Development and Verification of an Adjustment Factor for Determining the Axial Length Using Optical Biometry in Silicone Oil-Filled Eyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Recruitment
2.2. Repeatability and Agreement
2.3. Verification
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olsen, T. The accuracy of ultrasonic determination of axial length in pseudophakic eyes. Acta Ophthalmol. 1989, 67, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T. Theoretical approach to intraocular lens calculation using Gaussian optics. J. Cataract. Refract. Surg. 1987, 13, 141–145. [Google Scholar] [CrossRef]
- Vogel, A.; Dick, H.B.; Krummenauer, F. Reproducibility of optical biometry using partial coherence interferometry: Intraobserver and interobserver reliability. J. Cataract. Refract. Surg. 2001, 27, 1961–1968. [Google Scholar] [CrossRef]
- Kunert, K.S.; Peter, M.; Blum, M.; Haigis, W.; Sekundo, W.; Schutze, J.; Buehren, T. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J. Cataract. Refract. Surg. 2016, 42, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Chen, H.; Li, Y.; Chen, Z.; Gao, R.; Yu, J.; Zhao, Y.; Lu, W.; McAlinden, C.; Wang, Q. Comprehensive Comparison of Axial Length Measurement With Three Swept-Source OCT-Based Biometers and Partial Coherence Interferometry. J. Refract. Surg. 2019, 35, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Hirnschall, N.; Varsits, R.; Doeller, B.; Findl, O. Enhanced Penetration for Axial Length Measurement of Eyes with Dense Cataracts Using Swept Source Optical Coherence Tomography: A Consecutive Observational Study. Ophthalmol. Ther. 2018, 7, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meinhardt, B.; Stachs, O.; Stave, J.; Beck, R.; Guthoff, R. Evaluation of biometric methods for measuring the anterior chamber depth in the non-contact mode. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 559–564. [Google Scholar] [CrossRef]
- The 6th Revision of an Instruction Manual PDF of the Pentacam® AXL Wave (G/70020/US Rev04); Oculus Optikgeräte GmbH: Wetzlar, Germany, 2021; pp. 81–100.
- Ratheesh, K.M.; Seah, L.K.; Murukeshan, V.M. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems. Phys. Med. Biol. 2016, 61, 7652–7663. [Google Scholar] [CrossRef] [PubMed]
- Meleppat, R.K.; Matham, M.V.; Seah, L.K. An efficient phase analysis-based wavenumber linearization scheme for swept source optical coherence tomography systems. Laser Phys. Lett. 2015, 12, 055601. [Google Scholar] [CrossRef]
- Yeo, J.H.; Glaser, B.M.; Michels, R.G. Silicone Oil in the Treatment of Complicated Retinal Detachments. Ophthalmology 1987, 94, 1109–1113. [Google Scholar] [CrossRef]
- Grinbaum, A.; Treister, G.; Moisseiev, J. Predicted and actual refraction after intraocular lens implantation in eyes with silicone oil. J. Cataract. Refract. Surg. 1996, 22, 726–729. [Google Scholar] [CrossRef]
- Faria-Ribeiro, M.; Lopes-Ferreira, D.; Lopez-Gil, N.; Jorge, J.; Gonzalez-Meijome, J.M. Errors associated with IOLMaster biometry as a function of internal ocular dimensions. J. Optom. 2014, 7, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Omoto, M.K.; Torii, H.; Masui, S.; Ayaki, M.; Tsubota, K.; Negishi, K. Ocular biometry and refractive outcomes using two swept-source optical coherence tomography-based biometers with segmental or equivalent refractive indices. Sci. Rep. 2019, 9, 6557. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huangfu, S.; Zhou, Q.; Li, Y.; Xiang, H.; Chen, M.; Zheng, G.; Zhuang, S.; Zhao, J.; Zhang, D. The measurement of ocular axial length in normal human eyes based on an improved Twyman-Green interferometer. J. Biophotonics 2021, 14, e202100021. [Google Scholar] [CrossRef]
- Shetty, N.; Kaweri, L.; Koshy, A.; Shetty, R.; Nuijts, R.; Sinha Roy, A. Repeatability of biometry measured by three devices and its impact on predicted intraocular lens power. J. Cataract. Refract. Surg. 2021, 47, 585–592. [Google Scholar] [CrossRef]
- Fisus, A.D.; Hirnschall, N.D.; Ruiss, M.; Pilwachs, C.; Georgiev, S.; Findl, O. Repeatability of 2 swept-source OCT biometers and 1 optical low-coherence reflectometry biometer. J. Cataract. Refract. Surg. 2021, 47, 1302–1307. [Google Scholar] [CrossRef]
- Ruiz-Mesa, R.; Abengozar-Vela, A.; Ruiz-Santos, M. Comparison of a new Scheimpflug imaging combined with partial coherence interferometry biometer and a low-coherence reflectometry biometer. J. Cataract. Refract. Surg. 2017, 43, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Kunavisarut, P.; Poopattanakul, P.; Intarated, C.; Pathanapitoon, K. Accuracy and reliability of IOL master and A-scan immersion biometry in silicone oil-filled eyes. Eye 2012, 26, 1344–1348. [Google Scholar] [CrossRef] [Green Version]
- Roessler, G.F.; Huth, J.K.; Dietlein, T.S.; Dinslage, S.; Plange, N.; Walter, P.; Mazinani, B.A. Accuracy and reproducibility of axial length measurement in eyes with silicone oil endotamponade. Br. J. Ophthalmol. 2009, 93, 1492–1494. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Li, Q. Changes in ocular biometric measurements after vitrectomy with silicone oil tamponade for rhegmatogenous retinal detachment repair. BMC Ophthalmol. 2020, 20, 360. [Google Scholar] [CrossRef]
- Parravano, M.; Oddone, F.; Sampalmieri, M.; Gazzaniga, D. Reliability of the IOLMaster in axial length evaluation in silicone oil-filled eyes. Eye 2007, 21, 909–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
IOLMaster 700 | Pentacam AXL | Paired Differences | |
---|---|---|---|
mean [mm] ± SD | 24.22 ± 2.06 | 24.24 ± 2.04 | 0.02 ± 0.04 |
95% CI | 22.91, 25.53 | 22.95, 25.53 | −0.01, 0.05 |
min, max | 20.43, 28.47 | 20.45, 28.37 | −0.10, 0.06 |
CoV [%] | 0.03 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auffarth, G.U.; Naujokaitis, T.; Blöck, L.; Daghbashyan, A.; Meis, J.; Augustin, V.A.; Khoramnia, R.; Yildirim, T.M. Development and Verification of an Adjustment Factor for Determining the Axial Length Using Optical Biometry in Silicone Oil-Filled Eyes. Diagnostics 2022, 12, 163. https://doi.org/10.3390/diagnostics12010163
Auffarth GU, Naujokaitis T, Blöck L, Daghbashyan A, Meis J, Augustin VA, Khoramnia R, Yildirim TM. Development and Verification of an Adjustment Factor for Determining the Axial Length Using Optical Biometry in Silicone Oil-Filled Eyes. Diagnostics. 2022; 12(1):163. https://doi.org/10.3390/diagnostics12010163
Chicago/Turabian StyleAuffarth, Gerd U., Tadas Naujokaitis, Louise Blöck, Anna Daghbashyan, Jan Meis, Victor A. Augustin, Ramin Khoramnia, and Timur M. Yildirim. 2022. "Development and Verification of an Adjustment Factor for Determining the Axial Length Using Optical Biometry in Silicone Oil-Filled Eyes" Diagnostics 12, no. 1: 163. https://doi.org/10.3390/diagnostics12010163
APA StyleAuffarth, G. U., Naujokaitis, T., Blöck, L., Daghbashyan, A., Meis, J., Augustin, V. A., Khoramnia, R., & Yildirim, T. M. (2022). Development and Verification of an Adjustment Factor for Determining the Axial Length Using Optical Biometry in Silicone Oil-Filled Eyes. Diagnostics, 12(1), 163. https://doi.org/10.3390/diagnostics12010163