A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population—Implications for Vaccination
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical and Demographic Data and Characterization of Bacterial Isolates
3.1.1. Clinical Diagnosis, Gender, Age, and Origin of Isolates
3.1.2. Serogroup/Serotype Distribution of Isolates
3.1.3. Molecular Characterization of Isolates
3.1.4. Antimicrobial Resistance of Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hausdorff, W.P.; Feikin, D.R.; Klugman, K.P. Epidemiological differences among pneumococcal serotypes. Lancet Infect. Dis. 2005, 5, 83–93. [Google Scholar] [CrossRef]
- Acevedo, R.; Bai, X.; Borrow, R.; Caugant, D.A.; Carlos, J.; Ceyhan, M.; Christensen, H.; Climent, Y.; de Wals, P.; Dinleyici, E.C.; et al. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev. Vaccines 2019, 18, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, S.K.; Moss, W.J.; Halsey, N. Haemophilus influenzae type b conjugate vaccine use and effectiveness. Lancet Infect. Dis. 2008, 8, 435–443. [Google Scholar] [CrossRef]
- Whitney, C.G.; Farley, M.M.; Hadler, J.; Harrison, L.H.; Bennett, N.M.; Lynfield, R.; Reingold, A.; Cieslak, P.R.; Pilishvili, T.; Jackson, D.; et al. Decline in Invasive Pneumococcal Disease after the Introduction of Protein–Polysaccharide Conjugate Vaccine. N. Engl. J. Med. 2003, 348, 1737–1746. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, R.; Dias, J.G.; Ramliden, M.; Ködmön, C.; Economopoulou, A.; Beer, N.; Celentano, L.P.; Kanitz, E.; Richter, L.; Mattheus, W.; et al. The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004–2014. Vaccine 2017, 35, 2034–2041. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Meningococcal Vaccines: WHO Position Paper; Weekly Epidemiological Record; WHO: Geneva, Switzerland, 2011; Volume 86, pp. 521–539. [Google Scholar]
- World Health Organization (WHO). Pneumococcal Conjugate Vaccines in Infants and Children Under 5 Years of Age: WHO Position Paper February; Weekly Epidemiological Record; WHO: Geneva, Switzerland, 2019; Volume 94, pp. 85–104. [Google Scholar]
- Donald, R.G.K.; Hawkins, J.C.; Hao, L.; Liberator, P.; Jones, T.R.; Harris, S.L.; Perez, J.L.; Eiden, J.J.; Jansen, K.U.; Anderson, A.S. Meningococcal serogroup B vaccines: Estimating breadth of coverage. Hum. Vaccines Immunother. 2017, 13, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrow, R.; Alarcón, P.; Carlos, J.; Caugant, D.A.; Christensen, H.; Debbag, R.; de Wals, P.; Echaniz-Aviles, G.; Findlow, J.; Head, C.; et al. The Global Meningococcal Initiative: Global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection. Expert Rev. Vaccines 2017, 16, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Soeters, H.M.; Blain, A.; Pondo, T.; Doman, B.; Farley, M.M.; Harrison, L.H.; Lynfield, R.; Miller, L.; Petit, S.; Reingold, A.; et al. Current Epidemiology and Trends in Invasive Haemophilus influenzae Disease—United States, 2009–2015. Clin. Infect. Dis. 2018, 67, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberger, D.M.; Malley, R.; Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011, 378, 1962–1973. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Borrow, R.; Bukovski, S.; Caugant, D.A.; Culic, D.; Delic, S.; Dinleyici, E.C.; Eloshvili, M.; Erdősi, T.; Galajeva, J.; et al. Prevention and control of meningococcal disease: Updates from the Global Meningococcal Initiative in Eastern Europe. J. Infect. 2019, 79, 528–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijač, V.; Opavski, N.; Markovic, M.; Gajic, I.; Vasiljevic, Z.; Sipetic, T.; Bajcetic, M. Trends in macrolide resistance of respiratory tract pathogens in the paediatric population in Serbia from 2004 to 2009. Epidemiol. Infect. 2014, 143, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, V.; Seguljev, Z.; Ristic, M.; Djekic-Malbasa, J.; Radosavljevic, B.; Medic, D.; Mihajlovic-Ukropina, M.; Hadnadjev, M.; Gajic, I.; Opavski, N. Streptococcus pneumoniae serotype distribution in Vojvodina before the introduction of pneumococcal conjugate vaccines into the national immunization program. Srp. Arh. Celok. Lek. 2016, 144, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Popovic, S.; Hadnadjev, M.; Gajic, I.; Mijac, V.; Kekic, D.; Smitran, A.; Ranin, L.; Opavski, N. Characterization of macrolide-resistant non-invasive pneumococci in the pre-vaccine era in Serbia. Acta Microbiol. Immunol. Hung. 2018, 65, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torumkuney, D.; Nica, M.; Nistor, I.; Vatcheva-Dobrevska, R.; Petrović, V.; Stoica, A.; Hanicar, B.; Antic, D.; Morrissey, I. Results from the Survey of Antibiotic Resistance (SOAR) 2014–16 in Bulgaria, Romania, Serbia and Croatia. J. Antimicrob. Chemother. 2018, 73, v2–v13. [Google Scholar] [CrossRef]
- Pollard, A.J.; Maiden, M. Meningococcal Disease; Humana Press: Totowa, NJ, USA, 2001. [Google Scholar]
- Gillespie, S.H.; Ullman, C.; Smith, M.D.; Emery, V. Detection of Streptococcus pneumoniae in sputum samples by PCR. J. Clin. Microbiol. 1994, 32, 1308–1311. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Twenty Seventh Informational Supplement M100-S27; CLSI: Annapolis Junction, MD, USA, 2017. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 8.1, 2018; EUCAST: Växjö, Sweden, 2018. [Google Scholar]
- Suker, J.; Feavers, I.M.; Achtman, M.; Morelli, G.; Wang, J.-F.; Maiden, M.C. The porA gene in serogroup A meningococci: Evolutionary stability and mechanism of genetic variation. Mol. Microbiol. 1994, 12, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.A.L.; Feavers, I.M.; Maiden, M. Antigenic diversity of meningococcal enterobactin receptor FetA, a vaccine component. Microbiology 2003, 149, 1849–1858. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Spratt, B.G. A multilocus sequence typing scheme for Streptococcus pneumoniae: Identification of clones associated with serious invasive disease. Microbiology 1998, 144, 3049–3060. [Google Scholar] [CrossRef] [Green Version]
- Jandova, Z.; Musilek, M.; Vackova, Z.; Kozáková, J.; Krizova, P. Serogroup and Clonal Characterization of Czech Invasive Neisseria meningitidis Strains Isolated from 1971 to 2015. PLoS ONE 2016, 11, e0167762. [Google Scholar] [CrossRef] [Green Version]
- Čižman, M.; Gubina, M.; Paragi, M.; Beović, B.; Lesnicar, G. Meningococcal disease in Slovenia (1993–1999): Serogroups and susceptibility to antibiotics. Int. J. Antimicrob. Agents 2001, 17, 27–31. [Google Scholar] [CrossRef]
- Bröker, M.; Bukovski, S.; Culic, D.; Jacobsson, S.; Koliou, M.; Kuusi, M.; Simões, M.J.; Skoczynska, A.; Toropainen, M.; Taha, M.-K.; et al. Meningococcal serogroup Y emergence in Europe: High importance in some European regions in 2012. Hum. Vaccines Immunother. 2014, 10, 1725–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladhani, S.N.; Beebeejaun, K.; Lucidarme, J.; Campbell, H.; Gray, S.; Kaczmarski, E.; Ramsay, M.E.; Borrow, R. Increase in Endemic Neisseria meningitidis Capsular Group W Sequence Type 11 Complex Associated with Severe Invasive Disease in England and Wales. Clin. Infect. Dis. 2015, 60, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Vacca, P.; Fazio, C.; Neri, A.; Ambrosio, L.; Palmieri, A.; Stefanelli, P. Neisseria meningitidis Antimicrobial Resistance in Italy, 2006 to 2016. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Bukovski, S.; Vacca, P.; Anselmo, A.; Knezovic, I.; Fazio, C.; Neri, A.; Ciammaruconi, A.; Fortunato, A.; Palozzi, A.M.; Fillo, S.; et al. Molecular characterization of a collection of Neisseria meningitidis isolates from Croatia, June 2009 to January 2014. J. Med. Microbiol. 2016, 65, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Bratcher, H.B.; Brehony, C.; Heuberger, S.; Pieridou-Bagatzouni, D.; Krizova, P.; Hoffmann, S.; Toropainen, M.; Taha, M.-K.; Claus, H.; Tzanakaki, G.; et al. Establishment of the European meningococcal strain collection genome library (EMSC-GL) for the 2011 to 2012 epidemiological year. Eurosurveillance 2018, 23, 17-00474. [Google Scholar] [CrossRef] [PubMed]
- Brehony, C.; Rodrigues, C.M.; Borrow, R.; Smith, A.; Cunney, R.; Moxon, E.R.; Maiden, M.C. Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunisation. Vaccine 2016, 34, 4690–4697. [Google Scholar] [CrossRef] [Green Version]
- Medini, D.; Stella, M.; Wassil, J. MATS: Global coverage estimates for 4CMenB, a novel multicomponent meningococcal B vaccine. Vaccine 2015, 33, 2629–2636. [Google Scholar] [CrossRef] [Green Version]
- McNeil, L.K.; Zagursky, R.J.; Lin, S.L.; Murphy, E.; Zlotnick, G.W.; Hoiseth, S.K.; Jansen, K.U.; Anderson, A.S. Role of Factor H Binding Protein in Neisseria meningitidis Virulence and Its Potential as a Vaccine Candidate To Broadly Protect against Meningococcal Disease. Microbiol. Mol. Biol. Rev. 2013, 77, 234–252. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, T.; Ferroni, E.; Curtale, F.; Rossi, P.G.; Borgia, P. Streptococcus pneumoniae in western Europe: Serotype distribution and incidence in children less than 2 years old. Lancet Infect. Dis. 2006, 6, 405–410. [Google Scholar] [CrossRef]
- Dobay, O.; Kardos, S.; Kristof, K.; Knausz, M.; Rozgonyi, F.; Nagy, K.; Ungvári, Á.; Hajdú, E.; Szabó, J.; Nagy, E.; et al. Genotypic and phenotypic characterisation of invasive Streptococcus pneumoniae isolates from Hungary, and coverage of the conjugate vaccines. J. Clin. Pathol. 2010, 63, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Guzvinec, M.; Tesović, G.; Tambić-Andrasević, A.; Zidovec-Lepej, S.; Vukić, B.T.; Begovac, J. The epidemiology of invasive Streptococcus pneumoniae disease in Croatian children. Med. Sci. Monit. 2008, 14, 59–64. [Google Scholar]
- Paragi, M.; Kolman, J.; Kraigher, A.; Čižman, M.; Gubina, M.; Ribič, H. Possibility of application of new pneumococcal conjugate vaccines in children in Slovenia. Vaccine 2003, 21, 4708–4714. [Google Scholar] [CrossRef]
- Lynch, J.P.; Zhanel, G.G. Streptococcus pneumoniae: Epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr. Opin. Pulm. Med. 2010, 16, 217–225. [Google Scholar] [CrossRef]
- Versporten, A.; Bolokhovets, G.; Ghazaryan, L.; Abilova, V.; Pyshnik, G.; Spasojevic, T.; Korinteli, I.; Raka, L.; Kambaralieva, B.; Cizmovic, L.; et al. Antibiotic use in eastern Europe: A cross-national database study in coordination with the WHO Regional Office for Europe. Lancet Infect. Dis. 2014, 14, 381–387. [Google Scholar] [CrossRef]
- Torné, A.N.; Dias, J.G.; Quinten, C.; Hruba, F.; Busana, M.C.; Lopalco, P.L.; Gauci, A.J.A.; Pastore-Celentano, L. European enhanced surveillance of invasive pneumococcal disease in 2010: Data from 26 European countries in the post-heptavalent conjugate vaccine era. Vaccine 2014, 32, 3644–3650. [Google Scholar] [CrossRef] [PubMed]
- Golden, A.R.; Adam, H.J.; Karlowsky, J.A.; Baxter, M.; Nichol, K.A.; Martin, I.; Demczuk, W.; van Caeseele, P.; Gubbay, J.B.; Lefebvre, B.; et al. Molecular characterization of predominant Streptococcus pneumoniae serotypes causing invasive infections in Canada: The SAVE study, 2011. J. Antimicrob. Chemother. 2018, 73, vii20–vii31. [Google Scholar] [CrossRef] [PubMed]
- Wouters, I.; Desmet, S.; van Heirstraeten, L.; Blaizot, S.; Verhaegen, J.; van Damme, P.; Malhotra-Kumar, S.; Theeten, H. Follow-up of serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae in child carriage after a PCV13-to-PCV10 vaccine switch in Belgium. Vaccine 2019, 37, 1080–1086. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. The impact of 10-valent and 13-valent pneumococcal conjugate vaccines on serotype 19A invasive pneumococcal disease. Expert Rev. Vaccines 2015, 14, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO)—Central Asian and Eastern European Surveillance of Antimicrobial Resistance (CAESAR). Annual Report 2017. 2018. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/antimicrobial-resistance/publications/2017/central-asian-and-eastern-european-surveillance-of-antimicrobial-resistance.-annual-report-2017-2018 (accessed on 28 April 2021).
- Sihvonen, R.; Siira, L.; Toropainen, M.; Kuusela, P.; Pätäri-Sampo, A. Streptococcus pneumoniae antimicrobial resistance decreased in the Helsinki Metropolitan Area after routine 10-valent pneumococcal conjugate vaccination of infants in Finland. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2109–2116. [Google Scholar] [CrossRef]
- Ardanuy, C.; Rolo, D.; Fenoll, A.; Tarragó, D.; Calatayud, L.; Liñares, J. Emergence of a multidrug-resistant clone (ST320) among invasive serotype 19A pneumococci in Spain. J. Antimicrob. Chemother. 2009, 64, 507–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.R.; Gertz, J.R.E.; Woodbury, R.L.; Barkocy-Gallagher, G.A.; Schaffner, W.; Lexau, C.; Gershman, K.; Reingold, A.; Farley, M.; Harrison, L.H.; et al. Population Snapshot of Emergent Streptococcus pneumonia Serotype 19A in the United States 2005. J. Infect. Dis. 2008, 197, 1016–1027. [Google Scholar] [CrossRef] [Green Version]
- Setchanova, L.P.; Alexandrova, A.; Dacheva, D.; Mitov, I.; Kaneva, R.; Mitev, V. Dominance of Multidrug-Resistant Denmark14-32 (ST230) Clone Among Streptococcus pneumonia Serotype 19A Isolates Causing Pneumococcal Disease in Bulgaria from 1992 to 2013. Microb. Drug Resist. 2015, 21, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ip, M.; Ang, I.; Liyanapathirana, V.; Ma, H.; Lai, R. Genetic Analyses of Penicillin Binding Protein Determinants in Multidrug-Resistant Streptococcus pneumoniae Serogroup 19 CC320/271 Clone with High-Level Resistance to Third-Generation Cephalosporins. Antimicrob. Agents Chemother. 2015, 59, 4040–4045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.D.G.; Pimenta, F.C.; Gertz, R.E.; Joshi, H.H.; Trujillo, A.A.; Keys, L.E.; Findley, J.; Moura, I.S.; Park, I.H.; Hollingshead, S.K.; et al. PCR-Based Quantitation and Clonal Diversity of the Current Prevalent Invasive Serogroup 6 Pneumococcal Serotype, 6C, in the United States in 1999 and 2006. J. Clin. Microbiol. 2008, 47, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, S.; Litt, D.; Almond, R.; Findlow, J.; Linley, E.; Ramsay, M.; Borrow, R.; Ladhani, S. Haemophilus influenzae type b (Hib) seroprevalence and current epidemiology in England and Wales. J. Infect. 2018, 76, 335–341. [Google Scholar] [CrossRef]
Neisseria meningitidis | Streptococcus pneumoniae | Haemophilus influenzae | ||||
---|---|---|---|---|---|---|
N | % | N | % | N | % | |
Diagnosis | ||||||
Occult bacteriaemia | / | / | 29 | 21.0 | / | / |
Sepsis | 19 | 35.8 | 51 | 37.0 | 8 | 72.7 |
Meningitis | 34 | 64.2 | 37 | 26.8 | 2 | 18.2 |
Other | 0 | 0 | 21 | 15.2 | 1 | 9.1 |
Source of Isolation | ||||||
Blood | 19 | 35.8 | 93 | 67.4 | 8 | 72.7 |
Cerebrospinal fluid | 34 | 64.2 | 37 | 26.8 | 2 | 18.2 |
Other | 0 | 0 | 8 | 5.8 | 1 | 9.1 |
Gender | ||||||
Male | 35 | 66 | 74 | 53.6 | 8 | 72.7 |
Female | 18 | 34 | 64 | 46.4 | 3 | 27.3 |
Age Group | ||||||
0–6 m (<1 y *) | 20 | 37.7 | 6 | 4.3 | 0 | 0 |
>6–24 m (1–2 y *) | 1 | 20.8 | 82 | 59.4 | 9 | 82 |
>2–5 y | 7 | 13.2 | 27 | 19.6 | 2 | 18 |
>5–18 y | 15 | 28.3 | 23 | 16.7 | 0 | 0 |
Neisseria meningitidis | Streptococcus pneumoniae | ||||
---|---|---|---|---|---|
Serogroup | PorA Genotype | N | Serotype | Sequence Type | N |
B | P1.5-1,10-4 | 7 | 19F | ST320 | 11 |
P1.7,16 | 2 | ST271 | 7 | ||
P1.5-1 | 2 | ST179 | 3 | ||
P1.5-1,18; P1.5,2 | 9 * | 14 | ST15 | 9 | |
P1.7; P1.7-1; | 6B | ST273 | 8 | ||
P1.7-20; P1.7-20,4 | ST8144 | 2 | |||
P1.18-1,3; P1.18-1,34 | ST5240 | 1 | |||
P1.19,15 | 6A | ST473 | 5 | ||
C | P1.5,2; P1.5,2-59; P1.7 | 5 * | 23F | ST81 | 7 |
P1.7-2,15; P1.18-7,10 | 7F | ST230 | 1 | ||
W-135 | P1.18-1,3 | 1 | 19A | ST878 | 2 |
Y | P1.5-1,2-59 | 1 | 9V | ST156 | 1 |
Total | 27 | Total | 57 |
Serotype-Specific Antimicrobial Non-Susceptibility Rate (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Serotypes | N | % | Pen | CXT | Ery | CL | SXT | Tet | CHL | Nor |
19F | 30 | 21.7 | 86.7 | 66.7 | 73.3 | 80 | 70 | 80 | 0 | 3.3 |
14 | 21 | 15.2 | 85.7 | 61.9 | 57.1 | 61.9 | 85.7 | 38.1 | 28.6 | 9.5 |
6B | 14 | 10.1 | 78.6 | 71.4 | 85.7 | 71.4 | 92.9 | 85.7 | 57.1 | 0 |
6A | 11 | 8 | 81.8 | 0 | 90.9 | 9.1 | 9.1 | 9.1 | 0 | 9.1 |
18C | 9 | 6.5 | 22.2 | 0 | 22.2 | 0 | 33.3 | 11.1 | 0 | 0 |
23F | 7 | 5.1 | 85.7 | 57.1 | 85.7 | 85.7 | 71.4 | 85.7 | 42.9 | 0 |
3 | 6 | 4.3 | 33.3 | 0 | 33.3 | 16.7 | 0 | 0 | 0 | 0 |
7F | 6 | 4.3 | 50 | 0 | 16.7 | 16.7 | 0 | 16.7 | 0 | 0 |
19A | 5 | 3.6 | 60 | 40 | 40 | 20 | 40 | 40 | 0 | 0 |
Other | 29 | 21 | 41.4 | 6.9 | 20.7 | 3.4 | 27.6 | 10.3 | 10.3 | 3.4 |
Total | 138 | 100 | 66.7 | 37 | 55 | 42.8 | 52.2 | 42.8 | 14.5 | 3.6 |
Overall rate (%) of resistance attributable to vaccine serotypes | ||||||||||
PCV 10 Serotypes | 94 | 68.1 | 72.8 | 92.2 | 73.7 | 88.1 | 83.3 | 89.8 | 85 | 60 |
PCV 13 Serotypes | 116 | 84.1 | 89.1 | 96.1 | 92.1 | 93.2 | 87.5 | 94.9 | 85 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delic, S.; Mijac, V.; Gajic, I.; Kekic, D.; Ranin, L.; Jegorovic, B.; Culic, D.; Cirkovic, V.; Siljic, M.; Stanojevic, M.; et al. A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population—Implications for Vaccination. Diagnostics 2021, 11, 1059. https://doi.org/10.3390/diagnostics11061059
Delic S, Mijac V, Gajic I, Kekic D, Ranin L, Jegorovic B, Culic D, Cirkovic V, Siljic M, Stanojevic M, et al. A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population—Implications for Vaccination. Diagnostics. 2021; 11(6):1059. https://doi.org/10.3390/diagnostics11061059
Chicago/Turabian StyleDelic, Snezana, Vera Mijac, Ina Gajic, Dusan Kekic, Lazar Ranin, Boris Jegorovic, Davor Culic, Valentina Cirkovic, Marina Siljic, Maja Stanojevic, and et al. 2021. "A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population—Implications for Vaccination" Diagnostics 11, no. 6: 1059. https://doi.org/10.3390/diagnostics11061059
APA StyleDelic, S., Mijac, V., Gajic, I., Kekic, D., Ranin, L., Jegorovic, B., Culic, D., Cirkovic, V., Siljic, M., Stanojevic, M., Paragi, M., Markovic, M., & Opavski, N. (2021). A Laboratory-Based Surveillance Study of Invasive Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae Diseases in a Serbian Pediatric Population—Implications for Vaccination. Diagnostics, 11(6), 1059. https://doi.org/10.3390/diagnostics11061059