Skewed X-Chromosome Inactivation and Parental Gonadal Mosaicism Are Implicated in X-Linked Recessive Female Hemophilia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. DNA Extraction
2.3. Cytogenetic Analysis
2.4. Molecular Genetic Examinations
2.5. XCI Analysis
2.6. Linkage Analysis
3. Results
3.1. Cytogenetic Analysis
3.2. Molecular Genetic Examinations, XCI Analysis, and Linkage Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, A.; Brewer, A.K.; Mauser-Bunschoten, E.P.; Key, N.S.; Kitchen, S.; Llinas, A.; Ludlam, C.A.; Mahlangu, J.N.; Mulder, K.; Poon, M.C.; et al. Guidelines for the management of hemophilia. Haemophilia 2013, 19, e1–e47. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.C.; Chang, S.P.; Chen, M.; Kuo, S.J.; Chang, C.S.; Shen, M.C. The spectrum of the factor 8 (F8) defects in Taiwanese patients with haemophilia A. Haemophilia 2008, 14, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, A.; Brondke, H.; Müsebeck, J.; Pollmann, H.; Srivastava, A.; Oldenburg, J. Molecular mechanisms underlying hemophilia A phenotype in seven females. J. Thromb. Haemost. 2009, 7, 976–982. [Google Scholar] [CrossRef]
- Yang, C.; Yu, Z.; Zhang, W.; Cao, L.; Ouyang, W.; Hu, F.; Zhang, P.; Bai, X.; Ruan, C. A novel missense mutation, p.Phe360Cys, in FIX gene results in haemophilia B in a female patient with skewed X-inactivation. Haemophilia 2018, 24, e68–e70. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.A.; Aung, H.T.; Nandini, A.; Woods, R.G.; Fairbairn, D.J.; Rowell, J.A.; Young, D.; Susman, R.D.; Brown, S.A.; Hyland, V.J.; et al. Demonstration of a novel Xp22.2 microdeletion as the cause of familial extreme skewing of X-inactivation utilizing case-parent trio SNP microarray analysis. Mol. Genet. Genome Med. 2018, 6, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Weyland, A.C.; Sidonio, R.F., Jr.; Scholzberg, M. Health issues in women and girls affected by haemophilia with a focus on nomenclature, heavy menstrual bleeding, and musculoskeletal issues. Haemophila 2022, 28 (Suppl. 4), 18–25. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.H.; Bean, C.J. Genetic causes of haemophilia in women and girls. Haemophilia 2021, 27, e164–e179. [Google Scholar] [CrossRef]
- Winter, W.E.; Flax, S.D.; Harris, N.S. Coagulation testing in the core laboratory. Lab. Med. 2017, 48, 295–313. [Google Scholar] [CrossRef]
- Lawce, H.J.; Brown, M.G. Peripheral blood cytogenetic methods. In The AGT Cytogenetics Laboratory Manual, 4th ed.; Arsham, M.S., Barch, M.J., Lawce, H.J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 87–117. [Google Scholar]
- Rossetti, L.C.; Radic, C.P.; Larripa, I.B.; De Brasi, C.D. Genotyping the hemophilia inversion hotspot by use of inverse PCR. Clin. Chem. 2005, 51, 1154–1158. [Google Scholar] [CrossRef]
- Bagnall, R.D.; Waseem, N.; Green, P.M.; Giannelli, F. Recurrent inversion breaking intron 1 of the factor VIII gene is a frequent cause of severe hemophilia A. Blood 2002, 99, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Schouten, J.P.; McElgunn, C.J.; Waaijer, R.; Zwijnenburg, D.; Diepvens, F.; Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002, 30, e57. [Google Scholar] [CrossRef]
- Amos-Landgraf, J.M.; Cottle, A.; Plenge, R.M.; Friez, M.; Schwartz, C.E.; Longshore, J.; Willard, H.F. X-chromosome-inactivation patterns of 1005 phenotypically unaffected females. Am. J. Hum. Genet. 2006, 79, 493–499. [Google Scholar] [CrossRef]
- Miyawaki, Y.; Suzuki, A.; Fujimori, Y.; Takagi, A.; Murate, T.; Suzuki, N.; Katsumi, A.; Naoe, T.; Yamamoto, K.; Matsushita, T.; et al. Severe hemophilia A in a Japanese female caused by an F8-intron 22 inversion associated with skewed X-chromosome inactivation. Int. J. Hematol. 2010, 92, 405–408. [Google Scholar] [CrossRef]
- Machado, F.B.; Medina-Acosta, E. High-resolution combined linkage physical map of short tandem repeat loci on human chromosome band Xq28 for indirect haemophilia A carrier detection. Haemophilia 2009, 15, 297–308. [Google Scholar] [CrossRef]
- Laurie, A.D.; Hill, A.M.; Harraway, J.R.; Fellowes, A.P.; Phillipson, G.T.; Benny, P.S.; Smith, M.P.; George, P.M. Preimplantation genetic diagnosis for hemophilia A using indirect linkage analysis and direct genotyping approaches. J. Thromb. Haemost. 2010, 8, 783–789. [Google Scholar] [CrossRef]
- Puck, J.M.; Willard, H.F. X inactivation in females with X-linked disease. N. Engl. J. Med. 1998, 338, 325–328. [Google Scholar] [CrossRef]
- Orstavik, K.H. X-chromosome inactivation in clinical practice. Hum. Genet. 2009, 126, 363–373. [Google Scholar] [CrossRef]
- Lyon, M.F. Mechanisms and evolutionary origins of variable X-chromosome activity in mammals. Proc. R. Soc. Lond. B Biol. Sci. 1974, 187, 243–268. [Google Scholar] [CrossRef]
- Acuna-Hidalgo, R.; Veltman, J.A.; Hoischen, A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016, 17, 241. [Google Scholar] [CrossRef]
- Eyal, O.; Berkenstadt, M.; Reznik-Wolf, H.; Poran, H.; Ziv-Baran, T.; Greenbaum, L.; Yonath, H.; Pras, E. Prenatal diagnosis for de novo mutations: Experience from a tertiary center over a 10-year period. Mol. Genet. Genomic Med. 2019, 7, e00573. [Google Scholar] [CrossRef] [Green Version]
- Pasmant, E.; Pacot, L. Should we genotype the sperm of fathers from patients with ’de novo’ mutations? Eur. J. Endocrinol. 2020, 182, C1–C3. [Google Scholar] [CrossRef]
- Campbell, I.M.; Stewart, J.R.; James, R.A.; Lupski, J.R.; Stankiewicz, P.; Olofsson, P.; Shaw, C.A. Parent of origin, mosaicism, and recurrence risk: Probabilistic modeling explains the broken symmetry of transmission genetics. Am. J. Hum. Genet. 2014, 95, 345–359. [Google Scholar] [CrossRef]
- Queremel Milani, D.A.; Chauhan, P.R. Genetics, Mosaicism. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ma, G.C.; Chen, T.H.; Wu, W.J.; Lee, D.J.; Lin, W.H.; Chen, M. Proposal for practical approach in prenatal diagnosis of Beckwith-Wiedemann Syndrome and review of the literature. Diagnostics 2022, 12, 1709. [Google Scholar] [CrossRef]
- Allen, R.C.; Zoghbi, H.Y.; Moseley, A.B.; Rosenblatt, H.M.; Belmont, J.W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X-chromosome inactivation. Am. J. Hum. Genet. 1992, 51, 1229–1239. [Google Scholar]
- Lee, S.T.; McGlennen, R.C.; Litz, C.E. Clonal determination by the fragile X (FMR1) and phosphoglycerate kinase (PGK) genes in hematological malignancies. Cancer Res. 1994, 54, 5212–5216. [Google Scholar]
- Sabol, S.Z.; Hu, S.; Hamer, D. A functional polymorphism in the monoamine oxidase A gene promoter. Hum. Genet. 1998, 103, 273–279. [Google Scholar] [CrossRef]
- Okumura, K.; Fujimori, Y.; Takagi, A.; Murate, T.; Ozeki, M.; Yamamoto, K.; Katsumi, A.; Matsushita, T.; Naoe, T.; Kojima, T. Skewed X-chromosome inactivation in fraternal female twins results in moderately severe and mild haemophilia B. Haemophilia 2008, 14, 1088–1093. [Google Scholar] [CrossRef]
- Beever, C.; Lai, B.P.; Baldry, S.E.; Peñaherrera, M.S.; Jiang, R.; Robinson, W.P.; Brown, C.J. Methylation of ZNF261 as an assay for determining X-chromosome inactivation patterns. Am. J. Med. Genet. A 2003, 120A, 439–441. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, B.; Tümer, Z.; Ravn, K. Three new loci for determining X-chromosome inactivation patterns. J. Mol. Diagn. 2011, 13, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Chuansumrit, A.; Sasanakul, W.; Goodeve, A.; Treratvirapong, T.; Parinayok, R.; Pintadit, P.; Hathirat, P. Inversion of intron 22 of the factor VIII gene in a girl with severe hemophilia A and Turner’s syndrome. Thromb. Haemost. 1999, 82, 1379. [Google Scholar] [PubMed]
- Schröder, W.; Poetsch, M.; Gazda, H.; Werner, W.; Reichelt, T.; Knoll, W.; Rokicka-Milewska, R.; Zieleniewska, B.; Herrmann, F.H. A de novo translocation 46,X,t(X;15) causing haemophilia B in a girl: A case report. Br. J. Haematol. 1998, 100, 750–757. [Google Scholar] [CrossRef]
- Loreth, R.M.; El-Maarri, O.; Schröder, J.; Budde, U.; Herrmann, F.H.; Oldenburg, J. Haemophilia A in a female caused by coincidence of a Swyer syndrome and a missense mutation in factor VIII gene. Thromb. Haemost. 2006, 95, 747–748. [Google Scholar]
- Mazurier, C.; Parquet-Gernez, A.; Gaucher, C.; Lavergne, J.M.; Goudemand, J. Factor VIII deficiency not induced by FVIII gene mutation in a female first cousin of two brothers with haemophilia A. Br. J. Haematol. 2002, 119, 390–392. [Google Scholar] [CrossRef]
- Dardik, R.; Avishai, E.; Lalezari, S.; Barg, A.A.; Levy-Mendelovich, S.; Budnik, I.; Barel, O.; Khavkin, Y.; Kenet, G.; Livnat, T. Molecular mechanisms of skewed X-chromosome inactivation in female hemophilia patients-Lessons from wide genome analyses. Int. J. Mol. Sci. 2021, 22, 9074. [Google Scholar] [CrossRef]
AR XCI Ratio | MAOA XCI Ratio | |||
---|---|---|---|---|
Allele 1 † | Allele 2 † | Allele 1 † | Allele 2 † | |
Family 1 | ||||
case 1.2 * | 50% (278) | 50% (268) | NP | NP |
case 1.3 * | 100% (282) | 0 (268) | NP | NP |
case 1.4 * | 68% (282) | 32% (278) | NP | NP |
Family 2 | ||||
case 2.2 * | 50% (265) | 50% (275) | Uninformative †† (242) | Uninformative †† (242) |
case 2.3 * | Uninformative †† (275) | Uninformative †† (275) | 20% (271) | 80% (242) |
case 2.4 * | Uninformative †† (275) | Uninformative †† (275) | 14% (271) | 86% (242) |
Family 3 | ||||
case 3.2 * | 50% (285) | 50% (279) | NP | NP |
case 3.3 * | 50% (275) | 50% (279) | NP | NP |
case 3.7 * | 0% (275) | 100% (279) | NP | NP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, M.-C.; Chang, S.-P.; Lee, D.-J.; Lin, W.-H.; Chen, M.; Ma, G.-C. Skewed X-Chromosome Inactivation and Parental Gonadal Mosaicism Are Implicated in X-Linked Recessive Female Hemophilia Patients. Diagnostics 2022, 12, 2267. https://doi.org/10.3390/diagnostics12102267
Shen M-C, Chang S-P, Lee D-J, Lin W-H, Chen M, Ma G-C. Skewed X-Chromosome Inactivation and Parental Gonadal Mosaicism Are Implicated in X-Linked Recessive Female Hemophilia Patients. Diagnostics. 2022; 12(10):2267. https://doi.org/10.3390/diagnostics12102267
Chicago/Turabian StyleShen, Ming-Ching, Shun-Ping Chang, Dong-Jay Lee, Wen-Hsiang Lin, Ming Chen, and Gwo-Chin Ma. 2022. "Skewed X-Chromosome Inactivation and Parental Gonadal Mosaicism Are Implicated in X-Linked Recessive Female Hemophilia Patients" Diagnostics 12, no. 10: 2267. https://doi.org/10.3390/diagnostics12102267
APA StyleShen, M. -C., Chang, S. -P., Lee, D. -J., Lin, W. -H., Chen, M., & Ma, G. -C. (2022). Skewed X-Chromosome Inactivation and Parental Gonadal Mosaicism Are Implicated in X-Linked Recessive Female Hemophilia Patients. Diagnostics, 12(10), 2267. https://doi.org/10.3390/diagnostics12102267