Diagnosis of Pulmonary Infections Due to Endemic Fungi
Abstract
:1. Introduction
2. Histoplasmosis
3. Blastomycosis
4. Coccidiomycosis
5. Paracoccidiomycosis
6. Talaromycosis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salzer, H.J.F.; Burchard, G.; Cornely, O.A.; Lange, C.; Rolling, T.; Schmiedel, S.; Libman, M.; Capone, D.; Le, T.; Dalcolmo, M.P.; et al. Diagnosis and Management of Systemic Endemic Mycoses Causing Pulmonary Disease. Respiration 2018, 96, 283–301. [Google Scholar] [CrossRef]
- Azar, M.M.; Hage, C.A. Clinical Perspectives in the Diagnosis and Management of Histoplasmosis. Clin. Chest Med. 2017, 38, 403–415. [Google Scholar] [CrossRef]
- Hage, C.A.; Knox, K.S.; Davis, T.E.; Wheat, L.J. Antigen detection in bronchoalveolar lavage fluid for diagnosis of fungal pneumonia. Curr. Opin. Pulm. Med. 2011, 17, 167–171. [Google Scholar] [CrossRef]
- Tran, T.; Beal, S.G. Application of the 1,3-beta-D-Glucan (Fungitell) Assay in the Diagnosis of Invasive Fungal Infections. Arch. Pathol. Lab. Med. 2016, 140, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Melo, A.S.A.; Santos, D.; Lima, S.L.; Rodrigues, A.M.; de Camargo, Z.P.; Finkelman, M.; Colombo, A.L. Evaluation of (1 --> 3)-beta-D-glucan assay for diagnosing paracoccidioidomycosis. Mycoses 2020, 63, 38–42. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Sakamoto, Y.; Lee, K.; Amano, Y.; Tachikawa, N. Penicillium marneffei Infection with beta-D-glucan Elevation: A Case Report and Literature Review. Intern. Med. 2016, 55, 2503–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashraf, N.; Kubat, R.C.; Poplin, V.; Adenis, A.A.; Denning, D.W.; Wright, L.; McCotter, O.; Schwartz, I.S.; Jackson, B.R.; Chiller, T.; et al. Re-drawing the Maps for Endemic Mycoses. Mycopathologia 2020, 185, 843–865. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.A.; Azar, M.M.; Bahr, N.; Loyd, J.; Wheat, L.J. Histoplasmosis: Up-to-Date Evidence-Based Approach to Diagnosis and Management. Semin. Respir. Crit. Care Med. 2015, 36, 729–745. [Google Scholar] [CrossRef] [PubMed]
- McKinsey, D.S.; McKinsey, J.P. Pulmonary histoplasmosis. Semin. Respir. Crit. Care Med. 2011, 32, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.; Kosmidis, C.; Rozaliyani, A.; Wahyuningsih, R.; Denning, D.W. Chronic Pulmonary Histoplasmosis-A Scoping Literature Review. Open Forum Infect. Dis. 2020, 7, ofaa119. [Google Scholar] [CrossRef] [Green Version]
- Wheat, L.J.; Azar, M.M.; Bahr, N.C.; Spec, A.; Relich, R.F.; Hage, C. Histoplasmosis. Infect. Dis. Clin. N. Am. 2016, 30, 207–227. [Google Scholar] [CrossRef] [PubMed]
- Couturier, M.R.; Graf, E.H.; Griffin, A.T. Urine antigen tests for the diagnosis of respiratory infections: Legionellosis, histoplasmosis, pneumococcal pneumonia. Clin. Lab. Med. 2014, 34, 219–236. [Google Scholar] [CrossRef]
- Swartzentruber, S.; Rhodes, L.; Kurkjian, K.; Zahn, M.; Brandt, M.E.; Connolly, P.; Wheat, L.J. Diagnosis of acute pulmonary histoplasmosis by antigen detection. Clin. Infect. Dis. 2009, 49, 1878–1882. [Google Scholar] [CrossRef] [PubMed]
- Richer, S.M.; Smedema, M.L.; Durkin, M.M.; Herman, K.M.; Hage, C.A.; Fuller, D.; Wheat, L.J. Improved Diagnosis of Acute Pulmonary Histoplasmosis by Combining Antigen and Antibody Detection. Clin. Infect. Dis. 2016, 62, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Theel, E.S.; Jespersen, D.J.; Harring, J.; Mandrekar, J.; Binnicker, M.J. Evaluation of an enzyme immunoassay for detection of Histoplasma capsulatum antigen from urine specimens. J. Clin. Microbiol. 2013, 51, 3555–3559. [Google Scholar] [CrossRef] [Green Version]
- Fandino-Devia, E.; Rodriguez-Echeverri, C.; Cardona-Arias, J.; Gonzalez, A. Antigen Detection in the Diagnosis of Histoplasmosis: A Meta-analysis of Diagnostic Performance. Mycopathologia 2016, 181, 197–205. [Google Scholar] [CrossRef]
- Azar, M.M.; Malo, J.; Hage, C.A. Endemic Fungi Presenting as Community-Acquired Pneumonia: A Review. Semin. Respir. Crit. Care Med. 2020, 41, 522–537. [Google Scholar] [CrossRef]
- Azar, M.M.; Hage, C.A. Laboratory Diagnostics for Histoplasmosis. J. Clin. Microbiol. 2017, 55, 1612–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hage, C.A.; Ribes, J.A.; Wengenack, N.L.; Baddour, L.M.; Assi, M.; McKinsey, D.S.; Hammoud, K.; Alapat, D.; Babady, N.E.; Parker, M.; et al. A multicenter evaluation of tests for diagnosis of histoplasmosis. Clin. Infect. Dis. 2011, 53, 448–454. [Google Scholar] [CrossRef]
- Hage, C.A.; Davis, T.E.; Fuller, D.; Egan, L.; Witt, J.R., 3rd; Wheat, L.J.; Knox, K.S. Diagnosis of histoplasmosis by antigen detection in BAL fluid. Chest 2010, 137, 623–628. [Google Scholar] [CrossRef]
- Connolly, P.A.; Durkin, M.M.; Lemonte, A.M.; Hackett, E.J.; Wheat, L.J. Detection of histoplasma antigen by a quantitative enzyme immunoassay. Clin. Vaccine Immunol. 2007, 14, 1587–1591. [Google Scholar] [CrossRef] [Green Version]
- Swartzentruber, S.; LeMonte, A.; Witt, J.; Fuller, D.; Davis, T.; Hage, C.; Connolly, P.; Durkin, M.; Wheat, L.J. Improved detection of Histoplasma antigenemia following dissociation of immune complexes. Clin. Vaccine Immunol. 2009, 16, 320–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haydour, Q.; Hage, C.A.; Carmona, E.M.; Epelbaum, O.; Evans, S.E.; Gabe, L.M.; Knox, K.S.; Kolls, J.K.; Wengenack, N.L.; Prokop, L.J.; et al. Diagnosis of Fungal Infections. A Systematic Review and Meta-Analysis Supporting American Thoracic Society Practice Guideline. Ann. Am. Thorac. Soc. 2019, 16, 1179–1188. [Google Scholar] [CrossRef]
- Zhang, C.; Lei, G.S.; Lee, C.H.; Hage, C.A. Evaluation of two new enzyme immunoassay reagents for diagnosis of histoplasmosis in a cohort of clinically characterized patients. Med. Mycol. 2015, 53, 868–873. [Google Scholar] [CrossRef] [Green Version]
- Alpern, J.D.; Bahr, N.C.; Vazquez-Benitez, G.; Boulware, D.R.; Sellman, J.S.; Sarosi, G.A. Diagnostic Delay and Antibiotic Overuse in Acute Pulmonary Blastomycosis. Open Forum. Infect. Dis. 2016, 3, ofw078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlos, W.G.; Rose, A.S.; Wheat, L.J.; Norris, S.; Sarosi, G.A.; Knox, K.S.; Hage, C.A. Blastomycosis in indiana: Digging up more cases. Chest 2010, 138, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Durkin, M.; Witt, J.; Lemonte, A.; Wheat, B.; Connolly, P. Antigen assay with the potential to aid in diagnosis of blastomycosis. J. Clin. Microbiol. 2004, 42, 4873–4875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martynowicz, M.A.; Prakash, U.B. Pulmonary blastomycosis: An appraisal of diagnostic techniques. Chest 2002, 121, 768–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, P.; Hage, C.A.; Bariola, J.R.; Bensadoun, E.; Rodgers, M.; Bradsher, R.W., Jr.; Wheat, L.J. Blastomyces dermatitidis antigen detection by quantitative enzyme immunoassay. Clin. Vaccine Immunol. 2012, 19, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.J.; Gattuso, P.; Reddy, V.B. Diagnosis of blastomycosis in surgical pathology and cytopathology: Correlation with microbiologic culture. Am. J. Surg. Pathol. 2010, 34, 256–261. [Google Scholar] [CrossRef]
- Frost, H.M.; Novicki, T.J. Blastomyces Antigen Detection for Diagnosis and Management of Blastomycosis. J. Clin. Microbiol. 2015, 53, 3660–3662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bariola, J.R.; Hage, C.A.; Durkin, M.; Bensadoun, E.; Gubbins, P.O.; Wheat, L.J.; Bradsher, R.W., Jr. Detection of Blastomyces dermatitidis antigen in patients with newly diagnosed blastomycosis. Diagn Microbiol. Infect. Dis. 2011, 69, 187–191. [Google Scholar] [CrossRef]
- McBride, J.A.; Gauthier, G.M.; Klein, B.S. Clinical Manifestations and Treatment of Blastomycosis. Clin. Chest Med. 2017, 38, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Saccente, M.; Woods, G.L. Clinical and laboratory update on blastomycosis. Clin. Microbiol. Rev. 2010, 23, 367–381. [Google Scholar] [CrossRef] [Green Version]
- Klein, B.S.; Vergeront, J.M.; Kaufman, L.; Bradsher, R.W.; Kumar, U.N.; Mathai, G.; Varkey, B.; Davis, J.P. Serological tests for blastomycosis: Assessments during a large point-source outbreak in Wisconsin. J. Infect. Dis. 1987, 155, 262–268. [Google Scholar] [CrossRef]
- Richer, S.M.; Smedema, M.L.; Durkin, M.M.; Brandhorst, T.T.; Hage, C.A.; Connolly, P.A.; Leland, D.S.; Davis, T.E.; Klein, B.S.; Wheat, L.J. Development of a highly sensitive and specific blastomycosis antibody enzyme immunoassay using Blastomyces dermatitidis surface protein BAD-1. Clin. Vaccine Immunol. 2014, 21, 143–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassis, C.; Durkin, M.; Holbrook, E.; Myers, R.; Wheat, L. Advances in Diagnosis of Progressive Pulmonary and Disseminated Coccidioidomycosis. Clin. Infect. Dis. 2021, 72, 968–975. [Google Scholar] [CrossRef] [Green Version]
- Saubolle, M.A.; McKellar, P.P.; Sussland, D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J. Clin. Microbiol. 2007, 45, 26–30. [Google Scholar] [CrossRef] [Green Version]
- Durkin, M.; Estok, L.; Hospenthal, D.; Crum-Cianflone, N.; Swartzentruber, S.; Hackett, E.; Wheat, L.J. Detection of Coccidioides antigenemia following dissociation of immune complexes. Clin. Vaccine Immunol. 2009, 16, 1453–1456. [Google Scholar] [CrossRef] [Green Version]
- Gabe, L.M.; Malo, J.; Knox, K.S. Diagnosis and Management of Coccidioidomycosis. Clin. Chest Med. 2017, 38, 417–433. [Google Scholar] [CrossRef]
- Twarog, M.; Thompson, G.R., 3rd. Coccidioidomycosis: Recent Updates. Semin. Respir. Crit. Care Med. 2015, 36, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Durkin, M.; Connolly, P.; Kuberski, T.; Myers, R.; Kubak, B.M.; Bruckner, D.; Pegues, D.; Wheat, L.J. Diagnosis of coccidioidomycosis with use of the Coccidioides antigen enzyme immunoassay. Clin. Infect. Dis. 2008, 47, e69–e73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saubolle, M.A. Laboratory aspects in the diagnosis of coccidioidomycosis. Ann. N. Y. Acad. Sci. 2007, 1111, 301–314. [Google Scholar] [CrossRef]
- Kollath, D.R.; Miller, K.J.; Barker, B.M. The mysterious desert dwellers: Coccidioides immitis and Coccidioides posadasii, causative fungal agents of coccidioidomycosis. Virulence 2019, 10, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Malo, J.; Luraschi-Monjagatta, C.; Wolk, D.M.; Thompson, R.; Hage, C.A.; Knox, K.S. Update on the diagnosis of pulmonary coccidioidomycosis. Ann. Am. Thorac. Soc. 2014, 11, 243–253. [Google Scholar] [CrossRef]
- Blair, J.E.; Coakley, B.; Santelli, A.C.; Hentz, J.G.; Wengenack, N.L. Serologic testing for symptomatic coccidioidomycosis in immunocompetent and immunosuppressed hosts. Mycopathologia 2006, 162, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, J.E.; Currier, J.T. Significance of isolated positive IgM serologic results by enzyme immunoassay for coccidioidomycosis. Mycopathologia 2008, 166, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.B.; Jaskowski, T.D.; Mouritsen, C.L.; Hill, H.R. Comparison of commercially available enzyme immunoassay with traditional serological tests for detection of antibodies to Coccidioides immitis. J. Clin. Microbiol. 1995, 33, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, L.; Sekhon, A.S.; Moledina, N.; Jalbert, M.; Pappagianis, D. Comparative evaluation of commercial Premier EIA and microimmunodiffusion and complement fixation tests for Coccidioides immitis antibodies. J. Clin. Microbiol. 1995, 33, 618–619. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Kernerman, S.M.; Sawtelle, B.G.; Rastogi, S.C.; Nielsen, H.S.; Ampel, N.M. A reformulated spherule-derived coccidioidin (Spherusol) to detect delayed-type hypersensitivity in coccidioidomycosis. Mycopathologia 2012, 174, 353–358. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.V.; Pecanha Pietrobom, P.M.; Rosa Junior, M.; Baptista, R.M.; Pecanha, P.M. New Insights on Pulmonary Paracoccidioidomycosis. Semin. Respir. Crit. Care Med. 2020, 41, 53–68. [Google Scholar] [CrossRef]
- Mendes, R.P.; Cavalcante, R.S.; Marques, S.A.; Marques, M.E.A.; Venturini, J.; Sylvestre, T.F.; Paniago, A.M.M.; Pereira, A.C.; da Silva, J.F.; Fabro, A.T.; et al. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol. J. 2017, 11, 224–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreto, T.C.; Marques, M.E.; de Oliveira, M.L.; Moris, D.V.; de Carvalho, L.R.; Mendes, R.P. Accuracy of routine diagnostic tests used in paracoccidioidomycosis patients at a university hospital. Trans. R Soc. Trop. Med. Hyg. 2011, 105, 473–478. [Google Scholar] [CrossRef]
- Shikanai-Yasuda, M.A.; Mendes, R.P.; Colombo, A.L.; Queiroz-Telles, F.; Kono, A.S.G.; Paniago, A.M.M.; Nathan, A.; Valle, A.; Bagagli, E.; Benard, G.; et al. Brazilian guidelines for the clinical management of paracoccidioidomycosis. Rev. Soc. Bras Med. Trop. 2017, 50, 715–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.J.; Miller, R.F.; Huang, L. Approach to Fungal Infections in Human Immunodeficiency Virus-Infected Individuals: Pneumocystis and Beyond. Clin. Chest Med. 2017, 38, 465–477. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.F.; de Oliveira, H.C.; Marcos, C.M.; Assato, P.A.; Fusco-Almeida, A.M.; Mendes-Giannini, M.J.S. Advances and challenges in paracoccidioidomycosis serology caused by Paracoccidioides species complex: An update. Diagn Microbiol. Infect. Dis. 2016, 84, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Gomez, B.L.; Figueroa, J.I.; Hamilton, A.J.; Ortiz, B.; Robledo, M.A.; Hay, R.J.; Restrepo, A. Use of monoclonal antibodies in diagnosis of paracoccidioidomycosis: New strategies for detection of circulating antigens. J. Clin. Microbiol. 1997, 35, 3278–3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques da Silva, S.H.; Colombo, A.L.; Blotta, M.H.; Lopes, J.D.; Queiroz-Telles, F.; Pires de Camargo, Z. Detection of circulating gp43 antigen in serum, cerebrospinal fluid, and bronchoalveolar lavage fluid of patients with paracoccidioidomycosis. J. Clin. Microbiol. 2003, 41, 3675–3680. [Google Scholar] [CrossRef] [Green Version]
- Supparatpinyo, K.; Khamwan, C.; Baosoung, V.; Nelson, K.E.; Sirisanthana, T. Disseminated Penicillium marneffei infection in southeast Asia. Lancet 1994, 344, 110–113. [Google Scholar] [CrossRef]
- Wu, T.C.; Chan, J.W.; Ng, C.K.; Tsang, D.N.; Lee, M.P.; Li, P.C. Clinical presentations and outcomes of Penicillium marneffei infections: A series from 1994 to 2004. Hong Kong Med. J. 2008, 14, 103–109. [Google Scholar]
- Wong, S.Y.; Wong, K.F. Penicillium marneffei Infection in AIDS. Patholog. Res. Int. 2011, 2011, 764293. [Google Scholar] [CrossRef] [Green Version]
- Thu, N.T.M.; Chan, J.F.W.; Ly, V.T.; Ngo, H.T.; Hien, H.T.A.; Lan, N.P.H.; Chau, N.V.V.; Cai, J.P.; Woo, P.C.Y.; Day, J.N.; et al. Superiority of a novel Mp1p antigen detection enzyme immunoassay compared to standard BACTEC blood culture in the diagnosis of talaromycosis. Clin. Infect. Dis. 2020, ciaa826. [Google Scholar] [CrossRef] [PubMed]
- Jan, I.S.; Chung, P.F.; Wang, J.Y.; Weng, M.H.; Hung, C.C.; Lee, L.N. Cytological diagnosis of Penicillium marneffei infection. J. Formos. Med. Assoc. 2008, 107, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Pruksaphon, K.; Intaramat, A.; Ratanabanangkoon, K.; Nosanchuk, J.D.; Vanittanakom, N.; Youngchim, S. Development and characterization of an immunochromatographic test for the rapid diagnosis of Talaromyces (Penicillium) marneffei. PLoS ONE 2018, 13, e0195596. [Google Scholar] [CrossRef] [PubMed]
- Prakit, K.; Nosanchuk, J.D.; Pruksaphon, K.; Vanittanakom, N.; Youngchim, S. A novel inhibition ELISA for the detection and monitoring of Penicillium marneffei antigen in human serum. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 647–656. [Google Scholar] [CrossRef]
- Caceres, D.H.; Gomez, B.L.; Tobon, A.M.; Chiller, T.M.; Lindsley, M.D. Evaluation of a Histoplasma antigen lateral flow assay for the rapid diagnosis of progressive disseminated histoplasmosis in Colombian patients with AIDS. Mycoses 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Babady, N.E.; Buckwalter, S.P.; Hall, L.; Le Febre, K.M.; Binnicker, M.J.; Wengenack, N.L. Detection of Blastomyces dermatitidis and Histoplasma capsulatum from culture isolates and clinical specimens by use of real-time PCR. J. Clin. Microbiol. 2011, 49, 3204–3208. [Google Scholar] [CrossRef] [Green Version]
- Gago, S.; Esteban, C.; Valero, C.; Zaragoza, O.; Puig de la Bellacasa, J.; Buitrago, M.J. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia. J. Clin. Microbiol. 2014, 52, 1168–1176. [Google Scholar] [CrossRef] [Green Version]
- Zatti, M.D.S.; Arantes, T.D.; Fernandes, J.A.L.; Bay, M.B.; Milan, E.P.; Naliato, G.F.S.; Theodoro, R.C. Loop-mediated Isothermal Amplification and nested PCR of the Internal Transcribed Spacer (ITS) for Histoplasma capsulatum detection. PLoS Negl. Trop. Dis. 2019, 13, e0007692. [Google Scholar] [CrossRef] [PubMed]
- Dantas, K.C.; Freitas, R.S.; da Silva, M.V.; Criado, P.R.; Luiz, O.D.C.; Vicentini, A.P. Comparison of diagnostic methods to detect Histoplasma capsulatum in serum and blood samples from AIDS patients. PLoS ONE 2018, 13, e0190408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, L.F.; Munoz, C.O.; Caceres, D.H.; Tobon, A.M.; Loparev, V.; Clay, O.; Chiller, T.; Litvintseva, A.; Gade, L.; Gonzalez, A.; et al. Standardization and validation of real time PCR assays for the diagnosis of histoplasmosis using three molecular targets in an animal model. PLoS ONE 2017, 12, e0190311. [Google Scholar] [CrossRef] [PubMed]
- Vasconcellos, I.; Dalla Lana, D.F.; Pasqualotto, A.C. The Role of Molecular Tests in the Diagnosis of Disseminated Histoplasmosis. J. Fungi (Basel) 2019, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caceres, D.H.; Knuth, M.; Derado, G.; Lindsley, M.D. Diagnosis of Progressive Disseminated Histoplasmosis in Advanced HIV: A Meta-Analysis of Assay Analytical Performance. J. Fungi (Basel) 2019, 5, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheel, C.M.; Zhou, Y.; Theodoro, R.C.; Abrams, B.; Balajee, S.A.; Litvintseva, A.P. Development of a loop-mediated isothermal amplification method for detection of Histoplasma capsulatum DNA in clinical samples. J. Clin. Microbiol. 2014, 52, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; Ghosh, A.K.; Mirdha, B.R.; Xess, I.; Paul, S.; Samantaray, J.C.; Srinivasan, A.; Khalil, S.; Rastogi, N.; Dabas, Y. MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J. Microbiol. Methods 2015, 109, 93–105. [Google Scholar] [CrossRef]
- Valero, C.; Buitrago, M.J.; Gago, S.; Quiles-Melero, I.; Garcia-Rodriguez, J. A matrix-assisted laser desorption/ionization time of flight mass spectrometry reference database for the identification of Histoplasma capsulatum. Med. Mycol. 2018, 56, 307–314. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Li, Z.; Chen, G.; Liu, X.; Ding, L. Metagenomic next-generation sequencing identified Histoplasma capsulatum in the lung and epiglottis of a Chinese patient: A case report. Int. J. Infect. Dis. 2020, 101, 33–37. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Ling, H.; Dong, X.; Zhang, Y.; Li, J.; Zhang, Y.; Song, J.; Liu, W.J.; Li, Y.; et al. Identification of Histoplasma causing an unexplained disease cluster in Matthews Ridge, Guyana. Biosaf. Health 2019, 1, 150–154. [Google Scholar] [CrossRef]
- Frickmann, H.; Loderstaedt, U.; Racz, P.; Tenner-Racz, K.; Eggert, P.; Haeupler, A.; Bialek, R.; Hagen, R.M. Detection of tropical fungi in formalin-fixed, paraffin-embedded tissue: Still an indication for microscopy in times of sequence-based diagnosis? Biomed. Res. Int. 2015, 2015, 938721. [Google Scholar] [CrossRef] [Green Version]
- Develoux, M.; Amona, F.M.; Hennequin, C. Histoplasmosis caused by Histoplasma capsulatum var. duboisii: A comprehensive review of cases from 1993 to 2019. Clin. Infect. Dis. 2020, ciaa1304. [Google Scholar] [CrossRef]
- McBride, J.A.; Gauthier, G.M.; Klein, B.S. Turning on virulence: Mechanisms that underpin the morphologic transition and pathogenicity of Blastomyces. Virulence 2019, 10, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Friedman, D.Z.P.; Schwartz, I.S. Emerging Fungal Infections: New Patients, New Patterns, and New Pathogens. J. Fungi (Basel) 2019, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Bradsher, R.W., Jr. The endemic mimic: Blastomycosis an illness often misdiagnosed. Trans. Am. Clin. Climatol. Assoc. 2014, 125, 188–202. [Google Scholar]
- Litvinjenko, S.; Lunny, D. Blastomycosis hospitalizations in northwestern Ontario: 2006–2015. Can. Commun. Dis. Rep. 2017, 43, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef] [PubMed]
- Sidamonidze, K.; Peck, M.K.; Perez, M.; Baumgardner, D.; Smith, G.; Chaturvedi, V.; Chaturvedi, S. Real-time PCR assay for identification of Blastomyces dermatitidis in culture and in tissue. J. Clin. Microbiol. 2012, 50, 1783–1786. [Google Scholar] [CrossRef] [Green Version]
- Bialek, R.; Cirera, A.C.; Herrmann, T.; Aepinus, C.; Shearn-Bochsler, V.I.; Legendre, A.M. Nested PCR assays for detection of Blastomyces dermatitidis DNA in paraffin-embedded canine tissue. J. Clin. Microbiol. 2003, 41, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Meece, J.K.; Anderson, J.L.; Klein, B.S.; Sullivan, T.D.; Foley, S.L.; Baumgardner, D.J.; Brummitt, C.F.; Reed, K.D. Genetic diversity in Blastomyces dermatitidis: Implications for PCR detection in clinical and environmental samples. Med. Mycol. 2010, 48, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Luo, Z.; Deng, S.; Li, Q. A young male with chronic nonproductive cough diagnosed with blastomycosis in China: A case report. BMC Pulm. Med. 2020, 20, 189. [Google Scholar] [CrossRef] [PubMed]
- Maphanga, T.G.; Birkhead, M.; Munoz, J.F.; Allam, M.; Zulu, T.G.; Cuomo, C.A.; Schwartz, I.S.; Ismail, A.; Naicker, S.D.; Mpembe, R.S.; et al. Human Blastomycosis in South Africa Caused by Blastomyces percursus and Blastomyces emzantsi sp. nov., 1967 to 2014. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef]
- Nguyen, C.; Barker, B.M.; Hoover, S.; Nix, D.E.; Ampel, N.M.; Frelinger, J.A.; Orbach, M.J.; Galgiani, J.N. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin. Microbiol. Rev. 2013, 26, 505–525. [Google Scholar] [CrossRef] [Green Version]
- McCotter, O.Z.; Benedict, K.; Engelthaler, D.M.; Komatsu, K.; Lucas, K.D.; Mohle-Boetani, J.C.; Oltean, H.; Vugia, D.; Chiller, T.M.; Sondermeyer Cooksey, G.L.; et al. Update on the Epidemiology of coccidioidomycosis in the United States. Med. Mycol. 2019, 57, S30–S40. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, L.; Nix, D.; Wright, M.; Lindberg, E.; Fagan, T.; Lieberman, D.; Stoffer, T.; Ampel, N.M.; Galgiani, J.N. Coccidioidomycosis as a common cause of community-acquired pneumonia. Emerg. Infect. Dis. 2006, 12, 958–962. [Google Scholar] [CrossRef] [PubMed]
- Marsden-Haug, N.; Goldoft, M.; Ralston, C.; Limaye, A.P.; Chua, J.; Hill, H.; Jecha, L.; Thompson, G.R., 3rd; Chiller, T. Coccidioidomycosis acquired in Washington State. Clin. Infect. Dis. 2013, 56, 847–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jude, C.M.; Nayak, N.B.; Patel, M.K.; Deshmukh, M.; Batra, P. Pulmonary coccidioidomycosis: Pictorial review of chest radiographic and CT findings. Radiographics 2014, 34, 912–925. [Google Scholar] [CrossRef] [Green Version]
- Parish, J.M.; Blair, J.E. Coccidioidomycosis. Mayo Clin. Proc. 2008, 83, 343–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ampel, N.M. The diagnosis of coccidioidomycosis. F1000 Med. Rep. 2010, 2. [Google Scholar] [CrossRef] [Green Version]
- Galgiani, J.N.; Grace, G.M.; Lundergan, L.L. New serologic tests for early detection of coccidioidomycosis. J. Infect. Dis. 1991, 163, 671–674. [Google Scholar] [CrossRef]
- Wieden, M.A.; Lundergan, L.L.; Blum, J.; Delgado, K.L.; Coolbaugh, R.; Howard, R.; Peng, T.; Pugh, E.; Reis, N.; Theis, J.; et al. Detection of coccidioidal antibodies by 33-kDa spherule antigen, Coccidioides EIA, and standard serologic tests in sera from patients evaluated for coccidioidomycosis. J. Infect. Dis. 1996, 173, 1273–1277. [Google Scholar] [CrossRef]
- Wack, E.E.; Ampel, N.M.; Sunenshine, R.H.; Galgiani, J.N. The Return of Delayed-Type Hypersensitivity Skin Testing for Coccidioidomycosis. Clin. Infect. Dis. 2015, 61, 787–791. [Google Scholar] [CrossRef]
- Johnson, S.M.; Simmons, K.A.; Pappagianis, D. Amplification of coccidioidal DNA in clinical specimens by PCR. J. Clin. Microbiol. 2004, 42, 1982–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binnicker, M.J.; Buckwalter, S.P.; Eisberner, J.J.; Stewart, R.A.; McCullough, A.E.; Wohlfiel, S.L.; Wengenack, N.L. Detection of Coccidioides species in clinical specimens by real-time PCR. J. Clin. Microbiol. 2007, 45, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rychert, J.; Slechta, E.S.; Barker, A.P.; Miranda, E.; Babady, N.E.; Tang, Y.W.; Gibas, C.; Wiederhold, N.; Sutton, D.; Hanson, K.E. Multicenter Evaluation of the Vitek MS v3.0 System for the Identification of Filamentous Fungi. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R. A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J. Fungi (Basel) 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oltean, H.N.; Etienne, K.A.; Roe, C.C.; Gade, L.; McCotter, O.Z.; Engelthaler, D.M.; Litvintseva, A.P. Utility of Whole-Genome Sequencing to Ascertain Locally Acquired Cases of Coccidioidomycosis, Washington, USA. Emerg. Infect. Dis. 2019, 25, 501–506. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.; Escuissato, D.L. Pulmonary paracoccidioidomycosis. Semin. Respir. Crit. Care Med. 2011, 32, 764–774. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, B.G.; Hahn, R.C.; Camargo, Z.P.; Rodrigues, A.M. Molecular Tools for Detection and Identification of Paracoccidioides Species: Current Status and Future Perspectives. J. Fungi (Basel) 2020, 6, 293. [Google Scholar] [CrossRef]
- Hahn, R.C.; Rodrigues, A.M.; Della Terra, P.P.; Nery, A.F.; Hoffmann-Santos, H.D.; Gois, H.M.; Fontes, C.J.F.; de Camargo, Z.P. Clinical and epidemiological features of paracoccidioidomycosis due to Paracoccidioides lutzii. PLoS Negl. Trop. Dis. 2019, 13, e0007437. [Google Scholar] [CrossRef] [Green Version]
- de Camargo, Z.P. Serology of paracoccidioidomycosis. Mycopathologia 2008, 165, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Nobrega de Almeida, J., Jr.; Del Negro, G.M.; Grenfell, R.C.; Vidal, M.S.; Thomaz, D.Y.; de Figueiredo, D.S.; Bagagli, E.; Juliano, L.; Benard, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for differentiation of the dimorphic fungal species Paracoccidioides brasiliensis and Paracoccidioides lutzii. J. Clin. Microbiol. 2015, 53, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.M.; Kubitschek-Barreira, P.H.; Pinheiro, B.G.; Teixeira-Ferreira, A.; Hahn, R.C.; de Camargo, Z.P. Immunoproteomic Analysis Reveals Novel Candidate Antigens for the Diagnosis of Paracoccidioidomycosis Due to Paracoccidioides lutzii. J. Fungi (Basel) 2020, 6, 357. [Google Scholar] [CrossRef] [PubMed]
- Vanittanakom, N.; Cooper, C.R., Jr.; Fisher, M.C.; Sirisanthana, T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin. Microbiol. Rev. 2006, 19, 95–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.; Wolbers, M.; Chi, N.H.; Quang, V.M.; Chinh, N.T.; Lan, N.P.; Lam, P.S.; Kozal, M.J.; Shikuma, C.M.; Day, J.N.; et al. Epidemiology, seasonality, and predictors of outcome of AIDS-associated Penicillium marneffei infection in Ho Chi Minh City, Viet Nam. Clin. Infect. Dis. 2011, 52, 945–952. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, J.Q.; Pan, M.L.; Zeng, W.; Tang, S.D.; Tan, C.M. Determinants of prognosis in Talaromyces marneffei infections with respiratory system lesions. Chin. Med. J. (Engl.) 2019, 132, 1909–1918. [Google Scholar] [CrossRef]
- Wong, S.S.; Wong, K.H.; Hui, W.T.; Lee, S.S.; Lo, J.Y.; Cao, L.; Yuen, K.Y. Differences in clinical and laboratory diagnostic characteristics of penicilliosis marneffei in human immunodeficiency virus (HIV)- and non-HIV-infected patients. J. Clin. Microbiol. 2001, 39, 4535–4540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruksaphon, K.; Intaramat, A.; Ratanabanangkoon, K.; Nosanchuk, J.D.; Vanittanakom, N.; Youngchim, S. Diagnostic laboratory immunology for talaromycosis (penicilliosis): Review from the bench-top techniques to the point-of-care testing. Diagn Microbiol. Infect. Dis. 2020, 96, 114959. [Google Scholar] [CrossRef]
- Kawila, R.; Chaiwarith, R.; Supparatpinyo, K. Clinical and laboratory characteristics of penicilliosis marneffei among patients with and without HIV infection in Northern Thailand: A retrospective study. BMC Infect. Dis. 2013, 13, 464. [Google Scholar] [CrossRef] [Green Version]
- Hien, T.V.; Loc, P.P.; Hoa, N.T.; Duong, N.M.; Quang, V.M.; McNeil, M.M.; Dung, N.T.; Ashford, D.A. First cases of disseminated penicilliosis marneffei infection among patients with acquired immunodeficiency syndrome in Vietnam. Clin. Infect. Dis. 2001, 32, e78–e80. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zeng, L.; Chen, X.; Hao, W.; Yang, M.; Cai, J.; Wang, Y.; Yuan, G.; Che, X. A double-antigen sandwich ELISA for detecting Penicillium marneffei Mp1p-specific antibody. Nan Fang Yi Ke Da Xue Xue Bao 2013, 33, 439–443. [Google Scholar] [PubMed]
- Cao, L.; Chan, K.M.; Chen, D.; Vanittanakom, N.; Lee, C.; Chan, C.M.; Sirisanthana, T.; Tsang, D.N.; Yuen, K.Y. Detection of cell wall mannoprotein Mp1p in culture supernatants of Penicillium marneffei and in sera of penicilliosis patients. J. Clin. Microbiol. 1999, 37, 981–986. [Google Scholar] [CrossRef] [Green Version]
- Pornprasert, S.; Dettrairat, S.; Vongchan, P.; Apichatpiyakul, C. Production of a monoclonal antibody against a yeast secreted antigen of Penicillium marneffei. Southeast Asian J. Trop. Med. Public Health 2005, 36, 966–969. [Google Scholar]
- Cao, L.; Chan, C.M.; Lee, C.; Wong, S.S.; Yuen, K.Y. MP1 encodes an abundant and highly antigenic cell wall mannoprotein in the pathogenic fungus Penicillium marneffei. Infect. Immun. 1998, 66, 966–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, P.C.; Lau, S.K.; Lau, C.C.; Tung, E.T.; Chong, K.T.; Yang, F.; Zhang, H.; Lo, R.K.; Cai, J.P.; Au-Yeung, R.K.; et al. Mp1p Is a Virulence Factor in Talaromyces (Penicillium) marneffei. PLoS Negl. Trop. Dis. 2016, 10, e0004907. [Google Scholar] [CrossRef] [Green Version]
- Ly, V.T.; Thanh, N.T.; Thu, N.T.M.; Chan, J.; Day, J.N.; Perfect, J.; Nga, C.N.; Vinh Chau, N.V.; Le, T. Occult Talaromyces marneffei Infection Unveiled by the Novel Mp1p Antigen Detection Assay. Open Forum. Infect. Dis. 2020, 7, ofaa502. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Chen, D.L.; Lee, C.; Chan, C.M.; Chan, K.M.; Vanittanakom, N.; Tsang, D.N.; Yuen, K.Y. Detection of specific antibodies to an antigenic mannoprotein for diagnosis of Penicillium marneffei penicilliosis. J. Clin. Microbiol. 1998, 36, 3028–3031. [Google Scholar] [CrossRef] [Green Version]
- Hien, H.T.A.; Thanh, T.T.; Thu, N.T.M.; Nguyen, A.; Thanh, N.T.; Lan, N.P.H.; Simmons, C.; Shikuma, C.; Chau, N.V.V.; Thwaites, G.; et al. Development and evaluation of a real-time polymerase chain reaction assay for the rapid detection of Talaromyces marneffei MP1 gene in human plasma. Mycoses 2016, 59, 773–780. [Google Scholar] [CrossRef] [Green Version]
- Ning, C.; Lai, J.; Wei, W.; Zhou, B.; Huang, J.; Jiang, J.; Liang, B.; Liao, Y.; Zang, N.; Cao, C.; et al. Accuracy of rapid diagnosis of Talaromyces marneffei: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Li, X.; Calderone, R.; Zhang, J.; Ma, J.; Cai, W.; Xi, L. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis. Med. Mycol. 2016, 54, 162–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zheng, Y.; Wu, F.; Mo, D.; Liang, G.; Yan, R.; Khader, J.A.; Wu, N.; Cao, C. Evaluation of quantitative real-time PCR and Platelia galactomannan assays for the diagnosis of disseminated Talaromyces marneffei infection. Med. Mycol. 2020, 58, 181–186. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Ai, J.W.; Xu, B.; Cui, P.; Cheng, Q.; Wu, H.; Qian, Y.Y.; Zhang, H.C.; Zhou, X.; Xing, L.; et al. Rapid and precise diagnosis of disseminated T.marneffei infection assisted by high-throughput sequencing of multifarious specimens in a HIV-negative patient: A case report. BMC Infect. Dis. 2018, 18, 379. [Google Scholar] [CrossRef]
- Grippi, M.A.; Elias, J.A.; Fishman, J.A.; Pack, A.I.; Senior, R.M.; Kotloff, R. Fishman’s Pulmonary Diseases and Disorders, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases, 9th ed.; Elsevier: Philadelphia, PA, USA, 2020. [Google Scholar]
Clinical Presentation | Imaging | Laboratory | Epidemiology | |
---|---|---|---|---|
Histoplasmosis | ||||
Acute Pulmonary Histoplasmosis | Fevers, chills, malaise, dyspnea ranging from self-limited illness to ARDS Painful compressive adenopathy. Rheumatologic manifestations | Diffuse patchy opacities Hilar/mediastinal adenopathy. Miliary pattern in severe and disseminated disease | Pancytopenia in disseminated disease Narrow based budding ovoid Histoplasma yeast, 2–4 μM in diameter on pathology | Central and Eastern North America, much of Central and South America, Sub-Saharan Africa, large portions of Southeast Asia, small areas of Australia and Europe |
Subacute pulmonary Histoplasmosis | Mild respiratory and constitutional symptoms, >1 month | Hilar and mediastinal Adenopathy Focal/patchy airspace disease | Pancytopenia in disseminated disease Narrow based budding ovoid Histoplasma yeast, 2–4 μM in diameter on pathology | |
Chronic Pulmonary Histoplasmosis | Fever, night sweats, weight loss, cough, shortness, chest pain of breath, >3 months | Patchy infiltrates, cavities that may enlarge over time Calcified lymph nodes. Typically no mediastinal lymphadenopathy | Narrow based budding ovoid Histoplasma yeast, 2–4 μM in diameter on pathology | |
Blastomycosis | Acute: fevers, chills, productive cough with or without sputum production severe cases can develop ARDS. Subacute/chronic: 2–6 months: fever, night sweats, cough, hemoptysis, weight loss | Consolidation Mass like infiltrates Miliary pattern Nodules Reticular infiltrates Often no mediastinal lymphadenopathy Chronic disease typically upper lobe predominant | Broad-based budding yeast on pathology | Midwestern United States and Eastern North America, much of Africa and India |
Coccidiomycosis | Fatigue, cough, fever, dyspnea, night sweats, myalgias, symptoms onset 1–3 weeks after exposure Rheumatologic phenomena | Lobar consolidation (more common), Nodular opacities Mediastinal, hilar, and/or paratracheal adenopathy Pleural effusion (typically unilateral) Cavities Miliary pattern in immunosuppressed Migratory (phantom) infiltrates | Peripheral eosinophilia Spherules range in diameter from 10 to 200 μm, are filled with 2–5 μm diameter endospores Endospores may be outside of spherules and misidentified as other fungi | C immitis: Central California, Washington C posadasii: South and Central America, Mexico, Arizona, Texas, Utah |
Paracoccidiomycosis | Acute/subacute: fever, weight loss, lymphadenopathy, signs of disseminated disease Chronic/adult: cough, dyspnea, weight loss, anorexia | Reticular, nodular, interstitial or mixed opacities. Referred to as ‘bat’ or ‘butterfy’ wing in median zone Nodules Cavities. Interlobular septal thickening | Characteristic yeast resembling “pilot wheel” or “Mickey mouse” head on pathology | Parts of Central and South America, most commonly in Brazil |
Talaromycosis | Fever, weight loss, cutaneous lesions, hepatosplenomegaly, lymphadenopathy, respiratory signs (both in HIV positive and HIV negative individuals) Arthritis, spondylodiskitis, osteomyelitis (more common in HIV negative individuals) | Patchy exudates Nodular infiltrates Pleural effusions Cavitary lesions Miliary pattern | Anemia, thrombocytopenia, elevated liver function tests | South and Southeast Asia |
Diagnostic Test | Sensitivity | Specificity | Strengths | Limitations |
---|---|---|---|---|
Histoplasma | ||||
Sputum/BAL Culture [10,11,15,16,19,20] | 15–84% | Inadequate data but presumed ~100% in most studies based on reference standard definitions | More useful in SPH and CPH | Slow growth, 4–8 weeks Less useful in APH |
Cytopathologic examination [8,16,17,19,20] | 9–50% | Inadequate data available, generally considered fairly specific but presence of Histoplasma in tissue may indicate past rather than current infection. May also be misidentified | Rapid results (hours) More likely to be positive in SPH and CPH | Sensitivity and specificity vary based on pathologist experience Requires invasive procedures Less useful in pulmonary disease without dissemination. |
Serum Antigen [13,19,21,22,23] | 30–87% | 98% | Fast results (days) Improving availability Most useful in APH | Cross reacts with other fungi Less useful in SPH and CPH |
Urine Antigen [8,13,15,17,19,21,24] | 40–95% | 95–99% | Fast results (days) Improving availability Most useful in APH | Cross reacts with other fungi Less useful in SPH and CPH |
Antibody [8,9,10,13,14] | 40–95% | 91% | Fast results (days) More useful in SPH and CPH | Take 4–8 weeks to develop antibodies Can be negative in immunocompromised individuals Cross reacts with other endemic mycoses |
Blastomyces | ||||
Sputum/ BAL Culture [1,25,26,27,28] | 66–90% | Inadequate data but presumed ~100% in most studies based on reference standard definitions. | Gold Standard for diagnosis Commercial DNA (AccuProbe; GenProbe Inc., San Diego, CA) testing can provide rapid results once there is sufficient growth | Slow growth, up to 5 weeks Diagnostic yield varies based on site DNA probe can cross react with Paracoccidioides |
Histologic or Cytopathologic examination [26,27,28,29,30] | 38–93% | Inadequate data, generally considered highly specific but misidentification may occur Presence of Blastomyces in tissue typically indicates active infection | Rapid results (hours) | Sensitivity varies based on pathologist experience Atypical forms of B. dermatitidis may require special stains |
Potassium hydroxide smear [25,27,28] | 48–90% | No data available, generally considered highly specific but false positives possible | Rapid results | Varied sensitivity |
Serum EIA Antigen [1,25,29,31,32] | 36–82% | 99% compared to non-fungal infections or healthy controls but 95.6 cross-reactivity with 90 cases of histoplasmosis | EDTA heat treatment improves sensitivity | Cross reacts with other fungi Only available at reference labs |
Urine EIA Antigen [1,27,29,31,32,33] | 76–93% | 79–99% | Can be utilized to monitor response to treatment | Cross reacts with other fungi Only available at reference labs |
Antibody testing via Complement fixation [28,34,35] | 16–77% | 30–100% | Fast results (days) | Difficult to perform, variable performance |
Antibody testing via Immunodiffusion [28,29,34,36] | 32–80% | 100% in one study, possibility for cross-reaction remains | Fast results (days) | Can be negative in immunocompromised patients |
Antibody testing via EIA (BAD-1) [33,36] | 88% | 94–99% | Low rate of cross reactivity Increased sensitivity when combined with antigen testing | May be negative early in infection and in immunocompromised individuals Not commercially available |
Coccidioides | ||||
Culture [37] | 56–60% | 100% | Grows well on most media in 2–7 days, specificity | Biohazard to laboratory staff |
Histologic or cytopathologic examination [37,38] | 22–55% | 99.6% | Rapid results | Requires invasive procedures Endospores may be mistaken for Histoplasma, Blastomyces or Cryptococcus |
Serum Antigen [39,40] | 28–73% | 90–100% | Most useful in immunocompromised and severe disease | Cross reactivity with Histoplasma and Blastomyces |
Urine Antigen [39,41,42] | 50–71% | 90–98% | Most useful in immunocompromised and severe disease | Cross reactivity with Histoplasma and Blastomyces |
Immunodiffusion Antibody Assays (IDTP and IDCF) [42,43] | 60.2–71% | 98.8% | Quantitative Titers correlated to disease severity and can monitor treatment response Commonly used as confirmatory test | Only available at reference labs Less useful in immunosuppressed patients May be negative early in disease |
EIA Antibody Assay [40,43,44,45,46,47,48,49] | 83–100% | 75–98.5% | Commercially available Faster results | Needs confirmatory testing Not quantitative IgM cross reacts with other mycoses Less useful in immunosuppressed patients May be negative early in disease |
Skin testing (Spherusol) [50] | >98% | >98% for prior exposure | Negative test may mean Coccidioides infection less likely | Only indicates prior exposure, unclear role in active infection |
Paracoccidioides | ||||
Culture [51] | 25–44% | 100% | Specificity | Requires 2–4 weeks to grow, infrequently used |
Histologic or Cytopathologic examination [52,53] | 55–97% | Presumed highly specific but inadequate data and mis-classification possible | Gold standard test, results in hours-days | Requires invasive procedures |
Double Immunodiffusion Antibody Assay [52,53,54,55,56] | 80−90% | >90%, inadequate data. | Most commonly utilized antibody test | Cross reactivity with other fungi Less useful for diagnosis of P. lutzii |
ELISA Antibody Assay [52,57,58] | 95.7% | 85–100% | Simple to perform Fast results Antibodies can be detected at low concentrations | Cross reacts with other fungi Requires confirmatory DID Ab Less useful for diagnosis of P. lutzii |
Latex Agglutination antibody testing [56] | 69.5–84.3% | 81.1% | Simple to perform | Poor reproducibility Limited availability Less useful for diagnosis of P. lutzii |
Talaromyces | ||||
Blood culture [59,60,61,62] | 72.8–83% | 100% | Gold standard Highly specific May culture other sterile sites as well | Takes up to 4 weeks to grow More likely to be positive in late stages of infection |
Sputum culture [59,60,63] | 11–34% | Inadequate data, presumed highly specific | Highly specific | Takes up to 4 weeks to grow |
Culture from other tissues [59,60,61] | Inadequate data, presumed highly specific | High specificity, for some tissues, high sensitivity | ||
-Skin | −6–90% | -Yield only accurate if the area is involved, slow growth | ||
-Bone Marrow | −17–100% | -Painful, variable sensitivity-Invasive, variable sensitivity | ||
-Lymph node | −34–100% | -Invasive, small numbers studied | ||
-Cerebrospinal fluid | −15% | -Invasive, small numbers studied | ||
-Palatal/pharynx papule | −10% | -Painful, small numbers studied | ||
-Liver | −5% | -Invasive, small numbers studied | ||
-Pleural fluid | −5% | -Invasive, small numbers studied | ||
Cytology [63] | 46% | Inadequate data, presumed highly specific but misidentification may occur | Specificity | Small numbers in studies, requires invasive procedures in most cases |
Lateral flow immunochromatographic antigen assay (4D1) [64] | 87.9% | 100% | Rapid results Easy to perform | Not commercially available Urine testing only |
Antigen via EIA (Mp1p antigen) [62] | 86.3% | 98.1% | Rapid results Sensitivity further increased when both urine and serum tested | Not commercially available |
Mab 4D1 inhibitory ELISA antigen assay [65] | 100% | 100% | Low cross reactivity Can be utilized on serum | Only tested on small sample size (n = 45), results need confirmation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poplin, V.; Smith, C.; Milsap, D.; Zabel, L.; Bahr, N.C. Diagnosis of Pulmonary Infections Due to Endemic Fungi. Diagnostics 2021, 11, 856. https://doi.org/10.3390/diagnostics11050856
Poplin V, Smith C, Milsap D, Zabel L, Bahr NC. Diagnosis of Pulmonary Infections Due to Endemic Fungi. Diagnostics. 2021; 11(5):856. https://doi.org/10.3390/diagnostics11050856
Chicago/Turabian StylePoplin, Victoria, Clarissa Smith, Dominique Milsap, Lauren Zabel, and Nathan C. Bahr. 2021. "Diagnosis of Pulmonary Infections Due to Endemic Fungi" Diagnostics 11, no. 5: 856. https://doi.org/10.3390/diagnostics11050856
APA StylePoplin, V., Smith, C., Milsap, D., Zabel, L., & Bahr, N. C. (2021). Diagnosis of Pulmonary Infections Due to Endemic Fungi. Diagnostics, 11(5), 856. https://doi.org/10.3390/diagnostics11050856