Performance of Platelet Counting in Thrombocytopenic Samples: Comparison between Mindray BC-6800Plus and Sysmex XN-9000
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Assays
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Franchini, M.; Marano, G.; Veropalumbo, E.; Masiello, F.; Pati, I.; Candura, F.; Profili, S.; Catalano, L.; Piccinini, V.; Pupella, S.; et al. Patient blood management: A revolutionary approach to transfusion medicine. Blood Transfus. 2019, 17, 191–195. [Google Scholar]
- Vlaar, A.P.; Oczkowski, S.; de Bruin, S.; Wijnberge, M.; Antonelli, M.; Aubron, C.; Aries, P.; Duranteau, J.; Juffermans, N.P.; Meier, J.; et al. Transfusion strategies in non-bleeding critically ill adults: A clinical practice guideline from the European Society of Intensive Care Medicine. Intensive Care Med. 2020, 46, 673–696. [Google Scholar] [CrossRef] [PubMed]
- Gottschall, J.; Wu, Y.; Triulzi, D.; Kleinman, S.; Strauss, R.; Zimrin, A.B.; McClure, C.; Tan, S.; Bialkowski, W.; Murphyet, E.; et al. The epidemiology of platelet transfusions: An analysis of platelet use at 12 US hospitals. Transfusion 2020, 60, 46–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bruin, S.; Scheeren, T.W.L.; Bakker, J.; van Bruggen, R.; Vlaar, A.P.J. Cardiovascular Dynamics Section and Transfusion Guideline Task Force of the ESICM. Transfusion practice in the non-bleeding critically ill: An international online survey—The TRACE survey. Crit. Care 2019, 23, 309. [Google Scholar] [CrossRef] [Green Version]
- Estcourt, L.J.; Birchall, J.; Allard, S.; Bassey, S.J.; Hersey, P.; Kerr, J.P.; Mumford, A.D.; Stanworth, S.J.; Tinegate, H.; British Committee for Standards in Haematology. Guidelines for the use of platelet transfusions. Br. J. Haematol. 2017, 176, 365–394. [Google Scholar] [CrossRef]
- Cohn, C.S. (Ed.) Technical Manual, 20th ed.; American Association of Blood Banks: Bethesda, MD, USA, 2020; pp. 561–567. ISBN 978-1-56395-370-5. [Google Scholar]
- Borge, D.; Marcus, L. (Eds.) A Compendium of Transfusion Practice Guidelines, 4th ed.; American Red Cross: Washington, DC, USA, 2021; Available online: https://www.redcrossblood.org/content/dam/redcrossblood/hospital-page-documents/334401_compendium_v04jan2021_bookmarkedworking_rwv01.pdf (accessed on 22 December 2021).
- Lippi, G.; Favaloro, E.J.; Buoro, S. Platelet transfusion thresholds: How low can we go in respect to platelet counting? Semin. Thromb. Hemost. 2020, 46, 238–244. [Google Scholar] [CrossRef]
- Harrison, P.; Ault, K.A.; Chapman, S.; Charie, L.; Davis, B.; Fujimoto, K.; Houwen, B.; Kunicka, J.; Lacombe, F.; Machinet, S.; et al. An interlaboratory study of a candidate reference method for platelet counting. Am. J. Clin. Pathol. 2001, 115, 448–459. [Google Scholar] [CrossRef] [PubMed]
- International Council for Standardization in Haematology Expert Panel on Cytometry. International Society of Laboratory Hematology Task Force on Platelet Counting. Platelet counting by the RBC/platelet ratio method: A reference method. Am. J. Clin. Pathol. 2001, 115, 460–464. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, Z.; Huang, Z.; Chen, H.; Qin, S.; Jianing, Z.; Chen, S.; Qin, X.; Ye, Y.; Wang, C. Compare the accuracy and precision of Coulter LH780, Mindray BC-6000 Plus, and Sysmex XN-9000 with the international reference flow cytometric method in platelet counting. PLoS ONE 2019, 14, e0217298:1–e0217298:11. [Google Scholar] [CrossRef] [Green Version]
- Hummel, K.; Sachse, M.; Hoffmann, J.J.M.L.; van Dun, L.P.J.M. Comparative evaluation of platelet counts in two hematology analyzers and potential effects on prophylactic platelet transfusion decisions. Transfusion 2018, 58, 2301–2308. [Google Scholar] [CrossRef] [PubMed]
- Buoro, S.; Lippi, G. Harmonization of laboratory hematology: A long and winding journey. Clin. Chem. Lab. Med. 2018, 56, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- De la Salle, B.J.; McTaggart, P.N.; Briggs, C.; Harrison, P.; Doré, C.J.; Longair, I.; Machin, S.J.; Hyde, K. The accuracy of platelet counting in thrombocytopenic blood samples distributed by the UK National External Quality Assessment Scheme for General Haematology. Am. J. Clin. Pathol. 2012, 137, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coşkun, A.; Carobene, A.; Kilercik, M.; Serteser, M.; Sandberg, S.; Aarsand, A.K.; Fernandez-Calle, P.; Jonker, N.; Bartlett, W.A.; Díaz-Garzónet, J.; et al. Within-subject and between-subject biological variation estimates of 21 hematological parameters in 30 healthy subjects. Clin. Chem. Lab. Med. 2018, 56, 1309–1318. [Google Scholar] [CrossRef]
- Coskun, A.; Braga, F.; Carobene, A.; Ganduxe, X.T.; Aarsand, A.K.; Fernández-Calle, P.; Marco, J.D.; Bartlett, W.; Jonker, N.; Aslan, B.; et al. Systematic review and meta-analysis of within-subject and between-subject biological variation estimates of 20 haematological parameters. Clin. Chem. Lab. Med. 2019, 58, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vis, J.Y.; Huisman, A. Verification and quality control of routine hematology analyzers. Int. J. Lab. Hematol. 2016, 38 (Suppl. S1), 100–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buoro, S.; Seghezzi, M.; Manenti, B.; Pacioni, A.; Carobene, A.; Ceriotti, F.; Ottomano, C.; Lippi, G. Biological variation of platelet parameters determined by the Sysmex XN hematology analyzer. Clin. Chim. Acta 2017, 470, 125–132. [Google Scholar] [CrossRef]
- Kim, H.; Hur, M.; Kim, S.W.; Moon, H.W.; Yun, Y.M. Reference intervals for clinically reportable platelet parameters on the Mindray BC-6800Plus hematology analyzer. Clin. Chem. Lab. Med. 2020, 58, e213–e215. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Cai, Q.; Mao, M.; Lin, H.; Chen, L.; Wu, F.; Wang, J. Performance evaluation of the new platelet measurement channel on the BC-6800 Plus automated hematology analyzer. Int. J. Lab. Hematol. ahead of print. 2021. [Google Scholar] [CrossRef]
- Gioia, M.; Da Rin, G.; Manenti, B.; Birindelli, S.; Ciardelli, M.L.; Gentile, R.; Beretta, G.; Lorusso, G.; Avino, D.; Di Fabio, A.M.; et al. Multicenter evaluation of analytical performances of platelet counts and platelet parameters: Carryover, precision, and stability. Int. J. Lab. Hematol. 2020, 42, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Chen, Y.; Zhang, S.; Li, L.; Shi, Q.; Liu, M.; Yu, X. Mindray SF-Cube technology: An effective way for correcting platelet count in individuals with EDTA dependent pseudo thrombocytopenia. Clin. Chim. Acta 2020, 502, 99–101. [Google Scholar] [CrossRef]
- Mukaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- European Federation of Clinical Chemistry and Laboratory Medicine. EFLM Biological Variation Database. Available online: https://biologicalvariation.eu/search?q=thrombocytes (accessed on 22 December 2021).
- Michelson, A.; Cattaneo, M.; Frelinger, A.; Newman, P. (Eds.) Platelets, 4th ed.; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 581–591. ISBN 978-0-12-813456-6. [Google Scholar]
- Baccini, V.; Geneviève, F.; Jacqmin, H.; Chatelain, B.; Girard, S.; Wuilleme, S.; Vedrenne, A.; Guiheneuf, E.; Toussaint-Hacquard, M.; Everaere, F.; et al. Platelet Counting: Ugly Traps and Good Advice. Proposals from the French-Speaking Cellular Hematology Group (GFHC). J. Clin. Med. 2020, 9, 808. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.J. Reticulated platelets: Analytical aspects and clinical utility. Clin. Chem. Lab. Med. 2014, 52, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, Y.J.; Hur, M.; Kim, H.; Choi, S.G.; Moon, H.W.; Yun, Y.M. Reference interval for immature platelet fraction on Sysmex XN hematology analyzer: A comparison study with Sysmex XE-2100. Clin. Chem. Lab. Med. 2015, 53, 1091–1097. [Google Scholar] [CrossRef]
- Buttarello, M.; Mezzapelle, G.; Freguglia, F.; Plebani, M. Reticulated platelets and immature platelet fraction: Clinical applications and method limitations. Int. J. Lab. Hematol. 2020, 42, 363–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Evaluation of Precision of Quantitative Measurement Procedures, 3rd ed.; CLSI Document EP05-A3; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014; ISBN 1-56238-968-8. [Google Scholar]
PLT Count * (×109/L) | BC-6800P PLT-I vs. XN PLT-I | BC-6800P PLT-O vs. XN PLT-F | ||||
---|---|---|---|---|---|---|
Equation | r (95% CI) | Mean Difference (95% CI) | Equation | r (95% CI) | Mean Difference (95% CI) | |
≤10 (n = 38) | y = 0.98x − 0.13 | 0.80 (0.64–0.89) | −0.2 (−6.2–5.8) | y = 1.14x + 0.92 | 0.83 (0.70–0.91) | −2.1 (−6.5–2.3) |
11–20 (n = 112) | y = 1.00x + 0.00 | 0.57 (0.43–0.68) | −0.2 (−8.5–8.1) | y = 1.25x − 2.50 | 0.76 (0.67–0.83) | −1.8 (−6.0–2.4) |
21–50 (n = 111) | y = 1.15x − 5.20 | 0.83 (0.76–0.88) | 3.6 (−68.1–75.3) | y = 1.00x + 2.00 | 0.94 (0.91–0.96) | −1.6 (−6.9–3.8) |
51–100 (n = 60) | y = 1.07x − 4.36 | 0.94 (0.89–0.96) | −0.9 (−11.8–10.1) | y = 1.04x − 1.07 | 0.93 (0.89–0.96) | −2.5 (−13.5–8.5) |
>100 (n = 195) | y = 1.04x − 1.58 | 0.99 (0.98–0.99) | −7.7 (−30.4–15.0) | y = 0.96x + 5.24 | 0.99 (0.99–0.99) | 3.2 (−16.5–22.9) |
Total (n = 516) | y = 1.03x − 0.61 | 0.99 (0.99–0.99) | −2.3 (−39.7–35.1) | y = 0.98x + 2.62 | 1.00 (1.00–1.00) | 0.0 (−13.9–14.0) |
XN PLT-I (×109/L) Total (n = 516) | BC-6800P PLT-I (×109/L) | XN PLT-F (×109/L)Total (n = 516) | BC-6800P PLT-O (×109/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
≤10 (n = 35) | 11–20 (n = 81) | 21–50 (n = 144) | 51–100 (n = 58) | >100 (n = 198) | ≤10 (n = 28) | 11–20 (n = 93) | 21–50 (n = 139) | 51–100 (n = 58) | >100 (n = 198) | ||
≤10 (n = 32) | 30 | 2 | 0 | 0 | 0 | ≤10 (n = 38) | 28 | 10 | 0 | 0 | 0 |
11–20 (n = 88) | 5 | 64 | 19 | 0 | 0 | 11–20 (n = 112) | 0 | 82 | 30 | 0 | 0 |
21–50 (n = 140) | 0 | 15 | 121 | 4 | 0 | 21–50 (n = 111) | 0 | 1 | 109 | 1 | 0 |
51–100 (n = 60) | 0 | 0 | 3 | 54 | 3 | 51–100 (n = 60) | 0 | 0 | 0 | 57 | 3 |
>100 (n = 196) | 0 | 0 | 1 | 0 | 195 | >100 (n = 195) | 0 | 0 | 0 | 0 | 195 |
Cohen’s weighted kappa = 0.93 (0.91–0.95) (0.76 (0.69–0.83)) * | Cohen’s weighted kappa = 0.94 (0.93–0.96) (0.78 (0.72–0.84)) * |
PLT-I | PLT-O (or PLT-F) | |||||||
---|---|---|---|---|---|---|---|---|
BC-6800P | XN | BC-6800P | XN | |||||
Mean (SD), ×109/L | CV, % | Mean (SD), ×109/L | CV, % | Mean (SD), ×109/L | CV, % | Mean (SD), ×109/L | CV, % | |
1 | 13.5 (1.2) | 8.7 | 20.1 (3.3) | 16.3 | 18.5 (0.5) | 2.8 | 15.9 (1.2) | 21.7 |
2 | 13.7 (2.0) | 14.6 | 16.2 (2.3) | 14.2 | 13.2 (0.6) | 4.8 | 12.1 (1.3) | 10.6 |
3 | 13.9 (1.8) | 12.9 | 17.3 (2.8) | 16.4 | 16.2 (0.9) | 5.7 | 13.9 (1.4) | 9.9 |
4 | 7.9 (2.6) | 32.9 | 9.7 (2.7) | 27.9 | 8.9 (0.3) | 3.6 | 7.6 (0.7) | 9.2 |
5 | 14.3 (1.2) | 8.1 | 15.8 (1.5) | 9.3 | 18.1 (0.7) | 4.1 | 15.4 (0.5) | 3.4 |
6 | 18.3 (1.3) | 7.3 | 17.8 (1.7) | 9.5 | 20.3 (0.5) | 2.4 | 16.2 (0.6) | 3.9 |
7 | 18.0 (1.3) | 7.4 | 18.6 (1.5) | 8.1 | 21.0 (0.8) | 3.9 | 16.9 (1.0) | 5.9 |
8 | 12.1 (1.7) | 13.7 | 11.8 (3.1) | 26.1 | 7.0 (0.7) | 9.5 | 3.9 (0.3) | 8.1 |
9 | 16.8 (2.0) | 12.2 | 20.2 (4.5) | 22.1 | 11.2 (0.6) | 5.6 | 8.8 (0.8) | 9.0 |
10 | 17.7 (2.1) | 11.9 | 21.5 (2.2) | 10.1 | 19.3 (0.5) | 2.5 | 18.5 (0.5) | 2.8 |
IPF (%) | MPV (fL) | PCT (%) | PDW (fL) | P-LCR (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BC-6800P | XN | BC-6800P | XN | BC-6800P | XN | BC-6800P | XN | BC-6800P | XN | |||||||||||
Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | Mean (SD) | CV, % | |
1 | 7.3 (0.4) | 5.5 | 2.7 (0.5) | 20.4 | 10.2 (0.6) | 6.2 | 12.5 (0.6) | 4.6 | 0.026 (0.040) | 152.092 | 0.03 (0.00) | 13.23 | 15.9 (0.6) | 3.6 | 14.1 (1.4) | 9.9 | 29.4 (5.2) | 17.7 | 42.5 (2.5) | 5.9 |
2 | 2.6 (0.6) | 21.5 | 0.9 (0.2) | 27.7 | 9.4 (0.8) | 8.5 | 12.5 (1.6) | 12.5 | 0.013 (0.003) | 20.165 | 0.02 (0.01) | 35.36 | 16.5 (0.7) | 4.5 | 13.2 (6.3) | 48.1 | 26.5 (6.4) | 24.2 | 42.6 (7.6) | 17.8 |
3 | 8.4 (0.8) | 9.2 | 10.9 (1.6) | 12.5 | 10.7 (0.7) | 6.4 | NA | NA | 0.015 (0.003) | 18.298 | NA | NA | 16.0 (0.3) | 1.7 | NA | NA | 40.0 (4.1) | 10.3 | NA | NA |
4 | 9.3 (0.8) | 8.9 | 11.1 (1.5) | 13.1 | 10.2 (1.1) | 11.1 | NA | NA | 0.009 (0.003) | 33.432 | NA | NA | 15.8 (0.5) | 3.2 | NA | NA | 38.1 (9.9) | 25.9 | NA | NA |
5 | 1.5 (0.3) | 19.2 | 0.4 (0.2) | 46.1 | 8.2 (0.3) | 4.2 | 10.2 (0.6) | 6.1 | 0.012 (0.001) | 10.248 | 0.02 (0.00) | 28.41 | 15.3 (0.5) | 3.2 | 11.3 (1.5) | 13.7 | 13.3 (3.3) | 25.0 | 26.6 (4.0) | 14.9 |
6 | 5.1 (0.4) | 7.8 | 5.4 (0.5) | 9.3 | 11.0 (0.5) | 4.8 | 12.4 (1.0) | 7.9 | 0.020 (0.002) | 9.377 | 0.02 (0.00) | 15.79 | 16.8 (0.4) | 2.4 | 15.5 (1.7) | 10.7 | 35.4 (3.4) | 9.7 | 43.3 (4.7) | 10.8 |
7 | 4.2 (0.5) | 12.4 | 1.5 (0.4) | 25.3 | 10.3 (0.6) | 6.0 | 11.8 (0.4) | 3.6 | 0.035 (0.051) | 147.762 | 0.02 (0.00) | 15.06 | 16.1 (0.4) | 2.6 | 15.3 (2.8) | 18.4 | 28.4 (4.0) | 14.0 | 41.1 (3.8) | 9.2 |
8 | 4.2 (0.8) | 18.5 | 5.3 (1.1) | 21.3 | 9.9 (0.7) | 7.5 | NA | NA | 0.012 (0.003) | 23.011 | NA | NA | 16.4 (0.2) | 1.2 | NA | NA | 35.9 (4.2) | 11.7 | NA | NA |
9 | 2.1 (0.5) | 25.5 | 1.6 (0.4) | 23.8 | 10.1 (0.9) | 8.8 | NA | NA | 0.017 (0.004) | 21.785 | NA | NA | 16.0 (0.5) | 3.2 | NA | NA | 34.8 (7.8) | 22.4 | NA | NA |
10 | 5.4 (0.5) | 9.4 | 6.7 (0.7) | 10.4 | 10.1 (0.8) | 7.6 | 11.8 (0.8) | 6.4 | 0.022 (0.004) | 16.421 | 0.03 (0.01) | 18.75 | 16.9 (0.6) | 3.5 | 14.6 (1.6) | 10.7 | 29.8 (4.1) | 13.6 | 38.9 (3.6) | 9.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Hur, M.; Lee, G.-H.; Kim, S.-W.; Moon, H.-W.; Yun, Y.-M. Performance of Platelet Counting in Thrombocytopenic Samples: Comparison between Mindray BC-6800Plus and Sysmex XN-9000. Diagnostics 2022, 12, 68. https://doi.org/10.3390/diagnostics12010068
Kim H, Hur M, Lee G-H, Kim S-W, Moon H-W, Yun Y-M. Performance of Platelet Counting in Thrombocytopenic Samples: Comparison between Mindray BC-6800Plus and Sysmex XN-9000. Diagnostics. 2022; 12(1):68. https://doi.org/10.3390/diagnostics12010068
Chicago/Turabian StyleKim, Hanah, Mina Hur, Gun-Hyuk Lee, Seung-Wan Kim, Hee-Won Moon, and Yeo-Min Yun. 2022. "Performance of Platelet Counting in Thrombocytopenic Samples: Comparison between Mindray BC-6800Plus and Sysmex XN-9000" Diagnostics 12, no. 1: 68. https://doi.org/10.3390/diagnostics12010068
APA StyleKim, H., Hur, M., Lee, G. -H., Kim, S. -W., Moon, H. -W., & Yun, Y. -M. (2022). Performance of Platelet Counting in Thrombocytopenic Samples: Comparison between Mindray BC-6800Plus and Sysmex XN-9000. Diagnostics, 12(1), 68. https://doi.org/10.3390/diagnostics12010068