Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Flexible Fiberoptic Bronchoscopy Procedure
2.3. Human Primary Airway Epithelial Cell Cultures
2.4. Immunofluorescence Staining
2.5. CBF Analysis
2.6. PCR Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEC | Airway epithelial cell |
ALI | Air-liquid interface |
CBF | Ciliary beat frequency |
COPD | Chronic Obstructive Pulmonary Disease |
FEV1 | Forced Expiratory Volume in One second |
MCC | Multiciliated cell |
PC | Primary cilia |
PCC | Primaryciliated cell |
References
- Riley, C.M.; Sciurba, F.C. Diagnosis and Outpatient Management of Chronic Obstructive Pulmonary Disease. JAMA 2019, 321, 786–797. [Google Scholar] [CrossRef]
- Capron, T.; Bourdin, A.; Perez, T.; Chanez, P. COPD beyond proximal bronchial obstruction: Phenotyping and related tools at the bedside. Eur. Respir. Rev. 2019, 28, 190010. [Google Scholar] [CrossRef]
- Brightling, C.; Greening, N. Airway inflammation in COPD: Progress to precision medicine. Eur. Respir. J. 2019, 54, 1900651. [Google Scholar] [CrossRef]
- Whitsett, J.A. Airway Epithelial Differentiation and Mucociliary Clearance. Ann. Am. Thorac. Soc. 2018, 15, S143–S148. [Google Scholar] [CrossRef]
- Koblizek, V.; Tomsova, M.; Cermakova, E.; Papousek, P.; Pracharova, S.; Mandalia, R.; Ceral, J.; Novosad, J.; Fila, L.; Sedlak, V.; et al. Impairment of nasal mucociliary clearance in former smokers with stable chronic obstructive pulmonary disease relates to the presence of a chronic bronchitis phenotype. Rhinol. J. 2011, 49, 397–406. [Google Scholar] [CrossRef]
- Yaghi, A.; Zaman, A.; Cox, G.; Dolovich, M.B. Ciliary beating is depressed in nasal cilia from chronic obstructive pulmonary disease subjects. Respir. Med. 2012, 106, 1139–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piatti, G.; Ambrosetti, U.; Santus, P.; Allegra, L. Effects of salmeterol on cilia and mucus in COPD and pneumonia patients. Pharmacol. Res. 2005, 51, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.; Knabe, L.; Khelloufi, K.; Jory, M.; Gras, D.; Cabon, Y.; Begg, M.; Richard, S.; Massiera, G.; Chanez, P.; et al. Bronchial Epithelial Calcium Metabolism Impairment in Smokers and Chronic Obstructive Pulmonary Disease. Decreased ORAI3 Signaling. Am. J. Respir. Cell Mol. Biol. 2019, 61, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Ancel, J.; Belgacemi, R.; Perotin, J.-M.; Diabasana, Z.; Dury, S.; Dewolf, M.; Bonnomet, A.; Lalun, N.; Birembaut, P.; Polette, M.; et al. Sonic hedgehog signalling as a potential endobronchial biomarker in COPD. Respir. Res. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Belgacemi, R.; Luczka, E.; Ancel, J.; Diabasana, Z.; Perotin, J.-M.; Germain, A.; Lalun, N.; Birembaut, P.; Dubernard, X.; Mérol, J.-C.; et al. Airway epithelial cell differentiation relies on deficient Hedgehog signalling in COPD. EBioMedicine 2020, 51, 102572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perotin, J.-M.; Coraux, C.; Lagonotte, E.; Birembaut, P.; Delépine, G.; Polette, M.; Deslee, G.; Dormoy, V. Alteration of primary cilia in COPD. Eur. Respir. J. 2018, 52, 1800122. [Google Scholar] [CrossRef] [PubMed]
- Perotin, J.-M.; Polette, M.; Deslée, G.; Dormoy, V. CiliOPD: A ciliopathy-associated COPD endotype. Respir. Res. 2021, 22, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.S.; Davis, S.D.; Omran, H.; Shoemark, A. Primary ciliary dyskinesia in the genomics age. Lancet Respir. Med. 2020, 8, 202–216. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Criner, G.J.; Martinez, F.J.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Chen, R.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2017, 195, 557–582. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerová, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; MacNee, W.; et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2010, 363, 1128–1138. [Google Scholar] [CrossRef] [Green Version]
- Du Rand, I.A.; Blaikley, J.; Booton, R.; Chaudhuri, N.; Gupta, V.; Khalid, S.; Mandal, S.; Martin, J.; Mills, J.; Navani, N.; et al. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: Accredited by NICE. Thorax 2013, 68, i1–i44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, D.; Roux-Delrieu, J.; Luczka, E.; Bonnomet, A.; Lesage, J.; Mérol, J.-C.; Polette, M.; Abély, M.; Coraux, C. Cystic fibrosis airway epithelium remodelling: Involvement of inflammation. J. Pathol. 2014, 235, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Schaefer, N.; Chu, H.W. Air–Liquid Interface Culture of Human and Mouse Airway Epithelial Cells. Methods Mol. Biol. 2018, 1809, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Schamberger, A.C.; Staab-Weijnitz, C.; Mise-Racek, N.; Eickelberg, O. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci. Rep. 2015, 5, 8163. [Google Scholar] [CrossRef] [Green Version]
- Müller, L.; Brighton, L.E.; Carson, J.L.; Ii, W.A.F.; Jaspers, I. Culturing of Human Nasal Epithelial Cells at the Air Liquid Interface. J. Vis. Exp. 2013, e50646. [Google Scholar] [CrossRef]
- Pezzulo, A.A.; Starner, T.D.; Scheetz, T.E.; Traver, G.L.; Tilley, A.E.; Harvey, B.-G.; Crystal, R.G.; McCray, P.B., Jr.; Zabner, J. The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 300, L25–L31. [Google Scholar] [CrossRef] [Green Version]
- García, S.R.; Deprez, M.; Lebrigand, K.; Cavard, A.; Paquet, A.; Arguel, M.-J.; Magnone, V.; Truchi, M.; Caballero, I.; Leroy, S.; et al. Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 2019, 146, dev.177428. [Google Scholar] [CrossRef] [Green Version]
- Lauring, M.C.; Zhu, T.; Luo, W.; Wu, W.; Yu, F.; Toomre, D. New software for automated cilia detection in cells (ACDC). Cilia 2019, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Kiseleva, A.A.; Korobeynikov, V.; Liu, H.; Einarson, M.B.; Golemis, E.A. Microscopy-Based Automated Live Cell Screening for Small Molecules That Affect Ciliation. Front. Genet. 2019, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.; Ferland, R.J. Fixation methods can differentially affect ciliary protein immunolabeling. Cilia 2017, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Paridaen, J.T.; Huttner, W.B.; Wilsch-Bräuninger, M. Analysis of primary cilia in the developing mouse brain. In Micropatterning in Cell Biology Part B; Elsevier: Amsterdam, The Netherlands, 2015; Volume 127, pp. 93–129. [Google Scholar]
- Belgacemi, R.; Diabasana, Z.; Hoarau, A.; Dubernard, X.; Mérol, J.; Ruaux, C.; Polette, M.; Perotin, J.; Deslée, G.; Dormoy, V. Primary ciliogenesis is a crucial step for multiciliated cell determinism in the respiratory epithelium. J. Cell. Mol. Med. 2021, 25, 7575–7579. [Google Scholar] [CrossRef]
- Hansen, J.N.; Rassmann, S.; Stüven, B.; Jurisch-Yaksi, N.; Wachten, D. CiliaQ: A simple, open-source software for automated quantification of ciliary morphology and fluorescence in 2D, 3D, and 4D images. Eur. Phys. J. E 2021, 44, 1–26. [Google Scholar] [CrossRef]
- Smith, C.M.; Djakow, J.; Free, R.C.; Djakow, P.; Lonnen, R.; Williams, G.; Pohunek, P.; Hirst, R.A.; Easton, A.J.; Andrew, P.W.; et al. ciliaFA: A research tool for automated, high-throughput measurement of ciliary beat frequency using freely available software. Cilia 2012, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Zuo, W.-L.; Yang, J.; Strulovici-Barel, Y.; Salit, J.; Rostami, M.; Mezey, J.G.; O’Beirne, S.; Kaner, R.J.; Crystal, R.G. Exaggerated BMP4 signalling alters human airway basal progenitor cell differentiation to cigarette smoking-related phenotypes. Eur. Respir. J. 2019, 53, 1702553. [Google Scholar] [CrossRef]
- Åstrand, A.B.M.; Hemmerling, M.; Root, J.; Wingren, C.; Pesic, J.; Johansson, E.; Garland, A.L.; Ghosh, A.; Tarran, R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition. Am. J. Physiol. Cell. Mol. Physiol. 2015, 308, L22–L32. [Google Scholar] [CrossRef] [Green Version]
- Hua, K.; Ferland, R.J. Primary cilia proteins: Ciliary and extraciliary sites and functions. Cell. Mol. Life Sci. 2018, 75, 1521–1540. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Nguyen, Q.P.; Nanjundappa, R.; Delgehyr, N.; Megherbi, A.; Doherty, R.; Thompson, J.; Jackson, C.; Albulescu, A.; Heng, Y.M.; et al. Super-Resolution Microscopy and FIB-SEM Imaging Reveal Parental Centriole-Derived, Hybrid Cilium in Mammalian Multiciliated Cells. Dev. Cell 2020, 55, 224–236. [Google Scholar] [CrossRef]
- Gsell, S.; Loiseau, E.; D’Ortona, U.; Viallat, A.; Favier, J. Hydrodynamic model of directional ciliary-beat organization in human airways. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Kempeneers, C.; Seaton, C.; Espinosa, B.G.; Chilvers, M. Ciliary functional analysis: Beating a path towards standardization. Pediatr. Pulmonol. 2019, 54, 1627–1638. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, C.; Rutman, A.; Williams, G.; Kulkarni, N.; Hayes, J.; Hirst, R.A. Ciliated conical epithelial cell protrusions point towards a diagnosis of primary ciliary dyskinesia. Respir. Res. 2018, 19, 125. [Google Scholar] [CrossRef] [Green Version]
Non-COPD (n = 15) | COPD (n = 17) | p-Value | |
---|---|---|---|
Sex ratio H/F | 6/9 | 10/7 | ns |
Age (years) | 52 ± 15 | 60 ± 12 | ns |
Smoking history | - | - | <0.01 |
Never smokers | 4 (26%) | 0 | <0.05 |
Current-smokers | 7 (47%) | 5 (29%) | ns |
Former-smokers | 4 (26%) | 12 (71%) | <0.05 |
Pack-years | 21 ± 25 | 41 ± 24 | <0.05 |
Spirometry | - | - | - |
FEV1, % of predicted value | 100 ± 17 | 54 ± 29 | <0.0001 |
FVC, % of predicted value | 102 ± 18 | 80 ± 22 | <0.05 |
FEV1/FVC % | 82 ± 10 | 48 ± 14 | <0.0001 |
Spirometric GOLD 1/2/3/4 | NA | 4/3/6/4 | - |
GOLD A/B/C/D | NA | 4/4/4/5 | - |
GOLD CAT | NA | 3/4/3/7 | - |
Inhaled treatments | - | - | - |
LABA | NA | 12 (71%) | - |
LAMA | NA | 7 (41%) | - |
ICS | NA | 8 (47%) | - |
Frequent exacerbation (>1/year) | - | 7 (41%) | - |
Respiratory symptoms | - | - | - |
Dyspnea (mMRC) 0/1/2/3/4 | 4/7/2/2/0 | 4/4/5/3/1 | ns |
Cough | 13 (86%) | 16 (94%) | ns |
Sputum | 6 (40%) | 13 (76%) | ns |
Chronic bronchitis | 4 (27%) | 8 (47%) | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ancel, J.; Belgacemi, R.; Diabasana, Z.; Perotin, J.-M.; Bonnomet, A.; Dewolf, M.; Launois, C.; Mulette, P.; Deslée, G.; Polette, M.; et al. Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics 2021, 11, 1579. https://doi.org/10.3390/diagnostics11091579
Ancel J, Belgacemi R, Diabasana Z, Perotin J-M, Bonnomet A, Dewolf M, Launois C, Mulette P, Deslée G, Polette M, et al. Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics. 2021; 11(9):1579. https://doi.org/10.3390/diagnostics11091579
Chicago/Turabian StyleAncel, Julien, Randa Belgacemi, Zania Diabasana, Jeanne-Marie Perotin, Arnaud Bonnomet, Maxime Dewolf, Claire Launois, Pauline Mulette, Gaëtan Deslée, Myriam Polette, and et al. 2021. "Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD" Diagnostics 11, no. 9: 1579. https://doi.org/10.3390/diagnostics11091579
APA StyleAncel, J., Belgacemi, R., Diabasana, Z., Perotin, J. -M., Bonnomet, A., Dewolf, M., Launois, C., Mulette, P., Deslée, G., Polette, M., & Dormoy, V. (2021). Impaired Ciliary Beat Frequency and Ciliogenesis Alteration during Airway Epithelial Cell Differentiation in COPD. Diagnostics, 11(9), 1579. https://doi.org/10.3390/diagnostics11091579