ACO (Asthma–COPD Overlap) Is Independent from COPD: The Case Against
Abstract
:1. Introduction
2. Defining ACO
3. A Pathology of ACO?
4. The Clinical Significance of ACO
5. The Physiology of ACO
6. Therapeutic Implications of ACO
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Global Strategy for the Diagnosis, Management and Prevention of COPD; 2021 Report. Available online: https://goldcopd.org/wp-content/uploads/2020/11/GOLD-REPORT-2021-v1.1-25Nov20_WMV.pdf (accessed on 12 May 2021).
- Fletcher, C.; Peto, R. The natural history of chronic airflow obstruction. Br. Med. J. 1977, 1, 1645–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Dockery, D.W.; Ware, J.H.; Speizer, F.E.; Ferris, B.G. Effects of Cigarette Smoking on Rate of Loss of Pulmonary Function in Adults: A Longitudinal Assessment. Am. Rev. Respir. Dis. 1992, 146, 1345–1348. [Google Scholar] [CrossRef]
- Anthonisen, N.R.; Connett, J.E.; Kiley, J.P.; Altose, M.D.; Bailey, W.C.; Buist, A.S.; Conway, W.A.; Enright, P.L.; Kanner, R.E.; O’Hara, P. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 1994, 272, 1497–1505. [Google Scholar] [CrossRef]
- Burchfiel, C.M.; Marcus, E.B.; Curb, J.D.; Maclean, C.J.; Vollmer, W.M.; Johnson, L.R.; Fong, K.O.; Rodriguez, B.L.; Masaki, K.H.; Buist, A.S. Effects of smoking and smoking cessation on longitudinal decline in pulmonary function. Am. J. Respir. Crit. Care Med. 1995, 151, 1778–1785. [Google Scholar] [CrossRef]
- Lange, P.; Celli, B.R.; Agustí, A.; Jensen, G.B.; Divo, M.; Faner, R.; Guerra, S.; Marott, J.L.; Martinez, F.D.; Martinez-Camblor, P.; et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2015, 373, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Gelb, A.F.; Hogg, J.C.; Müller, N.L.; Schein, M.J.; Kuei, J.; Tashkin, D.P.; Epstein, J.D.; Kollin, J.; Green, R.H.; Zamel, N.; et al. Contribution of Emphysema and Small Airways in COPD. Chest 1996, 109, 353–359. [Google Scholar] [CrossRef]
- Drummond, M.B.; Hansel, N.N.; Connett, J.E.; Scanlon, P.D.; Tashkin, N.P.; Wise, R.A. Spirometric Predictors of Lung Function Decline and Mortality in Early Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1301–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardie, J.A.; Buist, A.S.; Vollmer, W.M.; Ellingsen, I.; Bakke, P.S.; Morkve, O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur. Respir. J. 2002, 20, 1117–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanney, M.P.; Ruppel, G.; Enright, P.L.; Pedersen, O.F.; Crapo, R.O.; Miller, M.R.; Jensen, R.L.; Falaschetti, E.; Schouten, J.P.; Hankinson, J.L.; et al. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax 2008, 63, 1046–1051. [Google Scholar] [CrossRef] [Green Version]
- Calverley, P.M.A.; Mueller, A.; Fowler, A.; Metzdorf, N.; Wise, R.A. The Effect of Defining Chronic Obstructive Pulmonary Disease by the Lower Limit of Normal of FEV(1)/FVC Ratio in Tiotropium Safety and Performance in Respimat Participants. Ann. Am. Thorac. Soc. 2018, 15, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.P.; Balte, P.P.; Schwartz, J.E.; Cassano, P.A.; Couper, D.; Jacobs, D.R.; Kalhan, R.; O’Connor, G.T.; Yende, S.; Sanders, J.L.; et al. Discriminative Accuracy of FEV1: FVC Thresholds for COPD-Related Hospitalization and Mortality. JAMA 2019, 321, 2438–2447. [Google Scholar] [CrossRef] [Green Version]
- Kerstjens, H.A.; Brand, P.L.; Hughes, M.D.; Robinson, N.J.; Postma, D.S.; Sluiter, H.J.; Bleecker, E.R.; Dekhuijzen, P.R.; De Jong, P.M.; Mengelers, H.J.; et al. A Comparison of Bronchodilator Therapy with or without Inhaled Corticosteroid Therapy for Obstructive Airways Disease. N. Engl. J. Med. 1992, 327, 1413–1419. [Google Scholar] [CrossRef]
- Brand, P.L.; Quanjer, P.H.; Postma, D.S.; Kerstjens, H.A.; Koeter, G.H.; Dekhuijzen, P.N.; Sluiter, H.J. Interpretation of bronchodilator response in patients with obstructive airways disease. The Dutch Chronic Non-Specific Lung Disease (CNSLD) Study Group. Thorax 1992, 47, 429–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, P.G.; Simpson, J.L. The overlap syndrome of asthma and COPD: What are its features and how important is it? Thorax 2009, 64, 728–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, E.D.; Reddel, H.; van Zyl-Smit, R.; Agusti, A. The asthma–COPD overlap syndrome: Towards a revised taxonomy of chronic airways diseases? Lancet Respir. Med. 2015, 3, 719–728. [Google Scholar] [CrossRef]
- Postma, D.S.; Rabe, K.F. The Asthma-COPD Overlap Syndrome. N. Engl. J. Med. 2015, 373, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Sin, D.D.; Miravitlles, M.; Mannino, D.M.; Soriano, J.B.; Price, D.; Celli, B.R.; Leung, J.M.; Nakano, Y.; Park, H.Y.; Wark, P.; et al. What is asthma-COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur. Respir. J. 2016, 48, 664–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciba Guest Symposium. Terminology, definitions, and classification of chronic pulmonary emphysema and related conditions. Thorax 1959, 14, 286–299. [Google Scholar] [CrossRef] [Green Version]
- Peto, R.; Speizer, F.E.; Cochrane, A.L.; Moore, F.; Fletcher, C.M.; Tinker, C.M.; Higgins, I.T.; Gray, R.G.; Richards, S.M.; Gilliland, J.; et al. The relevance in adults of air-flow obstruction, but not of mucus hypersecretion, to mortality from chronic lung disease. Results from 20 years of prospective observation. Am. Rev. Respir. Dis. 1983, 128, 491–500. [Google Scholar] [CrossRef]
- Vestbo, J.; Rasmussen, F.V. Respiratory symptoms and FEV1 as predictors of hospitalization and medication in the following 12 years due to respiratory disease. Eur. Respir. J. 1989, 2, 710–715. [Google Scholar]
- Vestbo, J.; Prescott, E.; Lange, P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am. J. Respir. Crit. Care Med. 1996, 153, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Burrows, B.; Niden, A.H.; Fletcher, C.M.; Jones, N.L. Clinical Types of Chronic Obstructive Lung Disease in London and in Chicago. A Study of One Hundred Patients. Am. Rev. Respir. Dis. 1964, 90, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Manicatide, M.A.; Teculescu, D.B.; Racoveanu, C.L. Hypoxemia in chronic bronchitis and pulmonary emphysema. Med. Interne 1977, 15, 41–48. [Google Scholar] [PubMed]
- Jacques, J.; Cooney, T.P.; Silvers, G.W.; Petty, T.L.; Wright, J.L.; Thurlbeck, W.M. The Lungs and Causes of Death in the Nocturnal Oxygen Therapy Trial. Chest 1984, 86, 230–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orie, N.G.; Slutter, H.J.; Tammeling, G.J. Chronic nonspecific respiratory diseases (Dutch). Ned. Tijdschr. Geneeskd. 1961, 105, 2136–2139. [Google Scholar]
- American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. Am. Rev. Respir. Dis. 1987, 136, 225–244. [Google Scholar] [CrossRef]
- Grol, M.H.; Gerritsen, J.; Vonk, J.M.; Schouten, J.P.; Koëter, G.H.; Rijcken, B.; Postma, D.S. Risk Factors for Growth and Decline of Lung Function in Asthmatic Individuals up to Age 42 years. Am. J. Respir. Crit. Care Med. 1999, 160, 1830–1837. [Google Scholar] [CrossRef]
- Sears, M.R.; Greene, J.M.; Willan, A.R.; Wiecek, E.M.; Taylor, D.R.; Flannery, E.M.; Cowan, J.O.; Herbison, G.P.; Silva, P.A.; Poulton, R. A Longitudinal, Population-Based, Cohort Study of Childhood Asthma Followed to Adulthood. N. Engl. J. Med. 2003, 349, 1414–1422. [Google Scholar] [CrossRef] [Green Version]
- Diagnosis of Diseases of Chronic Airflow Limitation: Asthma, COPD and Asthma-COPD Overlap Syndrome (ACOS). Available online: https://goldcopd.org/wp-content/uploads/2016/04/GOLD_ACOS_2015.pdf (accessed on 13 May 2021).
- Woodruff, P.G.; Berge, M.V.D.; Boucher, R.C.; Brightling, C.; Burchard, E.G.; Christenson, S.A.; Han, M.K.; Holtzman, M.J.; Kraft, M.; Lynch, D.A.; et al. American Thoracic Society/National Heart, Lung, and Blood Institute Asthma-Chronic Obstructive Pulmonary Disease Overlap Workshop Report. Am. J. Respir. Crit. Care Med. 2017, 196, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Rogliani, P. Do we really need asthma-chronic obstructive pulmonary disease overlap syndrome? J. Allergy Clin. Immunol. 2016, 138, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Barczyk, A.; Maskey-Warzęchowska, M.; Górska, K.; Barczyk, M.; Kuziemski, K.; Śliwiński, P.; Batura-Gabryel, H.; Mróz, R.; Kania, A.; Obojski, A.; et al. Asthma-COPD Overlap-A Discordance Between Patient Populations Defined by Different Diagnostic Criteria. J. Allergy Clin. Immunol. Pract. 2019, 7, 2326–2336.e5. [Google Scholar] [CrossRef]
- Scott, S.; Currie, J.; Albert, P.; Calverley, P.; Wilding, J. Risk of Misdiagnosis, Health-Related Quality of Life, and BMI in Patients Who Are Overweight with Doctor-Diagnosed Asthma. Chest 2012, 141, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Brightling, C.E.; Bradding, P.; Symon, F.A.; Holgate, S.T.; Wardlaw, A.J.; Pavord, I.D. Mast-Cell Infiltration of Airway Smooth Muscle in Asthma. N. Engl. J. Med. 2002, 346, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Perskvist, N.; Edston, E. Differential accumulation of pulmonary and cardiac mast cell-subsets and eosinophils between fatal anaphylaxis and asthma death: A post mortem comparative study. Forensic Sci. Int. 2007, 169, 43–49. [Google Scholar] [CrossRef]
- James, A.L.; Bai, T.R.; Mauad, T.; Abramson, M.; Dolhnikoff, M.; McKay, K.O.; Maxwell, P.S.; Elliot, J.G.; Green, F.H. Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur. Respir. J. 2009, 34, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- McDonough, J.; Yuan, R.; Suzuki, M.; Seyednejad, N.; Elliott, W.M.; Sanchez, P.G.; Wright, A.C.; Gefter, W.B.; Litzky, L.; Coxson, H.O.; et al. Small-Airway Obstruction and Emphysema in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2011, 365, 1567–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.-K.; Vasilescu, D.M.; Booth, S.; Hsieh, A.; Katsamenis, O.; Fishbane, N.; Elliott, W.M.; Kirby, M.; Lackie, P.; Sinclair, I.; et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: A cross-sectional study. Lancet Respir. Med. 2018, 6, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Hartley, R.A.; Barker, B.L.; Newby, C.; Pakkal, M.; Baldi, S.; Kajekar, R.; Kay, R.; Laurencin, M.; Marshall, R.P.; Sousa, A.R.; et al. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study. J. Allergy Clin. Immunol. 2016, 137, 1413–1422.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karayama, M.; Inui, N.; Yasui, H.; Kono, M.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Hashimoto, D.; Enomoto, N.; Fujisawa, T.; et al. Physiological and morphological differences of airways between COPD and asthma-COPD overlap. Sci. Rep. 2019, 9, 7818. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Savic, S.; Siebeneichler, A.; Strobel, W.; Jones, P.W.; Tamm, M.; Stolz, D. A pilot study to test the feasibility of histological characterisation of asthma-COPD overlap. Eur. Respir. J. 2019, 53, 1801941. [Google Scholar] [CrossRef]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef]
- Hastie, A.T.; Martinez, F.J.; Curtis, J.L.; Doerschuk, C.M.; Hansel, N.N.; Christenson, S.; Putcha, N.; Ortega, V.E.; Li, X.; Barr, R.G.; et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2017, 5, 956–967. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2021. Available online: https://ginasthma.org/wp-content/uploads/2021/04/GINA-2021-Main-Report_FINAL_21_04_28-WMS.pdf (accessed on 13 May 2021).
- Ortega, H.G.; Yancey, S.W.; Mayer, B.; Gunsoy, N.B.; Keene, O.N.; Bleecker, E.R.; Brightling, C.E.; Pavord, I.D. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: A secondary analysis of the DREAM and MENSA studies. Lancet Respir. Med. 2016, 4, 549–556. [Google Scholar] [CrossRef]
- Vedel-Krogh, S.; Nielsen, S.F.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Blood Eosinophils and Exacerbations in Chronic Obstructive Pulmonary Disease. The Copenhagen General Population Study. Am. J. Respir. Crit. Care Med. 2016, 193, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, T.; He, R.; Li, A.; Dang, W.; Liu, X.; Chen, M. The Value of Inflammatory Biomarkers in Differentiating Asthma–COPD Overlap from COPD. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 3025–3037. [Google Scholar] [CrossRef] [PubMed]
- Pérez-De-Llano, L.; On behalf of the CHACOS Study Group; Cosio, B.G. Asthma-COPD overlap is not a homogeneous disorder: Further supporting data. Respir. Res. 2017, 18, 183. [Google Scholar] [CrossRef] [Green Version]
- Reddel, H.K.; Vestbo, J.; Agustí, A.; Anderson, G.P.; Bansal, A.T.; Beasley, R.; Bel, E.H.; Janson, C.; Make, B.; Pavord, I.D.; et al. Heterogeneity within and between physician-diagnosed asthma and/or COPD: NOVELTY cohort. Eur. Respir. J. 2021, 25, 2003927. [Google Scholar] [CrossRef]
- Christenson, S.A.; Steiling, K.; van den Berge, M.; Hijazi, K.; Hiemstra, P.S.; Postma, D.S.; Lenburg, M.E.; Spira, A.; Woodruff, P.G. Asthma-COPD overlap. Clinical relevance of ge-nomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015, 191, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Morgan, B.W.; Grigsby, M.R.; Siddharthan, T.; Chowdhury, M.; Rubinstein, A.; Gutierrez, L.; Irazola, V.; Miranda, J.J.; Bernabe-Ortiz, A.; Alam, D.; et al. Epidemiology and risk factors of asthma-chronic obstructive pulmonary disease overlap in low- and middle-income countries. J. Allergy Clin. Immunol. 2019, 143, 1598–1606. [Google Scholar] [CrossRef]
- Toledo-Pons, N.; van Boven, J.F.M.; Román-Rodríguez, M.; Pérez, N.; Felices, J.L.V.; Soriano, J.B.; Cosío, B.G. ACO: Time to move from the description of different phenotypes to the treatable traits. PLoS ONE 2019, 14, e0210915. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Liu, C.; Putman, B.; Zeig-Owens, R.; Hall, C.B.; Schwartz, T.; Webber, M.P.; Cohen, H.W.; Berger, K.I.; Nolan, A.; et al. Predictors of Asthma/COPD Overlap in FDNY Firefighters with World Trade Center Dust Exposure: A Longitudinal Study. Chest 2018, 154, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, J.; Zhao, H.; Hardin, M.; Hersh, C.P.; Crapo, J.; Kim, V.; Criner, G.J. Analysis of Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome Defined on the Basis of Bronchodilator Response and Degree of Emphysema. Ann. Am. Thorac. Soc. 2016, 13, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, J.A.; Nibber, A.; Chisholm, A.; Price, D.; Bateman, E.D.; Bjermer, L.; van Boven, J.F.M.; Brusselle, G.; Costello, R.W.; Dandurand, R.J.; et al. Prevalence and Characteristics of Asthma-Chronic Obstructive Pulmonary Disease Overlap in Routine Primary Care Practices. Ann. Am. Thorac. Soc. 2019, 16, 1143–1150. [Google Scholar] [CrossRef]
- Izbicki, G.; Teo, V.; Liang, J.; Russell, G.M.; Holland, A.E.; Zwar, N.A.; Bonevski, B.; Mahal, A.; Eustace, P.; Paul, E.; et al. Clinical Characteristics of Patients with Asthma COPD Overlap (ACO) In Australian Primary Care. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2745–2752. [Google Scholar] [CrossRef] [Green Version]
- Miravitlles, M.; Barrecheguren, M.; Roman-Rodriguez, M. Is a previous diagnosis of asthma a reliable criterion for asthma–COPD overlap syndrome in a patient with COPD? Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1745–1752. [Google Scholar] [CrossRef] [Green Version]
- Llanos, J.-P.; Ortega, H.; Germain, G.; Duh, M.S.; Lafeuille, M.-H.; Tiggelaar, S.; Bell, C.F.; Hahn, B. Health characteristics of patients with asthma, COPD and asthma-COPD overlap in the NHANES database. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 2859–2868. [Google Scholar] [CrossRef] [Green Version]
- Baarnes, C.B.; Andersen, Z.J.; Tjønneland, A.; Ulrik, C.S. Determinants of incident asthma-COPD overlap: A prospective study of 55,110 middle-aged adults. Clin. Epidemiol. 2018, 10, 1275–1287. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.G.; McDonald, V.M. Asthma-COPD overlap 2015: Now we are six. Thorax 2015, 70, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Nelsen, L.M.; Lee, L.A.; Wu, W.; Lin, X.; Murray, L.; Pascoe, S.J.; Leidy, N.K. Reliability, validity and responsiveness of E-RS: COPD in patients with spirometric asthma-COPD overlap. Respir. Res. 2019, 20, 107. [Google Scholar] [CrossRef] [PubMed]
- Pascoe, S.J.; Wu, W.; Collison, K.A.; Nelsen, L.M.; Wurst, K.E.; Lee, L.A. Use of clinical characteristics to predict spirometric classification of obstructive lung disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 889–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, D.S.; Burgess, J.A.; Lowe, A.J.; Perret, J.L.; Lodge, C.J.; Bui, M.; Morrison, S.; Thompson, B.R.; Thomas, P.S.; Giles, G.G.; et al. Childhood Lung Function Predicts Adult Chronic Obstructive Pulmonary Disease and Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome. Am. J. Respir. Crit. Care Med. 2017, 196, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Tai, A.; Tran, H.; Roberts, M.; Clarke, N.; Wilson, J.; Robertson, C.F. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax 2014, 69, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Tagiyeva, N.; Devereux, G.; Fielding, S.; Turner, S.; Douglas, G. Outcomes of Childhood Asthma and Wheezy Bronchitis. A 50-Year Cohort Study. Am. J. Respir. Crit. Care Med. 2016, 193, 23–30. [Google Scholar] [CrossRef] [Green Version]
- De Marco, R.; Marcon, A.; Rossi, A.; Antó, J.M.; Cerveri, I.; Gislason, T.; Heinrich, J.; Janson, C.; Jarvis, D.; Kuenzli, N.; et al. Asthma, COPD and overlap syndrome: A longitudinal study in young European adults. Eur. Respir. J. 2015, 46, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Guan, W.; Zheng, J.; Ye, P.; Liu, S.; Zhou, J.; Xiong, Y.; Zhang, Q.; Chen, Q. Smoking influences response to inhaled corticosteroids in patients with asthma: A meta-analysis. Curr. Med. Res. Opin. 2012, 28, 1791–1798. [Google Scholar] [CrossRef]
- Sonnex, K.; Alleemudder, H.; Knaggs, R. Impact of smoking status on the efficacy of inhaled corticosteroids in COPD: A systematic review. BMJ Open 2020, 10, e037509. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Zhou, W.; Chen, B.; Lin, W.; Wu, S.; Wu, F. Sputum cell count: Biomarkers in the differentiation of asthma, COPD and asthma-COPD overlap. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 2703–2710. [Google Scholar] [CrossRef] [Green Version]
- Brutsche, M.H.; Downs, S.H.; Schindler, C.; Gerbase, M.W.; Schwartz, J.; Frey, M.; Russi, E.W.; Ackermann-Liebrich, U.; Leuenberger, P. Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA Cohort Study. Thorax 2006, 61, 671–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calverley, P.M.; Albert, P.; Walker, P.P. Bronchodilator reversibility in chronic obstructive pulmonary disease: Use and limita-tions. Lancet Respir. Med. 2013, 1, 564–573. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, W.J.; Sharma, A.; Lougheed, D.; Macklem, P.T. Detection of excessive bronchoconstriction in asthma. Am. J. Respir. Crit. Care Med. 1996, 153, 582–589. [Google Scholar] [CrossRef]
- Walker, P.P.; Hadcroft, J.; Costello, R.W.; Calverley, P.M. Lung function changes following methacholine inhalation in COPD. Respir. Med. 2009, 103, 535–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkacova, R.; Dai, D.L.; Vonk, J.M.; Leung, J.M.; Hiemstra, P.S.; Berge, M.V.D.; Kunz, L.; Hollander, Z.; Tashkin, D.; Wise, R.; et al. Airway hyperresponsiveness in chronic obstructive pulmonary disease: A marker of asthma-chronic obstructive pulmonary disease overlap syndrome? J. Allergy Clin. Immunol. 2016, 138, 1571–1579.e10. [Google Scholar] [CrossRef] [Green Version]
- Pare, P.D.; Wiggs, B.R.; James, A.; Hogg, J.C.; Bosken, C. The Comparative Mechanics and Morphology of Airways in Asthma and in Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1991, 143, 1189–1193. [Google Scholar] [CrossRef]
- Calverley, P.M.A.; Burge, P.S.; Spencer, S.; Anderson, J.A.; Jones, P.W. Bronchodilator reversibility testing in chronic obstructive pulmonary disease. Thorax 2003, 58, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Calverley, P.; Vlies, B. A rational approach to single, dual and triple therapy in COPD. Respirology 2016, 21, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.; Agusti, A.; Edwards, L.; Tal-Singer, R.; Yates, J.; Bakke, P.; Celli, B.R.; Coxson, H.O.; Crim, C.; Lomas, D.A.; et al. Bronchodilator responsiveness as a phenotypic characteristic of established chronic obstructive pulmonary disease. Thorax 2012, 67, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Tashkin, D.P.; Celli, B.; Decramer, M.; Liu, D.; Burkhart, D.; Cassino, C.; Kesten, S. Bronchodilator responsiveness in patients with COPD. Eur. Respir. J. 2008, 31, 742–750. [Google Scholar] [CrossRef]
- Maselli, D.J.; Hardin, M.; Christenson, S.A.; Hanania, N.A.; Hersh, C.P.; Adams, S.G.; Anzueto, A.; Peters, J.I.; Han, M.K.; Martinez, F.J. Clinical Approach to the Therapy of Asthma-COPD Overlap. Chest 2019, 155, 168–177. [Google Scholar] [CrossRef]
- O’Donnell, D.; Voduc, N.; Fitzpatrick, M.; Webb, K. Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease. Eur. Respir. J. 2004, 24, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Lipson, D.A.; Barnhart, F.; Brealey, N.; Brooks, J.; Criner, G.J.; Day, N.C.; Dransfield, M.T.; Halpin, D.M.; Han, M.K.; Jones, C.E.; et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N. Engl. J. Med. 2018, 378, 1671–1680. [Google Scholar] [CrossRef]
- Han, M.K.; Criner, G.J.; Dransfield, M.T.; Halpin, D.M.G.; Jones, C.E.; Kilbride, S.; Lange, P.; Lettis, S.; Lipson, D.A.; Lomas, D.A.; et al. The Effect of Inhaled Corticosteroid Withdrawal and Baseline Inhaled Treatment on Exacerbations in the IMPACT Study. A Randomized, Double-Blind, Multicenter Clinical Trial. Am. J. Respir. Crit. Care Med. 2020, 202, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Green, R.H.; Brightling, C.E.; McKenna, S.; Hargadon, B.; Parker, D.; Bradding, P.; Wardlaw, A.J.; Pavord, I.D. Asthma exacerbations and sputum eosinophil counts: A randomised controlled trial. Lancet 2002, 360, 1715–1721. [Google Scholar] [CrossRef]
- Negewo, N.A.; McDonald, V.M.; Baines, K.J.; Wark, P.A.B.; Simpson, J.L.; Jones, P.W.; Gibson, P.G. Peripheral blood eosinophils: A surrogate marker for airway eosinophilia in stable COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1495–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascoe, S.; Locantore, N.; Dransfield, M.T.; Barnes, N.C.; Pavord, I.D. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: A secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med. 2015, 3, 435–442. [Google Scholar] [CrossRef]
- Watz, H.; Tetzlaff, K.; Wouters, E.F.M.; Kirsten, A.; Magnussen, H.; Rodriguez-Roisin, R.; Vogelmeier, C.; Fabbri, L.M.; Chanez, P.; Dahl, R.; et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: A post-hoc analysis of the WISDOM trial. Lancet Respir. Med. 2016, 4, 390–398. [Google Scholar] [CrossRef]
- Pascoe, S.; Barnes, N.; Brusselle, G.; Compton, C.; Criner, G.J.; Dransfield, M.T.; Halpin, D.M.G.; Han, M.K.; Hartley, B.; Lange, P.; et al. Blood eosinophils and treatment response with triple and dual combination therapy in chronic obstructive pulmonary disease: Analysis of the IMPACT trial. Lancet Respir. Med. 2019, 7, 745–756. [Google Scholar] [CrossRef]
- Bafadhel, M.; Peterson, S.; de Blas, M.A.; Calverley, P.M.; Rennard, S.I.; Richter, K.; Fagerås, M. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: A post-hoc analysis of three randomised trials. Lancet Respir. Med. 2018, 6, 117–126. [Google Scholar] [CrossRef]
- Barnes, N.C.; Sharma, R.; Lettis, S.; Calverley, P.M. Blood eosinophils as a marker of response to inhaled corticosteroids in COPD. Eur. Respir. J. 2016, 47, 1374–1382. [Google Scholar] [CrossRef] [Green Version]
- Martinez, F.J.; Rabe, K.F.; Calverley, P.M.; Fabbri, L.M.; Sethi, S.; Pizzichini, E.; McIvor, A.; Anzueto, A.; Alagappan, V.K.; Siddiqui, S.; et al. Determinants of Response to Roflumilast in Severe Chronic Obstructive Pulmonary Disease. Pooled Analysis of Two Randomized Trials. Am. J. Respir. Crit. Care Med. 2018, 198, 1268–1278. [Google Scholar] [CrossRef]
- Pignatti, P.; Visca, D.; Cherubino, F.; Zampogna, E.; Lucini, E.; Saderi, L.; Sotgiu, G.; Spanevello, A. Groningen and Leiden Universities Corticosteroids in Obstructive Lung Disease (GLUCOLD) Study Group. Predictive value of eosinophils and neutrophils on clinical effects of ICS in COPD. Respirology 2018, 23, 1023–1031. [Google Scholar]
- Rabe, K.F.; Watz, H.; Baraldo, S.; Pedersen, F.; Biondini, D.; Bagul, N.; Hanauer, G.; Göhring, U.-M.; Purkayastha, D.; Román, J.; et al. Anti-inflammatory effects of roflumilast in chronic obstructive pulmonary disease (ROBERT): A 16-week, randomised, placebo-controlled trial. Lancet Respir. Med. 2018, 6, 827–836. [Google Scholar] [CrossRef]
- Landis, S.; Suruki, R.; Maskell, J.; Bonar, K.; Hilton, E.; Compton, C. Demographic and Clinical Characteristics of COPD Patients at Different Blood Eosinophil Levels in the UK Clinical Practice Research Datalink. COPD 2018, 15, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Putcha, N.; Wise, R.A. Asthma-Chronic Obstructive Pulmonary Disease Overlap Syndrome: Nothing New Under the Sun. Immunol. Allergy Clin. N. Am. 2016, 36, 515–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, V.M.; Fingleton, J.; Agusti, A.; Hiles, S.A.; Clark, V.L.; Holland, A.E.; Marks, G.B.; Bardin, P.P.; Beasley, R.; Pavord, I.D.; et al. Treatable traits: A new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report. Eur. Respir. J. 2019, 53, 1802058. [Google Scholar] [CrossRef]
Major Criteria | Minor Criteria |
---|---|
|
|
Study | Definition of ACO | Main Findings |
---|---|---|
Reddel et al. [52] | Physician diagnosis of asthma, COPD or both | 12.4% asthma and COPD (ACO) More likely to smoke, higher blood neutrophil count, more breathless and poorer health status compared with asthma Earlier diagnosis, more upper airway disease compared with COPD Bronchodilator responsiveness and FeNO similar across groups |
Morgan et al. [53] | Features of both: COPD—post-bd FEV1/FVC below LLN and Asthma—self report physician asthma diagnosis, use of asthma medication last year or wheezing last year | Prevalence of ACO 3.8% in LMIC residents People with ACO had more biomass fuel exposure, higher smoking and lower educational attainment Worse AFO than asthma or COPD groups |
Toledo-Pons et al. [54] | Three groups: Diagnosed with asthma and COPD (smoking asthmatic) COPD and bronchial hyperresponsiveness (FEV1 increase >400 mL and 15%) (COPD high bronchial response) COPD and eosinophilia (eosinophils >300cells/µL) (COPD eosinophilia) | 27.4% fulfilled one or more criteria for ACO 13.8% smoking asthmatic, 12.1% COPD with eosinophilia and 1.5% COPD with high bronchodilator response Smoking asthmatics were younger, more likely female and more atopic |
Singh A et al. [55] | COPD—post-bronchodilator FEV1/FVC <0.7 Asthma—>200 mL and >12% improvement in FEV1 with bronchodilator ACO—both present | Prevalence of ACO 4.6% in firefighters Eosinophil count >300 cells/µL more common in ACO More likely to have accelerated decline in FEV1 |
Cosentino et al. [56] | ACO; either: history of asthma or hay fever, FEV1/FVC <0.7, >200 mL and >12% improvement in FEV1 with bronchodilator and less than 15% emphysema on CT, or FEV1/FVC <0.7, >400 mL and >15% improvement in FEV1 with bronchodilator and less than 15% emphysema on CT and less than 15% emphysema on CT regardless of history of asthma or hay fever | Compared to subjects with COPD and emphysema ACO subjects were younger, more likely African-American, higher BMI and more likely to still smoke |
Krishnan et al. [57] | ACO defined as >40 years old, current or former smoker, FEV1/FVC <0.7 and >200 mL and >12% improvement in FEV1 with bronchodilator | Prevalence of ACO of 18.2% More common in people diagnosed with both asthma and COPD Younger and higher BMI compared with COPD cohort More likely to smoke and less rhinitis than asthma cohort |
Izbicki et al. [58] | COPD was defined as FEV1 <80% predicted and FEV1/FVC <0.7. ACO was defined as this plus >200 mL and >12% improvement in FEV1 with bronchodilator | No differences seen compared with the COPD cohort except lower pre-bronchodilator lung function in ACO |
Barrecheguren et al. [59] | ACO defined as COPD patients reporting a previous diagnosis of asthma Classified as ACO2 if had 2 major or 1 major & 2 minor criteria: Major criteria were improvement in FEV1 >400 mL and >15% with bronchodilator, sputum eosinophilia or a previous diagnosis of asthma before the age of 40 years Minor criteria were increased total serum immunoglobulin E, previous history of atopy or FEV1 >200 mL and >12% on two or more occasions | Prevalence of ACO of 15.9% Two thirds did not fulfil ACO2 criteria ACO subjects were more likely to be female, had more exacerbations, had better lung function and higher blood eosinophilia |
Llanos et al. [60] | 40 years old or greater with at least 1 asthma and 1 COPD characteristic: Asthma characteristic—even given a physician diagnosis of asthma or had an ‘asthma attack’ in the previous year COPD characteristic—post-bd FEV1/FVC <0.7 and ever told they had emphysema or chronic bronchitis by a physician | ACO subjects had poorer lung function than those with asthma or COPD, higher eosinophil counts than those with asthma or COPD and had more ‘asthma attacks’ than the asthma group |
Baarnes et al. [61] | At least 1 previous hospitalisation for asthma and 1 for COPD | Subjects with ACO were older, more likely to smoke, had lower educational attainment and took less regular exercise |
Pitfall with Reversibility Testing | Reason for the Problem |
---|---|
The bronchodilator drug used | Additional bronchodilation with the combination of short-acting beta-agonists and short-acting anti-muscarinics compared to one bronchodilator |
The timing of reversibility testing | Short-acting anti-muscarinics achieve maximum bronchodilation longer than 15 min after administration, the timing typically used for beta-agonist reversibility |
The dose of bronchodilator drug | Higher doses of salbutamol (>400 mcg) will result in further small increases in FEV1 compared with lower doses |
The reproducibility of result | The magnitude of reversibility, and classification of reversibility (positive or negative), varies significantly between tests |
The impact of pre-test FEV1 | Individuals with a lower pre-test FEV1 are less likely to shown significant reversibility |
The clinical implications of reversibility | Reversibility does not predict clinical symptoms, exacerbations and subsequent decline in lung function |
Phenotype of ACO | Clinical and Biological Features |
---|---|
Smokers with airflow obstruction and eosinophilic inflammation | Exacerbations driven by eosinophilic inflammation Better lung function, less emphysema, less disease progression Better response to oral and inhaled corticosteroids Higher level of atopy |
Resistant asthmatic | Asthmatics less responsive to corticosteroids Higher level of irreversible airflow obstruction Neutrophil dominated airway inflammation and exacerbations are more common |
Elderly asthmatic with irreversible airflow obstruction | Long-standing asthma and irreversible airflow obstruction Neutrophil dominated airway inflammation Loss of lung elastic recoil and more hyperinflation |
Childhood asthmatic who smokes and has developed COPD | Asthma as child or young adult but long-term smoking Higher number of pack years (more likely to have >20 pack years) High symptom burden and healthcare utilisation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calverley, P.M.A.; Walker, P.P. ACO (Asthma–COPD Overlap) Is Independent from COPD: The Case Against. Diagnostics 2021, 11, 1189. https://doi.org/10.3390/diagnostics11071189
Calverley PMA, Walker PP. ACO (Asthma–COPD Overlap) Is Independent from COPD: The Case Against. Diagnostics. 2021; 11(7):1189. https://doi.org/10.3390/diagnostics11071189
Chicago/Turabian StyleCalverley, Peter M. A., and Paul Phillip Walker. 2021. "ACO (Asthma–COPD Overlap) Is Independent from COPD: The Case Against" Diagnostics 11, no. 7: 1189. https://doi.org/10.3390/diagnostics11071189
APA StyleCalverley, P. M. A., & Walker, P. P. (2021). ACO (Asthma–COPD Overlap) Is Independent from COPD: The Case Against. Diagnostics, 11(7), 1189. https://doi.org/10.3390/diagnostics11071189