Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. ABVS Examination
2.3. Breast Biopsy
2.4. ABVS Radiomic Score
2.5. ABVS Radiomic Nomogram and Clinical Significance
2.6. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. ABVS Radiomic Score
3.3. ABVS Radiomic Nomogram
3.4. Clinical Value of The ABVS Radiomic Nomogram
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruddy, K.J.; Ganz, P.A. Treatment of Nonmetastatic Breast Cancer. JAMA 2019, 321, 1716–1717. [Google Scholar] [CrossRef] [PubMed]
- Nasief, H.G.; Rosado-Mendez, I.M.; Zagzebski, J.A.; Hall, T.J. A Quantitative Ultrasound-Based Multi-Parameter Classifier for Breast Masses. Ultrasound Med. Biol. 2019, 45, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.H.; Moon, W.K.; Cho, N.; Chung, S.Y.; Park, S.H.; Park, J.M.; Han, B.K.; Choe, Y.H.; Cho, G.; Im, J.-G. Differentiation of benign from malignant solid breast masses: Conventional US versus spatial compound imaging. Radiology 2005, 237, 841–846. [Google Scholar] [CrossRef]
- Mercado, C.L. BI-RADS Update. Radiol. Clin. N. Am. 2014, 52, 481–487. [Google Scholar] [CrossRef] [PubMed]
- D’Orsi, C.J. SEME. In Breast Imaging Reportng and Data System: ACR BI-RADS Atlas; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Bent, C.K.; Bassett, L.W.; D’Orsi, C.J.; Sayre, J.W. The positive predictive value of BI-RADS microcalcification descriptors and final assessment categories. AJR Am. J. Roentgenol. 2010, 194, 1378–1383. [Google Scholar] [CrossRef] [Green Version]
- Kerlikowske, K.; Hubbard, R.A.; Miglioretti, D.L.; Geller, B.M.; Yankaskas, B.C.; Lehman, C.D.; Taplin, S.H.; Sickles, E.A.; for the Breast Cancer Surveillance Consortium. Comparative effectiveness of digital versus film-screen mammography in community practice in the United States: A cohort study. Ann. Intern. Med. 2011, 155, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Elezaby, M.; Li, G.; Bhargavan-Chatfield, M.; Burnside, E.S.; DeMartini, W.B. ACR BI-RADS Assessment Category 4 Subdivisions in Diagnostic Mammography: Utilization and Outcomes in the National Mammography Database. Radiology 2018, 287, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, B.C. Core Needle Biopsy of the Breast: An Evaluation of Contemporary Data. Surg. Pathol. Clin. 2018, 11, 1–16. [Google Scholar] [CrossRef]
- Hatt, M.; Le Rest, C.C.; Tixier, F.; Badic, B.; Schick, U.; Visvikis, D. Radiomics: Data Are Also Images. J. Nucl. Med. 2019, 60, 38S–44S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, T.; Cong, S.; Yi, Z.; Liu, J.; Huang, C.; Shen, J.; Pei, S.; Chen, G.; Liu, Z. Ultrasound-Based Nomogram for Distinguishing Malignant Tumors from Nodular Sclerosing Adenoses in Solid Breast Lesions. J. Ultrasound Med. 2021, 40, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Luo, Y.; Zhao, C.; Xiao, M.; Ma, L.; Li, W.; Qin, J.; Zhu, Q.; Jiang, Y. Nomogram based on radiomics analysis of primary breast cancer ultrasound images: Prediction of axillary lymph node tumor burden in patients. Eur. Radiol. 2020, 31, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shu, Z.; Li, Y.; Chen, B.; Tang, L.; Mo, W.; Shao, G.; Shao, F. Machine Learning-Based Radiomics Nomogram Using Magnetic Resonance Images for Prediction of Neoadjuvant Chemotherapy Efficacy in Breast Cancer Patients. Front. Oncol. 2020, 10, 1410. [Google Scholar] [CrossRef]
- Hu, B.; Xu, K.; Zhang, Z.; Chai, R.; Li, S.; Zhang, L. A radiomic nomogram based on an apparent diffusion coefficient map for differential diagnosis of suspicious breast findings. Chin. J. Cancer Res. 2018, 30, 432–438. [Google Scholar] [CrossRef]
- Luo, W.Q.; Huang, Q.X.; Huang, X.W.; Hu, H.T.; Zeng, F.Q.; Wang, W. Predicting Breast Cancer in Breast Imaging Reporting and Data System (BI-RADS) Ultrasound Category 4 or 5 Lesions: A Nomogram Combining Radiomics and BI-RADS. Sci. Rep. 2019, 9, 11921. [Google Scholar] [CrossRef] [Green Version]
- Zanotel, M.; Bednarova, I.; Londero, V.; Linda, A.; Lorenzon, M.; Girometti, R.; Zuiani, C. Automated breast ultrasound: Basic principles and emerging clinical applications. La Radiol. Med. 2017, 123, 1–12. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, H.H.; Moon, W.K. Automated Breast Ultrasound Screening for Dense Breasts. Korean J. Radiol. 2020, 21, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Vourtsis, A.; Kachulis, A. The performance of 3D ABUS versus HHUS in the visualisation and BI-RADS characterisation of breast lesions in a large cohort of 1886 women. Eur. Radiol. 2017, 28, 592–601. [Google Scholar] [CrossRef]
- Zheng, F.-Y.; Yan, L.-X.; Huang, B.-J.; Xia, H.-S.; Wang, X.; Lu, Q.; Li, C.-X.; Wang, W.-P. Comparison of retraction phenomenon and BI-RADS-US descriptors in differentiating benign and malignant breast masses using an automated breast volume scanner. Eur. J. Radiol. 2015, 84, 2123–2129. [Google Scholar] [CrossRef]
- Van Zelst, J.; Mann, R.M. Automated Three-dimensional Breast US for Screening: Technique, Artifacts, and Lesion Characterization. Radiographics 2018, 38, 663–683. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, J.; Han, F.; Fu, J.; Li, A. Analysis of eighty-one cases with breast lesions using automated breast volume scanner and comparison with handheld ultrasound. Eur. J. Radiol. 2012, 81, 873–878. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.C. Precision pathology as applied to breast core needle biopsy evaluation: Implications for management. Mod. Pathol. 2020, 34, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Abbasian Ardakani, A.; Gharbali, A.; Mohammadi, A. Application of texture analysis method for classification of benign and malignant thyroid nodules in ultrasound images. Iran J. Cancer Prev. 2015, 8, 116–124. [Google Scholar]
- Wu, Q.; Nasoz, F.; Jung, J.; Bhattarai, B.; Han, M.V. Machine Learning Approaches for Fracture Risk Assessment: A Comparative Analysis of Genomic and Phenotypic Data in 5130 Older Men. Calcif. Tissue Int. 2020, 107, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Kataoka, M.; Kanao, S.; Iima, M.; Onishi, N.; Ohashi, A.; Sakaguchi, R.; Toi, M.; Togashi, K. The Value of Lesion Size as an Adjunct to the BI-RADS-MRI 2013 Descriptors in the Diagnosis of Solitary Breast Masses. Magn. Reson. Med. Sci. 2018, 17, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Kang, B.J. Combination of shear-wave elastography with ultrasonography for detection of breast cancer and reduction of unnecessary biopsies: A systematic review and meta-analysis. Ultrasonography 2020, 40, 318–332. [Google Scholar] [CrossRef]
- Liang, Y.C.; Jia, C.M.; Xue, Y.; Lu, Q.; Chen, F.; Wang, J.J. Diagnostic value of contrast-enhanced ultrasound in breast lesions of BI-RADS 4. Zhonghua Yi Xue Za Zhi 2018, 98, 1498–1502. [Google Scholar]
- Elverici, E.; Barça, A.N.; Aktaş, H.; Özsoy, A.; Zengin, B.; Çavuşoğlu, M.; Araz, L. Nonpalpable BI-RADS 4 breast lesions: Sonographic findings and pathology correlation. Diagn. Interv. Radiol. 2015, 21, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Magro, G.; Salvatorelli, L.; Puzzo, L.; Piombino, E.; Bartoloni, G.; Broggi, G.; Vecchio, G.M. Practical approach to diagnosis of bland-looking spindle cell lesions of the breast. Pathologica 2019, 111, 344–360. [Google Scholar] [CrossRef]
- Kwon, B.R.; Chang, J.M.; Kim, S.Y.; Lee, S.H.; Kim, S.Y.; Lee, S.M.; Cho, N.; Moon, W.K. Automated Breast Ultrasound System for Breast Cancer Evaluation: Diagnostic Performance of the Two-View Scan Technique in Women with Small Breasts. Korean J. Radiol. 2020, 21, 25. [Google Scholar] [CrossRef]
- Skaane, P.; Gullien, R.; Eben, E.B.; Sandhaug, M.; Schulz-Wendtland, R.; Stoeblen, F. Interpretation of automated breast ultrasound (ABUS) with and without knowledge of mammography: A reader performance study. Acta Radiol. 2015, 56, 404–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.; An, X.; Xiang, H.; Liu, L.; Li, A.; Lin, X. Automated Breast Ultrasound: Interobserver Agreement, Diagnostic Value, and Associated Clinical Factors of Coronal-Plane Image Features. Korean J. Radiol. 2020, 21, 550. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, B.J.; Gil Choi, B.; Choi, J.J.; Lee, J.H.; Song, B.J.; Choe, B.J.; Park, S.; Kim, H. Radiologists’ performance for detecting lesions and the interobserver variability of automated whole breast ultrasound. Korean J. Radiol. 2013, 14, 154–163. [Google Scholar] [CrossRef]
- Broggi, G.; Filetti, V.; Ieni, A.; Rapisarda, V.; Ledda, C.; Vitale, E.; Varricchio, S.; Russo, D.; Lombardo, C.; Tuccari, G.; et al. MacroH2A1 Immunoexpression in Breast Cancer. Front. Oncol. 2020, 10, 1519. [Google Scholar] [CrossRef]
Characteristics | Training Cohort (n = 178) | Validation Cohort (n = 45) | Statistic (χ2 or t) | p |
---|---|---|---|---|
Age(year) | 48.9 ± 12.3 | 51.3 ± 12.1 | −1.206 | 0.229 |
BI-RADS 4 category | ||||
4a | 84 (47.2%) | 20 (44.4%) | 1.044 | 0.593 |
4b | 36 (20.2%) | 7 (15.6%) | ||
4c | 58 (32.6%) | 18 (40.0%) | ||
Breast density | ||||
A (<25% dense tissue) | 15 (8.4%) | 3 (6.7%) | 0.680 | 0.878 |
B (25–50% dense tissue) | 64 (36.0%) | 17 (37.8%) | ||
C (51–75% dense tissue) | 68 (38.2%) | 19 (42.2%) | ||
D (>75% dense tissue) | 31 (17.4%) | 6 (13.3%) | ||
Menopausal | ||||
Pre-menopausal | 106 (59.6%) | 19 (42.2%) | 3.703 | 0.054 |
postmenopausal | 72 (40.4%) | 26 (57.8%) | ||
Oral contraceptives | ||||
Yes | 22 (12.4%) | 9 (20.0%) | 1.752 | 0.186 |
No | 156 (87.6%) | 36 (80.0%) | ||
Family history of breast cancer | ||||
Yes | 16 (9.0%) | 8 (17.8%) | 2.046 | 0.153 |
No | 162 (91.0%) | 37 (82.2%) | ||
Smoking history | ||||
Yes | 7 (3.9%) | 5 (11.1%) | 2.362 | 0.124 |
No | 171 (96.1%) | 40 (88.9%) | ||
Alcohol drinking history | ||||
Yes | 7 (3.9%) | 4 (8.9%) | 0.973 | 0.324 |
No | 171 (96.1%) | 41 (91.1%) | ||
Location of lesions | ||||
Left | 103 (57.9%) | 26 (57.8%) | 0.000 | 0.992 |
Right | 75 (42.1%) | 19 (42.2%) | ||
Lesion size (cm) | 1.9 ± 1.0 | 2.0 ± 1.1 | −0.600 | 0.549 |
Shape | ||||
Regular | 32 (18.0%) | 13 (28.9%) | 2.655 | 0.103 |
Irregular | 146 (82.0%) | 32 (71.1%) | ||
Orientation | ||||
Parallel | 105 (59.0%) | 27 (60.0%) | 0.015 | 0.902 |
Not parallel | 73 (41.0%) | 18 (40.0%) | ||
Margin | ||||
Circumscribed | 19 (10.7%) | 9 (20.0%) | 2.845 | 0.092 |
Not circumscribed | 159 (89.3%) | 36 (80.0%) | ||
Posterior echo | ||||
No posterior echo | 69 (38.8%) | 21 (46.7%) | 1.163 | 0.762 |
Enhancement | 31 (17.4%) | 8 (17.8%) | ||
Shadowing | 52 (29.2%) | 11 (24.4%) | ||
Combined pattern | 26 (14.6%) | 5 (11.1%) | ||
Echo pattern * | ||||
Complex cystic and solid | 14 (7.9%) | 4 (8.9%) | 0.051 | 0.822 |
Hypoechoic | 164 (92.1%) | 41 (91.1%) | ||
Calcification | ||||
Yes | 88 (49.4%) | 28 (62.2%) | 2.352 | 0.125 |
No | 90 (50.6%) | 17 (37.8%) | ||
Radiomic score | 0.185 ± 1.659 | 0.257 ± 1.689 | 0.255 | 0.799 |
Variables | Univariate Logistic Regression | Multivariate Logistic Regression | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age (years) | 1.085 (1.053, 1.118) | <0.001 | 1.060 (0.965, 1.165) | 0.226 |
BI-RADS 4 category | ||||
4A | Ref. | Ref. | ||
4B | 0.955 (0.459, 1.989) | <0.001 | NA | NA |
4C | 4.978 (1.656, 5.963) | <0.001 | 4.794 (0.803, 8.624) | <0.001 |
Breast density | ||||
A (<25% dense tissue) | Ref. | Ref. | ||
B (25–50% dense tissue) | 2.283 (1.231, 4.234) | 0.009 | 1.741 (0.460, 6.584) | 0.414 |
C (51–75% dense tissue) | 0.648 (0.355, 1.184) | 0.158 | NA | NA |
D (>75% dense tissue) | 0.234 (0.091, 0.602) | 0.003 | 0.526 (0.095, 2.902) | 0.461 |
Menopausal (Pre-/post-menopausal) | 0.244 (0.130, 0.456) | <0.001 | 1.004 (0.143, 7.072) | 0.997 |
Oral contraceptives (Yes/No) | 1.227 (0.440, 3.423) | 0.696 | NA | NA |
Family history of breast cancer (Yes/No) | 1.226 (0.439, 3.423) | 0.696 | NA | NA |
Smoking history (Yes/No) | 1.637 (0.356, 7.532) | 0.527 | NA | NA |
Alcohol drinking history (Yes/No) | 3.141 (0.593, 16.629) | 0.178 | NA | NA |
Location of lesion (Left/Right) | 0.729 (0.402, 1.320) | 0.296 | NA | NA |
Lesion size (cm) | 2.369 (1.636, 3.431) | <0.001 | 2.838 (1.468, 5.486) | 0.002 |
Shape (Regular/ Irregular) | 1.785 (0.771, 4.133) | 0.176 | NA | NA |
Orientation (Parallel/ Not parallel) | 0.458 (0.252, 0.8340) | 0.011 | 0.448 (0.134, 1.499) | 0.193 |
Margin (Circumscribed/Not circumscribed) | 0.445 (0.167, 1.189) | 0.106 | NA | NA |
Posterior echo | ||||
Enhancement | Ref. | Ref. | ||
No posterior echo | 0.815 (0.447, 1.483) | 0.502 | NA | NA |
Shadowing | 1.173 (0.620, 2.218) | 0.624 | NA | NA |
Combined pattern | 0.368 (0.147, 0.921) | 0.033 | NA | NA |
Echo pattern | ||||
Hypoechoic | Ref. | Ref. | ||
Complex cystic and solid | 1.224 (0.411, 3.642) | 0.717 | NA | NA |
Calcification (Yes/No) | 0.780 (0.435, 1.397) | 0.403 | NA | NA |
Radiomic score | 0.269 (0.186, 0.341) | <0.001 | 0.206 (0.104, 0.407) | <0.001 |
Training Cohort (n = 178) | Validation Cohort (n = 45) | Combined Cohort (n = 223) | |
---|---|---|---|
AUC (95% CI) | 0.96 (0.93 to 0.98) | 0.92 (0.82 to 0.97) | 0.95 (0.92 to 0.98) |
Accuracy (%) | 91.6% | 86.7% | 90.6% |
Sensitivity (%) | 90.2% | 83.3% | 88.7% |
Specificity (%) | 92.7% | 90.5% | 92.3% |
PPV (%) | 91.4% | 90.9% | 91.3% |
NPV (%) | 91.8% | 82.6% | 90.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-J.; Liu, H.-Q.; Yang, T.; Huang, M.-Q.; Zheng, B.-W.; Wu, T.; Qiu, C.; Han, L.-Q.; Ren, J. Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions. Diagnostics 2022, 12, 172. https://doi.org/10.3390/diagnostics12010172
Wang S-J, Liu H-Q, Yang T, Huang M-Q, Zheng B-W, Wu T, Qiu C, Han L-Q, Ren J. Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions. Diagnostics. 2022; 12(1):172. https://doi.org/10.3390/diagnostics12010172
Chicago/Turabian StyleWang, Shi-Jie, Hua-Qing Liu, Tao Yang, Ming-Quan Huang, Bo-Wen Zheng, Tao Wu, Chen Qiu, Lan-Qing Han, and Jie Ren. 2022. "Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions" Diagnostics 12, no. 1: 172. https://doi.org/10.3390/diagnostics12010172
APA StyleWang, S. -J., Liu, H. -Q., Yang, T., Huang, M. -Q., Zheng, B. -W., Wu, T., Qiu, C., Han, L. -Q., & Ren, J. (2022). Automated Breast Volume Scanner (ABVS)-Based Radiomic Nomogram: A Potential Tool for Reducing Unnecessary Biopsies of BI-RADS 4 Lesions. Diagnostics, 12(1), 172. https://doi.org/10.3390/diagnostics12010172