, R.; Gold, J.A.; Miller, J.L.; Roof, E.; Tamura, R.; Dykens, E.; Butler, M.G.; Driscoll, D.J.; Kimonis, V. A multicenter study of maternal and neonatal outcomes in individuals with Prader-Willi syndrome. J. Med. Genet. 2018, 55, 594–598. [Google Scholar] [CrossRef]
- Bar, C.; Diene, G.; Molinas, C.; Bieth, E.; Casper, C.; Tauber, M. Early diagnosis and care is achieved but should be improved in infants with Prader-Willi syndrome. Orphanet J. Rare Dis. 2017, 12, 118. [Google Scholar] [CrossRef] [Green Version]
- Salvatoni, A.; Moretti, A.; Grugni, G.; Agosti, M.; Azzolini, S.; Bonaita, V.; Cianci, P.; Corica, D.; Crinò, A.; DelVecchio, M.; et al. Anthropometric characteristics of newborns with Prader-Willi syndrome. Am. J. Med. Genet. 2019, 179, 2067–2074. [Google Scholar] [CrossRef]
- Ge, M.M.; Gao, Y.Y.; Wu, B.B.; Yan, K.; Qin, Q.; Wang, H.; Zhou, W.; Yang, L. Relationship between phenotype and genotype of 102 Chinese newborns with Prader–Willi syndrome. Mol. Biol. Rep. 2019, 46, 4717–4724. [Google Scholar] [CrossRef] [PubMed]
- Bacheré, N.; Diene, G.; Delagnes, V.; Molinas, C.; Moulin, P.; Tauber, M. Early Diagnosis and Multidisciplinary Care Reduce the Hospitalization Time and Duration of Tube Feeding and Prevent Early Obesity in PWS Infants. Horm. Res. 2008, 69, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Matthews, N.A.; Patel, N.; Surampalli, A.; Gold, J.A.; Khare, M.; Thompson, T.; Cassidy, S.B.; Kimonis, V.E. Impact of genetic subtypes of Prader–Willi syndrome with growth hormone therapy on intelligence and body mass index. Am. J. Med. Genet. A 2019, 179, 1826–1835. [Google Scholar] [CrossRef]
- Shepherd, D.A.; Vos, N.; Reid, S.M.; Godler, D.E.; Guzys, A.; Moreno-Betancur, M.; Amor, D.J. Growth Trajectories in Genetic Subtypes of Prader–Willi Syndrome. Genes 2020, 11, 736. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, R.; Leonenko, A.; Butler, M.G.; Flodman, P.; Gold, J.A.; Miller, J.L.; Roof, E.; Dykens, E.; Driscoll, D.J.; Kimonis, V. Influence of Molecular Classes and Growth Hormone Treatment on Growth and Dysmorphology in Prader-Willi Syndrome: A Multicenter Study. Clin. Genet. 2021. [Google Scholar] [CrossRef] [PubMed]
- Oldzej, J.; Manazir, J.; Gold, J.A.; Mahmoud, R.; Osann, K.; Flodman, P.; Cassidy, S.B.; Kimonis, V.E. Molecular subtype and growth hormone effects on dysmorphology in Prader–Willi syndrome. Am. J. Med. Genet. 2020, 182A, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Magill, L.; Laemmer, C.; Woelfle, J.; Fimmers, R.; Gohlke, B. Early start of growth hormone is associated with positive effects on auxology and metabolism in Prader-Willi-syndrome. Orphanet J. Rare Dis. 2020, 15, 283. [Google Scholar] [CrossRef] [PubMed]
- Corripio, R.; Tubau, C.; Calvo, L.; Brun, C.; Capdevila, N.; Larramona, H.; Gabau, E. Safety and effectiveness of growth hormone therapy in infants with Prader-Willi syndrome younger than 2 years: A prospective study. J. Pediatr. Endocrinol. Metab. 2019, 32, 879–884. [Google Scholar] [CrossRef]
- Lionti, T.; Reid, S.M.; White, S.M.; Rowell, M.M. A population-based profile of 160 Australians with Prader-Willi syndrome: Trends in diagnosis, birth prevalence and birth characteristics. Am. J. Med. Genet. A 2015, 167A, 371–378. [Google Scholar] [CrossRef]
- Bakker, N.E.; Lindberg, A.; Heissler, J.; Wollmann, H.A.; Camacho-Hübner, C.; Hokken-Koelega, A.C.; on behalf of the KIGS Steering Committee. Growth Hormone Treatment in Children with Prader-Willi Syndrome: Three Years of Longitudinal Data in Prepubertal Children and Adult Height Data from the KIGS Database. J. Clin. Endocrinol. Metab. 2017, 102, 1702–1711. [Google Scholar] [CrossRef] [Green Version]
- Sävendahl, L.; Polak, M.; Backeljauw, P.; Blair, J.; Miller, B.S.; Rohrer, T.R.; Pietropoli, A.; Ostrow, V.; Ross, J. Treatment of Children with GH in the United States and Europe: Long-Term Follow-Up from NordiNet® IOS and ANSWER Program. J. Clin. Endocrinol. Metab. 2019, 104, 4730–4742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angulo, M.; Abuzzahab, M.J.; Pietropoli, A.; Ostrow, V.; Kelepouris, N.; Tauber, M. Outcomes in children treated with growth hormone for Prader-Willi syndrome: Data from the ANSWER Program® and NordiNet® International Outcome Study. Int. J. Pediatr. Endocrinol. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
PWS Group | All Patients | DEL 15 | UPD 15 | UPD/ID |
---|---|---|---|---|
Number of patients (%) | N = 147 | N = 81 (55.10) | N = 10 (6.80) | N = 30 (20.41) |
F/M (%) | 69/78 (46.94/53.06) | 43/38 (53.09/46.91) | 1/9 (10/90) | 11/19 (36.67/63.33) |
Weeks of gestation | 38.68 ± 2.65 | 38.76 ± 2.31 | 39.33 ± 2.29 | 38.50 ± 3.26 |
Apgar score 1st minute | 7.36 ± 2.25 | 7.75 ± 1.94 | 7.70 ± 1.64 | 7.41 ± 1.82 |
Apgar score 10th minute | 8.41 ± 1.20 | 8.41 ± 1.24 | ND | 8.27 ± 0.90 |
Weight [g] | 2692.91 ± 534.95 | 2720.40 ± 527.70 | 2547.00 ± 471.03 | 2646 ± 558.21 |
Weight SDS | −1.88 ± 1.29 | −1.85 ± 1.26 | −2.69 ± 0.92 (p = 0.06) * | −1.91 ± 1.30 |
Length [cm] | 52.13 ± 4.42 | 52.46 ± 4.16 | 51.20 ± 4.26 | 51.11 ± 5.83 |
Length SDS | 1.20 ± 1.90 | 1.28 ± 1.99 | 0.27 ± 1.61 | 0.84 ± 2.15 |
PWS Group | All Patients | DEL 15 | UPD 15 | UPD/ID |
---|---|---|---|---|
Number of patients (%) | N = 147 | N = 81 (55.10) | N = 10 (6.80) | N = 30 (20.41) |
F/M (%) | 69/78 (46.94/53.06) | 43/38 (53.09/46.91) | 1/9 (10/90) | 11/19 (36.67/63.33) |
Age of diagnosis [years] | 1.67 ± 2.39 0.53 (0.02–12.49) | 1.38 ± 2.33 0.41 (0.02–12.49) | 3.84 ± 2.86 4.1 (0.13–7.31) (p = 0.003) * | 3.13 ± 2.72 2.55 (0.09–8.84) (p = 0.00) * |
Age of rhGH start [years] | 4.55 ± 3.74 3.03 (0.58–17.43) | 4.24 ± 3.81 2.64 (0.58–16.75) | 7.30 ± 3.03 8.31 (3.29–10.62) (p = 0.003) * | 6.42 ± 3.74 5.62 (0.85–17.43) (p = 0.00)* |
rhGH dose (IU/kg/week; mg/kg/day) | 0.58 ± 0.16; 0.028 ± 0.008 | 0.57 ± 0.14; 0.027 ± 0.007 | 0.61 ± 0.13; 0.029 ± 0.006 | 0.60 ± 0.16; 0.029 ± 0.008 |
Height [cm] | 96.62 ± 23.31 | 95.23 ± 24.18 | 111.78 ± 15.65 | 107.85 ± 20.34 |
Height SDS | −2.11 ± 1.50 | −1.95 ± 1.53 | −2.45 ± 1.07 | −2.18 ± 1.57 |
BMI | 18.05 ± 3.99 | 17.79 ± 3.78 | 20.55 ± 4.24 | 19.31 ± 3.40 |
BMI SDS | 0.41 ± 1.55 | 0.39 ± 1.61 | 1.16 ± 0.91 (p = 0.14) * | 0.86 ± 1.29 (p = 0.15) * |
IGF1 [ng/mL] | 70.31 ± 55.06 | 75.80 ± 64.56 | 84.11 ± 47.63 | 71.93 ± 38.79 |
IGF1 SDS | −0.89 ± 0.43 | −0.83 ± 0.46 | −1.03 ± 0.55 | −1.03 ± 0.43 (p = 0.04) ** |
PWS Group | Group 1 | Group 2 | Group 3 |
---|---|---|---|
Number of patients (%) | n = 82 (55.8) | n = 25 (17) | n = 40 (27.2) |
F/M (%) | 39/43 (47.56/52.44) | 13/12 (52/48) | 17/23 (42.50/57.50) |
Age of diagnosis [years] | 0.25 ± 0.18 0.21 (0.02–0.71) | 1.35 ± 0.36 1.22 (0.79–1.93) (p = 0.00) * | 5.00 ± 2.56 4.33 (2.06–12.49) (p = 0.00) * |
Age of rhGH start [years] | 2.60 ± 2.28 1.97 (0.58–13.09) | 4.86 ± 3.39 3.53 (1.59-12.56) (p = 0.00) * | 8.44 ± 3.43 8.28 (2.91–17.43) (p = 0.00) * |
rhGH dose (IU/kg/week; mg/kg/day) | 0.57 ± 0.14; 0.027 ± 0.007 | 0.58 ± 0.15; 0.027 ± 0.007 | 0.60 ± 0.21; 0.029 ± 0.01 |
Height [cm] | 84.57 ± 16.78 | 99.88 ± 21.04 | 119.81 ± 18.33 |
Height SDS | −2.13 ± 1.52 | −2.02 ± 1.61 | −2.10 ± 1.44 |
BMI | 16.21 ± 2.60 | 18.79 ± 3.44 | 21.52 ± 4.35 |
BMI SDS | −0.21 ± 1.62 | 1.14 ± 1.26 (p = 0.00) ** | 1.24 ± 0.79 (p = 0.00) ** |
IGF1 [ng/mL] | 52.46 ± 36.44 | 79.72 ± 64.76 | 101.87 ± 66.44 |
IGF1 SDS | −0.84 ± 0.27 | −0.87 ± 0.43 | −1.01 ± 0.64 (p = 0.052) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecka-Ambroziak, A.; Wysocka-Mincewicz, M.; Doleżal-Ołtarzewska, K.; Zygmunt-Górska, A.; Żak, T.; Noczyńska, A.; Birkholz-Walerzak, D.; Stawerska, R.; Hilczer, M.; Obara-Moszyńska, M.; et al. Correlation of Genotype and Perinatal Period, Time of Diagnosis and Anthropometric Data before Commencement of Recombinant Human Growth Hormone Treatment in Polish Patients with Prader–Willi Syndrome. Diagnostics 2021, 11, 798. https://doi.org/10.3390/diagnostics11050798
Lecka-Ambroziak A, Wysocka-Mincewicz M, Doleżal-Ołtarzewska K, Zygmunt-Górska A, Żak T, Noczyńska A, Birkholz-Walerzak D, Stawerska R, Hilczer M, Obara-Moszyńska M, et al. Correlation of Genotype and Perinatal Period, Time of Diagnosis and Anthropometric Data before Commencement of Recombinant Human Growth Hormone Treatment in Polish Patients with Prader–Willi Syndrome. Diagnostics. 2021; 11(5):798. https://doi.org/10.3390/diagnostics11050798
Chicago/Turabian StyleLecka-Ambroziak, Agnieszka, Marta Wysocka-Mincewicz, Katarzyna Doleżal-Ołtarzewska, Agata Zygmunt-Górska, Teresa Żak, Anna Noczyńska, Dorota Birkholz-Walerzak, Renata Stawerska, Maciej Hilczer, Monika Obara-Moszyńska, and et al. 2021. "Correlation of Genotype and Perinatal Period, Time of Diagnosis and Anthropometric Data before Commencement of Recombinant Human Growth Hormone Treatment in Polish Patients with Prader–Willi Syndrome" Diagnostics 11, no. 5: 798. https://doi.org/10.3390/diagnostics11050798
APA StyleLecka-Ambroziak, A., Wysocka-Mincewicz, M., Doleżal-Ołtarzewska, K., Zygmunt-Górska, A., Żak, T., Noczyńska, A., Birkholz-Walerzak, D., Stawerska, R., Hilczer, M., Obara-Moszyńska, M., Rabska-Pietrzak, B., Gołębiowska, E., Dudek, A., Petriczko, E., Szalecki, M., & on behalf of the Polish Coordination Group for rhGH Treatment. (2021). Correlation of Genotype and Perinatal Period, Time of Diagnosis and Anthropometric Data before Commencement of Recombinant Human Growth Hormone Treatment in Polish Patients with Prader–Willi Syndrome. Diagnostics, 11(5), 798. https://doi.org/10.3390/diagnostics11050798