CD47 Expression Predicts Unfavorable Prognosis in Clear Cell Renal Cell Carcinoma after Curative Resection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Tumor Samples
2.2. Tissue Microarray (TMA) Construction
2.3. Immunohistochemical Staining
2.4. Interpretation of Immunohistochemical Staining
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Correlations between CD47 Expression and Clinicopathological Parameters
3.3. Prognostic Role of CD47 Expression in ccRCC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.W.; Won, Y.J.; Kong, H.J.; Lee, E.S. Prediction of Cancer Incidence and Mortality in Korea, 2018. Cancer Res. Treat. 2018, 50, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Ljungberg, B.; Bensalah, K.; Canfield, S.; Dabestani, S.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Lam, T.; Marconi, L.; Merseburger, A.S.; et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 2015, 67, 913–924. [Google Scholar] [CrossRef]
- Dizman, N.; Arslan, Z.E.; Feng, M.; Pal, S.K. Sequencing Therapies for Metastatic Renal Cell Carcinoma. Urol. Clin. N. Am. 2020, 47, 305–318. [Google Scholar] [CrossRef]
- Motzer, R.J.; Jonasch, E.; Agarwal, N.; Alva, A.; Baine, M.; Beckermann, K.; Carlo, M.I.; Choueiri, T.K.; Costello, B.A.; Derweesh, I.H.; et al. Kidney Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 71–90. [Google Scholar] [CrossRef]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef]
- Castro, D.V.; Malhotra, J.; Meza, L.; Govindarajan, A.; Philip, E.J.; Pal, S.K. How to Treat Renal Cell Carcinoma: The Current Treatment Landscape and Cardiovascular Toxicities. JACC Cardio Oncol. 2022, 4, 271–275. [Google Scholar] [CrossRef]
- Comandone, A.; Vana, F.; Comandone, T.; Tucci, M. Antiangiogenic Therapy in Clear Cell Renal Carcinoma (CCRC): Pharmacological Basis and Clinical Results. Cancers 2021, 13, 5896. [Google Scholar] [CrossRef]
- Xu, W.; Atkins, M.B.; McDermott, D.F. Checkpoint inhibitor immunotherapy in kidney cancer. Nat. Rev. Urol. 2020, 17, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liu, F.; Li, C.; Liang, X.; Li, C.; Liu, Y.; Yi, Z.; Zhang, L.; Fu, S.; Zeng, Y. Role of CD47 in tumor immunity: A potential target for combination therapy. Sci. Rep. 2022, 12, 9803. [Google Scholar] [CrossRef] [PubMed]
- Logtenberg, M.E.W.; Scheeren, F.A.; Schumacher, T.N. The CD47-SIRPα Immune Checkpoint. Immunity 2020, 52, 742–752. [Google Scholar] [CrossRef]
- Tsai, R.K.; Discher, D.E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 2008, 180, 989–1003. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, C.H.; Chao, M.P.; Gibbs, C.; McCamish, M.A.; Liu, J.; Chen, J.Y.; Majeti, R.; Weissman, I.L. The Macrophage ‘Do not eat me’ signal, CD47, is a clinically validated cancer immunotherapy target. Ann. Oncol. 2019, 30, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Sikic, B.I.; Lakhani, N.; Patnaik, A.; Shah, S.A.; Chandana, S.R.; Rasco, D.; Colevas, A.D.; O’Rourke, T.; Narayanan, S.; Papadopoulos, K.; et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients with Advanced Cancers. J. Clin. Oncol. 2019, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Gholamin, S.; Mitra, S.S.; Feroze, A.H.; Liu, J.; Kahn, S.A.; Zhang, M.; Esparza, R.; Richard, C.; Ramaswamy, V.; Remke, M.; et al. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 2017, 9, eaaf2968. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Xu, B.; Teng, K.Y.; Song, M.; Zhu, Z.; Chen, Y.; Wang, J.; Zhang, J.; Feng, M.; Kaur, B.; et al. Targeting Fc Receptor-Mediated Effects and the “Don’t Eat Me” Signal with an Oncolytic Virus Expressing an Anti-CD47 Antibody to Treat Metastatic Ovarian Cancer. Clin. Cancer Res. 2022, 28, 201–214. [Google Scholar] [CrossRef]
- Lo, J.; Lau, E.Y.; So, F.T.; Lu, P.; Chan, V.S.; Cheung, V.C.; Ching, R.H.; Cheng, B.Y.; Ma, M.K.; Ng, I.O.; et al. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma. Liver Int. 2016, 36, 737–745. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Yang, L.; Li, H.; Li, R.; Yu, J.; Yang, L.; Wei, F.; Yan, C.; Sun, Q.; et al. Anti-CD47 Antibody as a Targeted Therapeutic Agent for Human Lung Cancer and Cancer Stem Cells. Front. Immunol. 2017, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Maute, R.; Xu, J.; Weissman, I.L. CD47-SIRPα-targeted therapeutics: Status and prospects. Immuno-Oncol. Technol. 2022, 13, 100070. [Google Scholar] [CrossRef] [PubMed]
- Advani, R.; Flinn, I.; Popplewell, L.; Forero, A.; Bartlett, N.L.; Ghosh, N.; Kline, J.; Roschewski, M.; LaCasce, A.; Collins, G.P.; et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 2018, 379, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zeng, H.; Liu, Z.; Jin, K.; Hu, B.; Chang, Y.; Liu, L.; Zhu, Y.; Xu, L.; Wang, Z.; et al. Immune inactivation by CD47 expression predicts clinical outcomes and therapeutic responses in clear cell renal cell carcinoma patients. Urol. Oncol. 2022, 40, 166.e115–166.e125. [Google Scholar] [CrossRef] [PubMed]
- Srigley, J.R.; Amin, M.B.; Delahunt, B.; Campbell, S.C.; Chang, A.; Grignon, D.J.; Humphrey, P.A.; Leibovich, B.C.; Montironi, R.; Renshaw, A.A.; et al. Protocol for the examination of specimens from patients with invasive carcinoma of renal tubular origin. Arch. Pathol. Lab. Med. 2010, 134, e25–e30. [Google Scholar] [CrossRef]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C. AJCC Cancer Staging Manual; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Choueiri, T.K.; Fay, A.P.; Gray, K.P.; Callea, M.; Ho, T.H.; Albiges, L.; Bellmunt, J.; Song, J.; Carvo, I.; Lampron, M.; et al. PD-L1 expression in nonclear-cell renal cell carcinoma. Ann. Oncol. 2014, 25, 2178–2184. [Google Scholar] [CrossRef]
- Xiao, W.J.; Xu, F.J.; Zhang, X.; Zhou, S.X.; Zhang, H.L.; Dai, B.; Zhu, Y.; Shi, G.H.; Shen, Y.J.; Zhu, Y.P.; et al. The Prognostic Value of Programmed Death-Ligand 1 in a Chinese Cohort with Clear Cell Renal Cell Carcinoma. Front. Oncol. 2019, 9, 879. [Google Scholar] [CrossRef]
- Chao, M.P.; Tang, C.; Pachynski, R.K.; Chin, R.; Majeti, R.; Weissman, I.L. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 2011, 118, 4890–4901. [Google Scholar] [CrossRef]
- Yoshida, K.; Tsujimoto, H.; Matsumura, K.; Kinoshita, M.; Takahata, R.; Matsumoto, Y.; Hiraki, S.; Ono, S.; Seki, S.; Yamamoto, J.; et al. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med. 2015, 4, 1322–1333. [Google Scholar] [CrossRef]
- Sakakura, K.; Takahashi, H.; Kaira, K.; Toyoda, M.; Murata, T.; Ohnishi, H.; Oyama, T.; Chikamatsu, K. Relationship between tumor-associated macrophage subsets and CD47 expression in squamous cell carcinoma of the head and neck in the tumor microenvironment. Lab. Investig. 2016, 96, 994–1003. [Google Scholar] [CrossRef]
- Barrera, L.; Montes-Servín, E.; Hernandez-Martinez, J.M.; García-Vicente, M.; Montes-Servín, E.; Herrera-Martínez, M.; Crispín, J.C.; Borbolla-Escoboza, J.R.; Arrieta, O. CD47 overexpression is associated with decreased neutrophil apoptosis/phagocytosis and poor prognosis in non-small-cell lung cancer patients. Br. J. Cancer 2017, 117, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Shi, X.; Chen, C.; He, H.; Liu, L.; Wu, J.; Yan, H. High expression of CD47 in triple negative breast cancer is associated with epithelial-mesenchymal transition and poor prognosis. Oncol. Lett. 2019, 18, 3249–3255. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bang, S.; Jee, S.; Paik, S.S.; Jang, K. Clinicopathological significance of CD47 expression in hepatocellular carcinoma. J. Clin. Pathol. 2021, 74, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Wang, J.; Willingham, S.B.; Martin, R.; Wernig, G.; Weissman, I.L. Anti-CD47 antibodies promote phagocytosis and inhibit the growth of human myeloma cells. Leukemia 2012, 26, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, L.; Zhao, F.; Tseng, S.; Narayanan, C.; Shura, L.; Willingham, S.; Howard, M.; Prohaska, S.; Volkmer, J.; et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential. PLoS ONE 2015, 10, e0137345. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Sun, Q.; Chen, A.; Fan, J.; Yang, X.; Xu, L.; Du, P.; Qiu, W.; Zhang, W.; Wang, S.; et al. A fully human anti-CD47 blocking antibody with therapeutic potential for cancer. Oncotarget 2016, 7, 83040–83050. [Google Scholar] [CrossRef]
- Gazel, E.; Kaya, E.; Turhan, N.; Yığman, Y.M.; Şirin, M.E.; Ceylan, C.; Odabaş, O. Does Immunohistochemical CD47 Staining Intensity Predict Prognozis of Renal Cell Carcinoma. Mathews J. Urol. Nephrol. 2018, 2, 007. [Google Scholar]
- Zhao, H.; Wang, J.; Kong, X.; Li, E.; Liu, Y.; Du, X.; Kang, Z.; Tang, Y.; Kuang, Y.; Yang, Z.; et al. CD47 Promotes Tumor Invasion and Metastasis in Non-small Cell Lung Cancer. Sci. Rep. 2016, 6, 29719. [Google Scholar] [CrossRef]
- Wang, C.L.; Lin, M.J.; Hsu, C.Y.; Lin, H.Y.; Tsai, H.P.; Long, C.Y.; Tsai, E.M.; Hsieh, T.H.; Wu, C.H. CD47 promotes cell growth and motility in epithelial ovarian cancer. Biomed. Pharmacother. 2019, 119, 109105. [Google Scholar] [CrossRef]
- Willingham, S.B.; Volkmer, J.P.; Gentles, A.J.; Sahoo, D.; Dalerba, P.; Mitra, S.S.; Wang, J.; Contreras-Trujillo, H.; Martin, R.; Cohen, J.D.; et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl. Acad. Sci. USA 2012, 109, 6662–6667. [Google Scholar] [CrossRef]
- Tseng, D.; Volkmer, J.P.; Willingham, S.B.; Contreras-Trujillo, H.; Fathman, J.W.; Fernhoff, N.B.; Seita, J.; Inlay, M.A.; Weiskopf, K.; Miyanishi, M.; et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl. Acad. Sci. USA 2013, 110, 11103–11108. [Google Scholar] [CrossRef] [Green Version]
Factors | Value (%) |
---|---|
Number of patients | 235 (100%) |
Median age at surgery (years) | 57 (±12.77) |
Mean tumor size (cm) | 4.14 (±2.69) |
Sex | |
Male | 168 (69.7%) |
Female | 73 (30.3%) |
WHO/ISUP grade | |
Grade 1 | 25 (10.6%) |
Grade 2 | 118 (50.2%) |
Grade 3 | 75 (31.9%) |
Grade 4 | 17 (7.2%) |
pT stage | |
pT1 | 170 (72.3%) |
pT2 | 10 (4.3%) |
pT3 | 52 (22.1%) |
pT4 | 3 (1.3%) |
Clinicopathologic Factors | n | CD47 Expression | p-Value | |
---|---|---|---|---|
Negative (%) (n = 207) | Positive (%) (n = 28) | |||
Sex | 0.465 | |||
Male | 165 | 147 (89.1%) | 18 (10.9%) | |
Female | 70 | 60 (85.7%) | 10 (14.3%) | |
Tumor size | 0.062 | |||
≤4 cm | 139 | 127 (91.4%) | 12 (8.6%) | |
>4 cm | 96 | 80 (83.3%) | 16 (16.7%) | |
WHO/ISUP grade | 0.001 | |||
Grade 1 & 2 | 143 | 134 (93.7%) | 9 (6.3%) | |
Grade 3 & 4 | 92 | 73 (79.3%) | 19 (20.7%) | |
Lymphovascular invasion * | 0.036 | |||
Absent | 193 | 174 (90.2%) | 19 (9.8%) | |
Present | 42 | 33 (78.6%) | 9 (21.4%) | |
Renal vein thrombus | 0.018 | |||
Absent | 202 | 182 (90.1%) | 20 (9.9%) | |
Present | 33 | 25 (75.8%) | 8 (24.2%) | |
Sinus fat invasion | 0.004 | |||
Absent | 212 | 191 (90.1%) | 21 (9.9%) | |
Present | 23 | 16 (69.6%) | 7 (30.4%) | |
Perirenal soft tissue invasion | 0.437 | |||
Absent | 204 | 181 (88.7%) | 23 (11.3%) | |
Present | 31 | 26 (83.9%) | 5 (16.1%) | |
Tumor necrosis | 0.130 | |||
Absent | 199 | 178 (89.4%) | 21 (10.6%) | |
Present | 36 | 29 (80.6%) | 7 (19.4%) | |
Sarcomatoid change | 0.001 | |||
Absent | 220 | 198 (90.0%) | 22 (10.0%) | |
Present | 15 | 9 (60.0%) | 6 (40.0%) | |
pT stage | 0.002 | |||
pT1 & pT2 | 180 | 163 (90.6%) | 17 (9.4%) | |
pT3 & pT4 | 55 | 44 (80.0%) | 11 (20.0%) | |
pN stage | 0.002 | |||
pN0 | 231 | 206 (89.2%) | 25 (10.8%) | |
pN1 | 4 | 1 (25.0%) | 3 (75.0%) | |
pM stage | <0.001 | |||
pM0 | 228 | 205 (89.9%) | 23 (10.1%) | |
pM1 | 7 | 2 (28.6%) | 5 (71.4%) | |
AJCC stage | 0.002 | |||
I, II | 179 | 163 (91.1%) | 16 (8.9%) | |
III, IV | 56 | 44 (78.6%) | 12 (21.4%) |
Factors | Univariable Analysis | Multivariable Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
CD47 expression (negative vs. present) | 3.985 (1.473–10.785) | 0.006 | 2.264 (0.563–9.099) | 0.250 |
WHO/ISUP grade (grade 1, 2 vs. grade 3, 4) | 9.584 (2.769–33.169) | <0.001 | 2.624 (0.493–13.982) | 0.258 |
Lymphovascular invasion (absent vs. present) | 93.311 (12.410–701.613) | <0.001 | 16.946 (0.909–315.757) | 0.058 |
Sinus fat invasion (absent vs. present) | 6.494 (2.516–16.759) | <0.001 | 1.883 (0.546–6.493) | 0.316 |
Sarcomatoid change (absent vs. present) | 18.428 (7.177–47.317) | <0.001 | 1.144 (0.320–4.086) | 0.836 |
pT stage (pT1, 2 vs. pT3, 4) | 65.998 (8.776–496.315) | <0.001 | 4.236 (0.218–82.162) | 0.340 |
pN stage (pN0 vs. pN1) | 19.395 (5.557–67.987) | <0.001 | 6.110 (1.016–36.757) | 0.048 |
pM stage (pM0 vs. pM1) | 63.622 (20.985–192.980) | <0.001 | 13.177 (2.405–72.206) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Jee, S.; Bang, S.; Son, H.; Cha, H.; Myung, J.; Sim, J.; Kim, Y.; Paik, S.; Kim, H. CD47 Expression Predicts Unfavorable Prognosis in Clear Cell Renal Cell Carcinoma after Curative Resection. Diagnostics 2022, 12, 2291. https://doi.org/10.3390/diagnostics12102291
Park H, Jee S, Bang S, Son H, Cha H, Myung J, Sim J, Kim Y, Paik S, Kim H. CD47 Expression Predicts Unfavorable Prognosis in Clear Cell Renal Cell Carcinoma after Curative Resection. Diagnostics. 2022; 12(10):2291. https://doi.org/10.3390/diagnostics12102291
Chicago/Turabian StylePark, Hosub, Seungyun Jee, Seongsik Bang, Hwangkyu Son, Hyebin Cha, Jaekyung Myung, Jongmin Sim, Yeseul Kim, Seungsam Paik, and Hyunsung Kim. 2022. "CD47 Expression Predicts Unfavorable Prognosis in Clear Cell Renal Cell Carcinoma after Curative Resection" Diagnostics 12, no. 10: 2291. https://doi.org/10.3390/diagnostics12102291
APA StylePark, H., Jee, S., Bang, S., Son, H., Cha, H., Myung, J., Sim, J., Kim, Y., Paik, S., & Kim, H. (2022). CD47 Expression Predicts Unfavorable Prognosis in Clear Cell Renal Cell Carcinoma after Curative Resection. Diagnostics, 12(10), 2291. https://doi.org/10.3390/diagnostics12102291