Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions
Abstract
:1. Introduction
2. Physiological Deformation
2.1. Conditions That Affect Deformation
2.2. Proposed Underlying Mechanisms
2.3. Association to Filling Pressure
2.4. Phenotype of Paradoxical Deformation
3. Pathological Deformation
3.1. Evaluation in Acute Ischemia
3.2. Predictor of Recovery
3.3. Ischemic Memory Imaging
3.4. Chronic Ischemia and Fibrosis
3.5. Prognostic Value
4. Future Directions
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Claus, P.; Omar, A.M.S.; Pedrizzetti, G.; Sengupta, P.P.; Nagel, E. Tissue Tracking Technology for Assessing Cardiac Mechanics: Principles, Normal Values, and Clinical Applications. JACC Cardiovasc. Imaging 2015, 8, 1444–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Addetia, K.; Narang, A.; Mor-Avi, V. 3-Dimensional Echocardiography: Latest Developments and Future Directions. JACC Cardiovasc. Imaging 2018, 11, 1854–1878. [Google Scholar] [CrossRef]
- Joyce, E. LVEF: Long-standing monarch of systolic dysfunction, buckling under the strain? Eur. J. Heart Fail. 2014, 16, 1270–1272. [Google Scholar] [CrossRef] [PubMed]
- Badano, L.; Stoian, J.; Cervesato, E.; Bosimini, E.; Gentile, F.; Giannuzzi, P.; Heyman, J.; Lucci, D.; Maggioni, A.P.; Piazza, R.; et al. Reproducibility of wall motion score and its correlation with left ventricular ejection fraction in patients with acute myocardial infarction. Am. J. Cardiol. 1996, 78, 855–858. [Google Scholar] [CrossRef]
- Shah, A.M.; Solomon, S.D. Myocardial deformation imaging: Current status and future directions. Circulation 2012, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asanuma, T.; Nakatani, S. Myocardial ischaemia and post-systolic shortening. Heart 2015, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Smedsrud, M.K.; Sarvari, S.; Haugaa, K.H.; Gjesdal, O.; Orn, S.; Aaberge, L.; Smiseth, O.A.; Edvardsen, T. Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease. J. Am. Coll. Cardiol. 2012, 60, 1086–1093. [Google Scholar] [CrossRef] [Green Version]
- Voigt, J.U.; Lindenmeier, G.; Exner, B.; Regenfus, M.; Werner, D.; Reulbach, U.; Nixdorff, U.; Flachskampf, F.A.; Daniel, W.G. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J. Am. Soc. Echocardiogr. 2003, 16, 415–423. [Google Scholar] [CrossRef]
- Weidemann, F.; Broscheit, J.A.; Bijnens, B.; Claus, P.; Sutherland, G.R.; Voelker, W.; Ertl, G.; Strotmann, J.M. How to distinguish between ischemic and nonischemic postsystolic thickening: A strain rate imaging study. Ultrasound Med. Biol. 2006, 32, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Biering-Sørensen, S.R.; Møgelvang, R.; Jensen, J.S.; Biering-Sørensen, T. Duration of early systolic lengthening: Prognostic potential in the general population. Eur. Heart J. Cardiovasc. Imaging 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Biering-Sørensen, S.R.; Møgelvang, R.; de Knegt, M.C.; Olsen, F.J.; Galatius, S.; Gislason, G.H.; Jensen, J.S.; Biering-Sørensen, T. Post-systolic shortening: Normal values and association with validated echocardiographic and invasive measures of cardiac function. Int J. Cardiovasc. Imaging 2018. [Google Scholar] [CrossRef]
- Urheim, S.; Edvardsen, T.; Steine, K.; Skulstad, H.; Lyseggen, E.; Rodevand, O.; Smiseth, O. Postsystolic shortening of ischemic myocardium: A mechanism of abnormal intraventricular filling. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H2343–H2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalmas, S.; Wanigasekera, V.; Marsch, S.; Ryder, W.; Wong, L.; Foëx, P. The influence of preload on post-systolic shortening in ischeamic myocardium. Eur. J. Anaesthesiol. 1995, 12, 127–133. [Google Scholar] [PubMed]
- Hosokawa, H.; Sheehan, F.H.; Suzuki, T. Measurement of postsystolic shortening to assess viability and predict recovery of left ventricular function after acute myocardial infarction. J. Am. Coll. Cardiol. 2000, 35, 1842–1849. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, B.H.; Helle-Valle, T.; Edvardsen, T.; Torp, H.; Crosby, J.; Lyseggen, E.; Støylen, A.; Ihlen, H.; Lima, J.A.C.; Smiseth, O.A.; et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation against sonomicrometry and tagged magnetic resonance imaging. J. Am. Coll. Cardiol. 2006, 47, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Pislaru, C.; Belohlavek, M.; Bae, R.Y.; Abraham, T.P.; Greenleaf, J.F.; Seward, J.B. Regional asynchrony during acute myocardial ischemia quantified by ultrasound strain rate imaging. J. Am. Coll. Cardiol. 2001, 37, 1141–1148. [Google Scholar] [CrossRef] [Green Version]
- Brainin, P.; Haahr-Pedersen, S.; Sengeløv, M.; Olsen, F.J.; Fritz-Hansen, T.; Jensen, J.S.; Biering-Sørensen, T. Presence of post-systolic shortening is an independent predictor of heart failure in patients following ST-segment elevation myocardial infarction. Int. J. Cardiovasc. Imaging 2017, 34, 751–760. [Google Scholar] [CrossRef]
- Wiegner, A.W.; Allen, G.J.; Bing, O.H. Weak and strong myocardium in series: Implications for segmental dysfunction. Am. J. Physiol. Circ. Physiol. 1978, 235, H776–H783. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, G.; Wiegner, A.W.; Gaasch, W.H.; Conrad, C.H.; Cicogna, A.C.; Bing, O.H.L. Force patterns of hypoxic myocardium applied to oxygenated muscle preparations: Comparison with effects of regional ischemia on the contraction of non-ischemic myocardium. Cardiovasc. Res. 1996, 32, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Grines, C.L.; Bashore, T.M.; Harisios, B.; Olson, S.; Shafer, P.; Wooley, C.F. Functional Abnormalities in Isolated Left Bundle Branch Block: The Effect of Interventricular Asynchrony. Circulation 1989, 79, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.C.; Liu, Y.W.; Chen, J.Y.; Huang, Y.Y.; Shih, J.Y.; Tsai, L.M.; Chen, J.H. Postsystolic strain index is associated with delayed diastolic lengthening and diastolic dysfunction of the left ventricle in untreated hypertension. J. Hypertens. 2012, 30, 787–793. [Google Scholar] [CrossRef]
- Kahyaoglu, M.; Gecmen, C.; Candan, O.; İzgi, I.A.; Kirma, C. The duration of early systolic lengthening may predict ischemia from scar tissue in patients with chronic coronary total occlusion lesions. Int. J. Cardiovasc. Imaging 2019, 35, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Eek, C.; Grenne, B.; Brunvand, H.; Aakhus, S.; Endresen, K.; Smiseth, O.A.; Edvardsen, T.; Skulstad, H. Postsystolic shortening is a strong predictor of recovery of systolic function in patients with non-ST-elevation myocardial infarction. Eur. J. Echocardiogr. 2011, 12, 483–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barletta, G.; Del Bene, R.; Lo Sapio, P.; Gallini, C.; Fantini, F. Post-ejection thickening as a marker of viable myocardium. An echocardiographic study in patients with chronic coronary artery disease. Basic Res. Cardiol. 1998, 93, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Song, J.K.; Song, J.M.; Kang, D.H.; Haluska, B.; Marwick, T.H. Postsystolic thickening detected by doppler myocardial imaging: A marker of viability or ischemia in patients with myocardial infarction. Clin. Cardiol. 2004, 27, 29–32. [Google Scholar] [CrossRef]
- Fujimoto, H.; Honma, H.; Ohno, T.; Mizuno, K.; Kumita, S. Longitudinal Doppler strain measurement for assessment of damaged and/or hibernating myocardium by dobutamine stress echocardiography in patients with old myocardial infarction. J. Cardiol. 2010, 55, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijnens, B.; Claus, P.; Weidemann, F.; Strotmann, J.; Sutherland, G.R. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 2007, 116, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Takeuchi, M.; Nishikage, T.; Lang, R.M.; Otsuji, Y. Subclinical left ventricular dysfunction in asymptomatic diabetic patients assessed by two-dimensional speckle tracking echocardiography: Correlation with diabetic duration. Eur. J. Echocardiogr. 2009, 10, 926–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skulstad, H.; Edvardsen, T.; Urheim, S.; Rabben, S.I.; Stugaard, M.; Lyseggen, E.; Ihlen, H.; Smiseth, O.A. Postsystolic shortening in ischemic myocardium: Active contraction or passive recoil? Circulation 2002, 106, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Lyseggen, E.; Vartdal, T.; Remme, E.W.; Helle-Valle, T.; Pettersen, E.; Opdahl, A.; Edvardsen, T.; Smiseth, O.A. A novel echocardiographic marker of end systole in the ischemic left ventricle: “tug of war” sign. Am. J. Physiol. Hear. Circ. Physiol. 2009, 296, H645–H654. [Google Scholar] [CrossRef] [Green Version]
- Lyseggen, E.; Skulstad, H.; Helle-Valle, T.; Vartdal, T.; Urheim, S.; Rabben, S.I.; Opdahl, A.; Ihlen, H.; Smiseth, O.A. Myocardial strain analysis in acute coronary occlusion: A tool to assess myocardial viability and reperfusion. Circulation 2005, 112, 3901–3910. [Google Scholar] [CrossRef] [Green Version]
- Claus, P.; Weidemann, F.; Dommke, C.; Bito, V.; Heinzel, F.R.; D’hooge, J.; Sipido, K.R.; Sutherland, G.R.; Bijnens, B. Mechanisms of postsystolic thickening in ischemic myocardium: Mathematical modelling and comparison with experimental ischemic substrates. Ultrasound Med. Biol. 2007, 33, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Akaishi, M.; Weintraub, W.S.; Schneider, R.M.; Klein, L.W.; Agarwal, J.B.; Helfant, R.H. Analysis of systolic bulging: Mechanical characteristics of acutely ischemic myocardium in the conscious dog. Circ. Res. 1986, 58, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogi, S.; Ito, T.; Kizawa, S.; Shimamoto, S.; Sohmiya, K.; Hoshiga, M.; Ishizaka, N. Association between Left Ventricular Postsystolic Shortening and Diastolic Relaxation in Asymptomatic Patients with Systemic Hypertension. Echocardiography 2016, 33, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Carlhäll, C.; Wranne, B.; Jurkevicius, R. Is left ventricular postsystolic long-axis shortening a marker for severity of hypertensive heart disease? Am. J. Cardiol. 2003, 91, 1490–1493. [Google Scholar] [CrossRef]
- Pislaru, C.; Anagnostopoulos, P.C.; Seward, J.B.; Greenleaf, J.F.; Belohlavek, M. Higher myocardial strain rates duringisovolumic relaxation phase than during ejection characterize acutely ischemic myocardium. J. Am. Coll. Cardiol. 2002, 40, 1487–1494. [Google Scholar] [CrossRef]
- Brainin, P.; Skaarup, K.G.; Iversen, A.Z.; Jørgensen, P.G.; Platz, E.; Jensen, J.S.; Biering-Sørensen, T. Post-systolic shortening predicts heart failure following acute coronary syndrome. Int. J. Cardiol. 2019, 276, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Biering-Sørensen, S.R.; Møgelvang, R.; Søgaard, P.; Jensen, J.S.; Biering-Sørensen, T. Postsystolic Shortening by Speckle Tracking Echocardiography Is an Independent Predictor of Cardiovascular Events and Mortality in the General Population. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Podroužková, H.; Meluzín, J.; Hude, P.; Krejčí, J.; Špinarová, L.; Vítovec, J. Post-systolic shortening influences early diastolic filling in patients with dilated cardiomyopathy. Cor Vasa 2012, 54, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Chen, S.; Qiao, S.; Duan, F.; Zhang, J.; Wang, H. Characteristics of myocardial postsystolic shortening in patients with symptomatic hypertrophic obstructive cardiomyopathy before and half a year after alcohol septal ablation assessed by speckle tracking echocardiography. PLoS ONE 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Sato, H.; Yoshitomi, H.; Watanabe, N.; Adachi, T.; Ito, S.; Yamaguchi, K.; Tanabe, K. Visually confirmed post-systolic shortening during the recovery period in four cases of Takotsubo cardiomyopathy. J. Echocardiogr. 2014, 12, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Villari, B.; Vassalli, G.; Betocchi, S.; Briguori, C.; Chiariello, M.; Hess, O.M. Normalization of left ventricular nonuniformity late after valve replacement for aortic stenosis. Am. J. Cardiol. 1996, 78, 66–71. [Google Scholar] [CrossRef]
- Citro, R.; Galderisi, M.; Guarini, P.; Cicala, S.; Mattioli, D.; Bianco, A.; de Divitiis, O.; Gregorio, G. Left bundle branch block with and without coronary artery disease: Which value for a tissue Doppler-derived post-systolic motion? Ital. Hear. J. 2003, 4, 706–712. [Google Scholar]
- Galderisi, M.; Cicala, S.; Sangiorgi, G.; Caso, P.; De Divitiis, O. Tissue Doppler-derived postsystolic motion in a patient with left bundle branch block: A sign of myocardial wall asynchrony. Echocardiography 2002, 19, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Ring, M.; Persson, H.; Mejhert, M.; Edner, M. Post-systolic motion in patients with heart failure—A marker of left ventricular dyssynchrony? Eur. J. Echocardiogr. 2007, 8, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Jamal, F.; Kukulski, T.; Strotmann, J.; Szilard, M.; D’hooge, J.; Bijnens, B.; Rademakers, F.; Hatle, L.; De Scheerder, I.; Sutherland, G.R. Quantification of the spectrum of changes in regional myocardial function during acute ischemia in closed chest pigs: An ultrasonic strain rate and strain study. J. Am. Soc. Echocardiogr. 2001, 14, 874–884. [Google Scholar] [CrossRef]
- Okuda, K.; Asanuma, T.; Hirano, T.; Masuda, K.; Otani, K.; Ishikura, F.; Beppu, S. Impact of the Coronary Flow Reduction at Rest on Myocardial Perfusion and Functional Indices Derived from Myocardial Contrast and Strain Echocardiography. J. Am. Soc. Echocardiogr. 2006, 19, 781–787. [Google Scholar] [CrossRef]
- Brown, M.A.; Norris, R.M.; Takayama, M.; White, H.D. Post-systolic shortening a marker of potential for early recovery of acutely ischaemic myocardium in the dog. Cardiovasc. Res. 1987, 21, 703–716. [Google Scholar] [CrossRef]
- Tennant, J.; Wiggers, C. The effect of coronary occlusion on myocardial contraction. Am. J. Physiol. 1935, 112, 351–361. [Google Scholar] [CrossRef]
- Kukulski, T.; Jamal, F.; Herbots, L.; D’hooge, J.; Bijnens, B.; Hatle, L.; De Scheerder, I.; Sutherland, G.R. Identification of acutely ischemic myocardium using ultrasonic strain measurements: A clinical study in patients undergoing coronary angioplasty. J. Am. Coll. Cardiol. 2003, 41, 810–819. [Google Scholar] [CrossRef] [Green Version]
- Minamisawa, M.; Koyama, J.; Kozuka, A.; Miura, T.; Saigusa, T.; Ebisawa, S.; Motoki, H.; Okada, A.; Ikeda, U.; Kuwahara, K. Duration of myocardial early systolic lengthening for diagnosis of coronary artery disease. Open Hear. 2018, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Hoffmann, S.; Fritz-Hansen, T.; Olsen, F.J.; Jensen, J.S.; Biering-Sørensen, T. Usefulness of Postsystolic Shortening to Diagnose Coronary Artery Disease and Predict Future Cardiovascular Events in Stable Angina Pectoris. J. Am. Soc. Echocardiogr. 2018, 31, 870–879.e3. [Google Scholar] [CrossRef]
- Ishii, K.; Imai, M.; Suyama, T.; Maenaka, M.; Nagai, T.; Kawanami, M.; Seino, Y. Exercise-Induced Post-Ischemic Left Ventricular Delayed Relaxation or Diastolic Stunning. Is it a Reliable Marker in Detecting Coronary Artery Disease? J. Am. Coll. Cardiol. 2009, 53, 698–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takayama, M.; Norris, R.M.; Brown, M.A.; Armiger, L.C.; Rivers, J.T.; White, H.D. Postsystolic shortening of acutely ischemic canine myocardium predicts early and late recovery of function after coronary artery reperfusion. Circulation 1988, 78, 994–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, B.J.; Norris, R.M.; Safwat, A.; Foëx, P.; Ryder, W.A. Effects of progressive myocardial ischaemia on systolic function, diastolic dysfunction, and load dependent relaxation. Cardiovasc. Res. 1992, 26, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, Y.; Yamauchi, Y.; Morita, H.; Hayashi, M.; Komori, T.; Ukimura, A.; Ishizaka, N. Presence of postsystolic shortening increases the likelihood of coronary artery disease: A rest electrocardiography-gated myocardial perfusion SPECT study. J. Nucl. Med. 2015, 56, 1889–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttin, O.; Marie, P.Y.; Benichou, M.; Bozec, E.; Lemoine, S.; Mandry, D.; Juillière, Y.; Sadoul, N.; Micard, E.; Duarte, K.; et al. Temporal deformation pattern in acute and late phases of ST-elevation myocardial infarction: Incremental value of longitudinal post-systolic strain to assess myocardial viability. Clin. Res. Cardiol. 2016, 105, 815–826. [Google Scholar] [CrossRef]
- Monnet, X.; Lucats, L.; Colin, P.; Derumeaux, G.; Dubois-Rande, J.L.; Hittinger, L.; Ghaleh, B.; Berdeaux, A. Reduction in postsystolic wall thickening during late preconditioning. Am. J. Physiol. Hear. Circ. Physiol. 2007, 292, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Masuda, K.; Asanuma, T.; Taniguchi, A.; Uranishi, A.; Ishikura, F.; Beppu, S. Assessment of Dyssynchronous Wall Motion During Acute Myocardial Ischemia Using Velocity Vector Imaging. JACC Cardiovasc. Imaging 2008, 1, 210–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belohlavek, M.; Pislaru, C.; Bae, R.; Greenleaf, J.; Seward, J. Real-time strain rate echocardiographic imaging: Temporal and spatial analysis of postsystolic compression in acutely ischemic myocardium. J. Am. Soc. Echocardiogr. 2001, 14, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Olsen, F.J.; Lassen, M.C.H.; Bech, J.; Claggett, B.; Fritz-Hansen, T.; Folke, F.; Gislason, G.H.; Biering-Sørensen, T. Postsystolic shortening on echocardiography as a gateway to cardiac computed tomography in patients with suspected stable angina pectoris. Int. J. Cardiovasc. Imaging 2020, 36, 309–316. [Google Scholar] [CrossRef]
- Celutkiene, J.; Sutherland, G.R.; Laucevicius, A.; Zakarkaite, D.; Rudys, A.; Grabauskiene, V. Is post-systolic motion the optimal ultrasound parameter to detect induced ischaemia during dobutamine stress echocardiography? Eur. Heart J. 2004, 25, 932–942. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Exner, B.; Schmiedehausen, K.; Huchzermeyer, C.; Reulbach, U.; Nixdorff, U.; Platsch, G.; Kuwert, T.; Daniel, W.G.; Flachskampf, F.A. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003, 107, 2120–2126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onishi, T.; Uematsu, M.; Watanabe, T.; Fujita, M.; Awata, M.; Iida, O.; Sera, F.; Hirano, Y.; Nanto, S.; Nagata, S. Objective interpretation of dobutamine stress echocardiography by diastolic dyssynchrony imaging: A practical approach. J. Am. Soc. Echocardiogr. 2010, 23, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Ingul, C.B.; Stoylen, A.; Slordahl, S.A.; Wiseth, R.; Burgess, M.; Marwick, T.H. Automated Analysis of Myocardial Deformation at Dobutamine Stress Echocardiography. An Angiographic Validation. J. Am. Coll. Cardiol. 2007, 49, 1651–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vartdal, T.; Pettersen, E.; Helle-Valle, T.; Lyseggen, E.; Andersen, K.; Smith, H.J.; Aaberge, L.; Smiseth, O.A.; Edvardsen, T. Identification of viable myocardium in acute anterior infarction using duration of systolic lengthening by tissue doppler strain: A preliminary study. J. Am. Soc. Echocardiogr. 2012, 25, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, T.; Uranishi, A.; Masuda, K.; Ishikura, F.; Beppu, S.; Nakatani, S. Assessment of myocardial ischemic memory using persistence of post-systolic thickening after recovery from ischemia. JACC Cardiovasc. Imaging 2009, 2, 1253–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanekom, L.; Jenkins, C.; Jeffries, L.; Case, C.; Mundy, J.; Hawley, C.; Marwick, T.H. Incremental value of strain rate analysis as an adjunct to wall-motion scoring for assessment of myocardial viability by dobutamine echocardiography: A follow-up study after revascularization. Circulation 2005, 112, 3892–3900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, J.F.; Pan, K.L.; Chu, C.M.; Chang, S.T.; Chung, C.M.; Hsu, J.-T. Usefulness of serial post-systolic shortening by speckle tracking echocardiography to predict major adverse cardiovascular events and segmental function improvement after acute myocardial infarction. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, K.S. Relationship between post-systolic motion during dobutamine stress echocardiography and functional recovery of myocardium after successful percutaneous coronary intervention. Korean Circ. J. 2009, 39, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Schulz, R.; Martin, C.; Heusch, G. Post-ejection wall thickening as a marker of successful short term hibernation. Cardiovasc. Res. 1993, 27, 1306–1311. [Google Scholar] [CrossRef]
- Zahid, W.; Eek, C.H.; Remme, E.W.; Skulstad, H.; Fosse, E.; Edvardsen, T. Early systolic lengthening may identify minimal myocardial damage in patients with non-ST-elevation acute coronary syndrome. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Sogaard, P.; Egeblad, H.; Kim, W.Y.; Jensen, H.K.; Pedersen, A.K.; Kristensen, B.; Mortensen, P.T. Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J. Am. Coll. Cardiol. 2002, 40, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.M.; Fung, J.W.H.; Zhang, Q.; Chan, C.K.; Chan, Y.S.; Lin, H.; Kum, L.C.C.; Kong, S.L.; Zhang, Y.; Sanderson, J.E. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 2004, 110, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, D.; Asanuma, T.; Masuda, K.; Hioki, A.; Nakatani, S. Myocardial layer-specific analysis of ischemic memory using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2014, 30, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Hioki, A.; Asanuma, T.; Masuda, K.; Sakurai, D.; Nakatani, S. Detection of abnormal myocardial deformation during acute myocardial ischemia using three-dimensional speckle tracking echocardiography. J. Echocardiogr. 2020, 18, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Asanuma, T.; Fukuta, Y.; Masuda, K.; Hioki, A.; Iwasaki, M.; Nakatani, S. Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC Cardiovasc. Imaging 2012, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozuma, A.; Asanuma, T.; Masuda, K.; Adachi, H.; Minami, S.; Nakatani, S. Assessment of Myocardial Ischemic Memory Using Three-Dimensional Speckle-Tracking Echocardiography: A Novel Integrated Analysis of Early Systolic Lengthening and Postsystolic Shortening. J. Am. Soc. Echocardiogr. 2019, 1–10. [Google Scholar] [CrossRef]
- Brainin, P.; Lindberg, S.; Olsen, F.J.; Pedersen, S.; Iversen, A.; Galatius, S.; Fritz-Hansen, T.; Gislason, G.; Søgaard, P.; Møgelvang, R.; et al. Early systolic lengthening by speckle tracking echocardiography predicts outcome after coronary artery bypass surgery. IJC Hear. Vasc. 2021, 34, 100799. [Google Scholar] [CrossRef]
- Brainin, P.; Holm, A.E.; Sengeløv, M.; Jørgensen, P.G.; Bruun, N.E.; Schou, M.; Pedersen, S.; Fritz-Hansen, T.; Biering-Sørensen, T. The prognostic value of myocardial deformational patterns on all-cause mortality is modified by ischemic cardiomyopathy in patients with heart failure. Int. J. Cardiovasc. Imaging 2021. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Haahr-Pedersen, S.; Olsen, F.J.; Holm, A.E.; Fritz-Hansen, T.; Jespersen, T.; Gislason, G.; Biering-Sørensen, T. Early Systolic Lengthening in Patients With ST-Segment–Elevation Myocardial Infarction: A Novel Predictor of Cardiovascular Events. J. Am. Heart Assoc. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Jensen, M.T.; Biering-Sørensen, T.; Møgelvang, R.; Fritz-Hansen, T.; Vilsbøll, T.; Rossing, P.; Jørgensen, P.G. Post-Systolic Shortening by Speckle Tracking Echocardiography Predicts Cardiac Events in Type 2 Diabetes. JACC Cardiovasc. Imaging 2020, 13, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Brainin, P.; Biering-Sørensen, T.; Jensen, M.T.; Møgelvang, R.; Fritz-Hansen, T.; Vilsbøll, T.; Rossing, P.; Jørgensen, P.G. Prognostic Value of Early Systolic Lengthening by Strain Imaging in Type 2 Diabetes. J. Am. Soc. Echocardiogr. 2021, 34, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.U.; Cvijic, M. 2- and 3-Dimensional Myocardial Strain in Cardiac Health and Disease. JACC Cardiovasc. Imaging 2019, 12, 1849–1863. [Google Scholar] [CrossRef]
- Klaeboe, L.G.; Edvardsen, T. Echocardiographic assessment of left ventricular systolic function. J. Echocardiogr. 2019, 17, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumens, J.; Arts, T.; Tim Marcus, J.; Vonk-Noordegraaf, A.; Delhaas, T. Early-diastolic left ventricular lengthening implies pulmonary hypertension-induced right ventricular decompensation. Cardiovasc. Res. 2012, 96, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Hui, W.; Slorach, C.; Dragulescu, A.; Mertens, L.; Bijnens, B.; Friedberg, M.K. Mechanisms of right ventricular electromechanical dyssynchrony and mechanical ineffciency in children after repair of tetralogy of Fallot. Circ. Cardiovasc. Imaging 2014, 7, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badano, L.P.; Muraru, D.; Parati, G.; Haugaa, K.; Voigt, J.U. How to do right ventricular strain. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 825–827. [Google Scholar] [CrossRef] [PubMed]
Criteria |
---|
1. Short-lived postsystolic shortening occurring during transient ischemia |
2. Postsystolic shortening occurring when absolute ejection time peak strain > −7% |
3. Postsystolic shortening occurring when −7% > ejection time peak strain > −18% and:
|
Acute Ischemia | Transient Ischemia | Recovery | Prognosis |
---|---|---|---|
Tissue viability Degree of stenosis Coronary artery calcium score | Ischemic memory imaging | Identification of stunned myocardium Benefit of revascularization Cardiac resynchronization therapy | General population Diabetes Ischemia Heart failure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brainin, P. Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions. Diagnostics 2021, 11, 1428. https://doi.org/10.3390/diagnostics11081428
Brainin P. Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions. Diagnostics. 2021; 11(8):1428. https://doi.org/10.3390/diagnostics11081428
Chicago/Turabian StyleBrainin, Philip. 2021. "Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions" Diagnostics 11, no. 8: 1428. https://doi.org/10.3390/diagnostics11081428
APA StyleBrainin, P. (2021). Myocardial Postsystolic Shortening and Early Systolic Lengthening: Current Status and Future Directions. Diagnostics, 11(8), 1428. https://doi.org/10.3390/diagnostics11081428