Preoperative AI-Driven Fluorescence Diagnosis of Non-Melanoma Skin Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Fluorescence Measurements and Data Preparation
2.3. Dataset Preparation, Experimental Setup, the Architecture of the NN and Training Algorithm
- Input (288 × 4)
- Dense (64, activation = relu)
- Dense (64, activation = sigmoid)
- Dropout (0.4)
- Dense (128, activation = tanh)
- Dropout (0.5)
- Output Dense (2, activation = softmax).
- loss: categorical_crossentropy
- learning_rate: 1 × 10−6
- learning rate decay: 1 × 10−6
- momentum: 0.9
- nesterov: True
- epochs: 15,000
- batch size: 32
- -
- monitor: val_loss
- -
- patience: 5000 epochs.
- -
- es: early stopping
- -
- mc: Model Checkpoint, monitor: val_loss, save_best
- -
- validation_data: X_test, Y_test.
- -
- Run the 50 independent experiments of:
- -
- Split the 286 cases randomly into 3 parts: train (229), test (29), and validation (28);
- -
- Run training on the train set, using loss on the test set for early stopping;
- -
- Evaluate sensitivity and specificity on the validation set by using the “best-by-accuracy-on-test-set” model saved in the “mc-checkpoint”.
3. Results
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madan, V.; Lear, J.T.; Szeimies, R.M. Non-melanoma skin cancer. Lancet 2010, 375, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Stern, R.S.; PUVA Follow-Up Study. The risk of squamous cell and basal cell cancer associated with psoralen and ultraviolet A therapy: A 30-year prospective study. J. Am. Acad. Dermatol. 2012, 66, 553–562. [Google Scholar] [CrossRef]
- Alam, M.; Ratner, D. Cutaneous squamous-cell carcinoma. N. Engl. J. Med. 2001, 344, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Weinstock, M.A.; Nelson, H.H. Keratinocyte carcinomas (basal and squamous cell carcinomas of the skin). In Cancer Epidemiology and Prevention; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Malvehy, J.; Pellacani, G. Dermoscopy, confocal microscopy and other non-invasive tools for the diagnosis of non-melanoma skin cancers and other skin conditions. Acta Derm. Venereol. 2017, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Sigurdsson, H.; Agnarsson, B.A. Basal cell carcinoma of the eyelid. Risk of recurrence according to adequacy of surgical margins. Acta Ophthalmol. Scand. 1998, 76, 477–480. [Google Scholar] [CrossRef]
- Fransen, M.; Karahalios, A.; Sharma, N.; English, D.R.; Giles, G.G.; Sinclair, R.D. Non-melanoma skin cancer in Australia. Med. J. Aust. 2012, 197, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Perera, E.; Gnaneswaran, N.; Staines, C.; Win, A.K.; Sinclair, R. Incidence and prevalence of non-melanoma skin cancer in A ustralia: A systematic review. Australas. J. Dermatol. 2015, 56, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Eigentler, T.; Garbe, C. Epidemiology of skin cancer. Adv. Exp. Med. Biol. 2014, 810, 120–140. [Google Scholar] [PubMed]
- Rowe, C.J.; Khosrotehrani, K. Clinical and biological determinants of melanoma progression: Should all be considered for clinical management? Australas. J. Dermatol. 2016, 57, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Telfer, N.R.; Colver, G.B.; Morton, C.A. Guidelines for the management of basal cell carcinoma. Br. J. Dermatol. 2008, 159, 35–48. [Google Scholar] [CrossRef]
- Griffin, L.L.; Ali, F.R.; Lear, J.T. Non-melanoma skin cancer. Clin. Med. 2016, 16, 62. [Google Scholar] [CrossRef] [PubMed]
- Keiser, G. Biophotonics; Springer: Singapore, 2016. [Google Scholar]
- Litvinova, K.S.; Rafailov, I.E.; Dunaev, A.V.; Sokolovski, S.G.; Rafailov, E.U. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers. Prog. Quantum Electron. 2017, 56, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Croce, A.C.; Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014, 58, 2461. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, N.; Aramil, T.J.; Lee, K.; Reichenberg, J.S.; Nguyen, T.H.; Tunnell, J.W. Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy. Appl. Opt. 2010, 49, 142–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borisova, E.G.; Bratchenko, I.A.; Khristoforova, Y.A.; Bratchenko, L.A.; Genova, T.I.; Gisbrecht, A.I.; Moryatov, A.A.; Kozlov, S.V.; Troyanova, P.P.; Zakharov, V.P. Near-infrared autofluorescence spectroscopy of pigmented benign and malignant skin lesions. Opt. Eng. 2020, 59, 061616. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Zemouri, R.; Omri, N.; Morello, B.; Devalland, C.; Arnould, L.; Zerhouni, N.; Fnaiech, F. Constructive Deep Neural Network for Breast Cancer Diagnosis. IFAC-PapersOnLine 2018, 51, 98–103. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, L.; Han, J.; Guo, X. The Application of Deep Learning in Cancer Prognosis Prediction. Cancers 2020, 12, 603. [Google Scholar] [CrossRef] [Green Version]
- Neelapu, R.; Devi, G.L.; Rao, K.S. Deep learning based conventional neural network architecture for medical image classification. Traitement Signal 2018, 35, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Poplin, R.; Varadarajan, A.V.; Blumer, K.; Liu, Y.; McConnell, M.V.; Corrado, G.S.; Peng, L.; Webster, D.R. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2018, 2, 158–164. [Google Scholar] [CrossRef]
- Kim, M.; Yun, J.; Cho, Y.; Shin, K.; Jang, R.; Bae, H.J.; Kim, N. Deep learning in medical imaging. Neurospine 2019, 16, 657. [Google Scholar] [CrossRef]
- U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597.
- Litvinova, K. Noninvasive, Multispectral-Fluorescence Characterization of Biological Tissues with Machine/Deep Learning. Patent US20200268252 16/798,001, 27 August 2020. [Google Scholar]
- Ramanujam, N. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2000, 2, 89–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrukhina, V.V.; Litvinova, K.S.; Nikitin, A.A.; Spiridonova, N.Z.; Rogatkin, D.A. The first experience in estimation of basal cell carcinoma cryoresistence using noninvasive spectrophotometry. In Proceedings of the Saratov Fall Meeting 2009: International School for Junior Scientists and Students on Optics, Laser Physics, and Biophotonics, Saratov, Russia, 21–24 September 2009; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7547, p. 75470G. [Google Scholar]
- Smirnova, O.D.; Rogatkin, D.; Litvinova, K. Collagen as in vivo quantitative fluorescent biomarkers of abnormal tissue changes. J. Innov. Opt. Health Sci. 2012, 5, 1250010. [Google Scholar] [CrossRef]
- de Leeuw, J.; van der Beek, N.; Neugebauer, W.D.; Bjerring, P.; Neumann, H.M. Fluorescence detection and diagnosis of non-melanoma skin cancer at an early stage. Lasers Surg. Med. 2009, 41, 96–103. [Google Scholar] [CrossRef]
- Calin, M.A.; Parasca, S.V.; Savastru, R.; Calin, M.R.; Dontu, S. Optical techniques for the noninvasive diagnosis of skin cancer. J. Cancer Res. Clin. Oncol. 2013, 139, 1083–1104. [Google Scholar] [CrossRef] [PubMed]
- Heuke, S.; Vogler, N.; Meyer, T.; Akimov, D.; Kluschke, F.; Röwert-Huber, H.J.; Lademann, J.; Dietzek, B.; Popp, J. Detection and discrimination of non-melanoma skin cancer by multimodal imaging. Healthcare 2013, 1, 64–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galletly, N.P.; McGinty, J.; Dunsby, C.; Teixeira, F.; Requejo-Isidro, J.; Munro, I.; Elson, D.S.; Neil, M.A.A.; Chu, A.C.; French, P.M.W.; et al. Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. Br. J. Dermatol. 2008, 159, 152–161. [Google Scholar] [CrossRef]
- Que, S.K.T. Research Techniques Made Simple: Noninvasive Imaging Technologies for the Delineation of Basal Cell Carcinomas. J. Investig. Dermatol. 2016, 136, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Dascalu, A.; David, E.O. Skin cancer detection by deep learning and sound analysis algorithms: A prospective clinical study of an elementary dermoscope. EBioMedicine 2019, 43, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saffar, A.A.M.; Tao, H.; Talab, M.A. Review of deep convolution neural network in image classification. In Proceedings of the 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Jakarta, Indonesia, 23–24 October 2017; pp. 26–31. [Google Scholar]
- Lai, C.Q.; Ibrahim, H.; Abdullah, M.Z.; Abdullah, J.M.; Suandi, S.A.; Azman, A.A. Literature Review on Data Conversion Methods on EEG for Convolution Neural Network Applications. In Proceedings of the 10th International Conference on Robotics, Vision, Signal Processing and Power Applications; Springer: Singapore, 2019; pp. 521–527. [Google Scholar]
- Cha, K.H.; Hadjiiski, L.M.; Samala, R.K.; Chan, H.P.; Cohan, R.H.; Caoili, E.M.; Paramagul, C.; Alva, A.; Weizer, A.Z. Bladder cancer segmentation in CT for treatment response assessment: Application of deep-learning convolution neural network—A pilot study. Tomography 2016, 2, 421. [Google Scholar] [CrossRef]
- Abbasi, A.A.; Hussain, L.; Awan, I.A.; Abbasi, I.; Majid, A.; Nadeem, M.S.A.; Chaudhary, Q.A. Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn. Neurodyn. 2020, 14, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Haj-Hassan, H.; Chaddad, A.; Harkouss, Y.; Desrosiers, C.; Toews, M.; Tanougast, C. Classifications of multispectral colorectal cancer tissues using convolution neural network. J. Pathol. Inform. 2017, 8, 1. [Google Scholar] [PubMed]
- Sua, J.N.; Halim, Y.M.; Yulius, M.H.; Su, X.; Yapp, E.K.Y.; Le, N.Q.K.; Yeh, H.-Y.; Chua, M.C.H. Incorporating convolutional neural networks and sequence graph transform for identifying multilabel protein lysine ptm sites. Chemom. Intell. Lab. Syst. 2020, 206, 104171. [Google Scholar] [CrossRef]
- Le, N.Q.K.; Ho, Q.T.; Yapp, E.K.Y.; Ou, Y.Y.; Yeh, H.Y. DeepETC: A deep convolutional neural network architecture for investigating and classifying electron transport chain’s complexes. Neurocomputing 2020, 375, 71–79. [Google Scholar] [CrossRef]
- Giambagli, L.; Buffoni, L.; Carletti, T.; Nocentini, W.; Fanelli, D. Machine learning in spectral domain. Nat. Commun. 2021, 12, 1330. [Google Scholar] [CrossRef]
N | Min | Max | Mean | Median | Std | 25th Perc | 75th Perc | |
---|---|---|---|---|---|---|---|---|
Specificity | 50 | 0.34 | 1 | 0.83 | 0.85 | 0.17 | 0.75 | 1 |
Sensitivity | 50 | 0.16 | 1 | 0.62 | 0.64 | 0.23 | 0.5 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreeva, V.; Aksamentova, E.; Muhachev, A.; Solovey, A.; Litvinov, I.; Gusarov, A.; Shevtsova, N.N.; Kushkin, D.; Litvinova, K. Preoperative AI-Driven Fluorescence Diagnosis of Non-Melanoma Skin Cancer. Diagnostics 2022, 12, 72. https://doi.org/10.3390/diagnostics12010072
Andreeva V, Aksamentova E, Muhachev A, Solovey A, Litvinov I, Gusarov A, Shevtsova NN, Kushkin D, Litvinova K. Preoperative AI-Driven Fluorescence Diagnosis of Non-Melanoma Skin Cancer. Diagnostics. 2022; 12(1):72. https://doi.org/10.3390/diagnostics12010072
Chicago/Turabian StyleAndreeva, Victoriya, Evgeniia Aksamentova, Andrey Muhachev, Alexey Solovey, Igor Litvinov, Alexey Gusarov, Natalia N. Shevtsova, Dmitry Kushkin, and Karina Litvinova. 2022. "Preoperative AI-Driven Fluorescence Diagnosis of Non-Melanoma Skin Cancer" Diagnostics 12, no. 1: 72. https://doi.org/10.3390/diagnostics12010072
APA StyleAndreeva, V., Aksamentova, E., Muhachev, A., Solovey, A., Litvinov, I., Gusarov, A., Shevtsova, N. N., Kushkin, D., & Litvinova, K. (2022). Preoperative AI-Driven Fluorescence Diagnosis of Non-Melanoma Skin Cancer. Diagnostics, 12(1), 72. https://doi.org/10.3390/diagnostics12010072