Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS)
Abstract
:1. Introduction
2. The Orchestration of Meiotic Arrest
3. Oocyte Maturation and the Resumption of Meiosis
4. Nomenclature of the Oocyte Maturation Abnormalities
5. Types of OMAS
- a
- Dysmorphic and/or Degenerated Oocytes
- b
- Empty Follicle Syndrome (EFS)
- c
- Premature Ovarian Failure (POF)/Premature Ovarian Insufficiency (POI)
- d
- Resistant ovary syndrome (ROS)
- e
- Oocyte Maturation Arrest (OMA, in accordance with Hatirnaz and Dahan classification)
- GV Arrest (Type I OMA)
- MI Arrest (Type II OMA)
- MII Arrest (Type III OMA)
- GV and MI Arrest (Type IV OMA)
- Mixed Arrest (Type V OMA)
- f) Unclassified types which also exist (with causes which remain unknown)
- f-1) Empty zona-GV arrest
- f-2) GV-MII arrest
- f-3) MI and MII arrest
- Issues left to ponder
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
OMA | Oocyte maturation arrest |
OMAS | Oocyte maturation abnormalities |
EFS | Empty follicle syndrome |
POI | Premature ovarian insufficiency |
POF | Premature ovarian failure |
GV | Germinal vesicle |
MI | Metaphase I |
MII | Metaphase II |
TNF-ALPHA | Tumor necrosis factor-alpha |
ZCF | Zygotic cleavage failure |
GVBD | Germinal vesicle breakdown |
c-AMP | Cyclic adenosine monophosphate |
c-GMP | Cyclic guanosine monophosphate |
ROS | Resistant ovary syndrome |
HCG | Human chorionic gonadotropin |
GnRH | Gonadotropin releasing hormone |
AMH | Amtimullerian hormone |
FF | Fertilization failure |
IVM | In vitro maturation |
PANX1 | Pannexin 1 |
Ccnb3 | Cyclin B |
GPR3 | Gs-protein coupled receptor 3 |
EGF | Epidermal growth factor |
MAPK | MAP Kinase |
CSF | Cytostatin factor |
WES | Whole genome exomic study |
References
- Sen, A.; Caiazza, F. Oocyte Maturation A story of arrest and release. Front. Biosci. 2013, S5, 451–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celik, O.; Celik, N.; Gungor, S.; Haberal, E.T.; Aydin, S. Selective regulation of oocyte meiotic events enhances progress in fertility preservation methods. Biochem. Insights 2015, 8, BCI-S28596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatırnaz, Ş.; Hatırnaz, E.S.; Kaya, A.E.; Hatırnaz, K.; Çalışkan, C.S.; Sezer, Ö.; Güngor, N.D.; Demirel, C.; Baltacı, V.; Tan, S.; et al. Oocyte maturation abnormalities—A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. J. Turk. Soc. Obstet. Gynecol. 2022, 19, 60–80. [Google Scholar] [CrossRef] [PubMed]
- Beall, S.; Brenner, C.; Segars, J. Oocyte maturation failure: A syndrome of bad eggs. Fertil. Steril. 2010, 94, 2507–2513. [Google Scholar] [CrossRef] [Green Version]
- Hourvitz, A.; Maman, E.; Brengauz, M.; Machtinger, R.; Dor, J. In vitro maturation for patients with repeated in vitro fertilization failure due to “oocyte maturation abnormalities”. Fertil. Steril. 2010, 94, 496–501. [Google Scholar] [CrossRef]
- Hatirnaz, S.; Başbuğ, A.; Hatirnaz, E.; Tannus, S.; Hatirnaz, K.; Bakay, K.; Dahan, M.H. Can in vitro maturation overcome cycles with repeated oocyte maturation arrest? A classification system for maturation arrest and a cohort study. Int. J. Gynecol. Obstet. 2020, 153, 496–502. [Google Scholar] [CrossRef]
- Hatirnaz, S.; Hatirnaz, E.; Dahan, M.; Ata, B.; Basbug, A.; Hatirnaz, K.; Tan, S. Dual Stimulation in-vitro-maturation (Duostim IVM) for overcoming oocyte maturation arrest, resulting in embryo transfer and livebirth. In Proceedings of the 37th Virtual Annual Meeting of ESHRE, Online Congress, 26 June–1 July 2021. [Google Scholar]
- Mihm, M.; Gangooly, S.; Muttukrishna, S. The normal menstrual cycle in women. Anim. Reprod. Sci. 2011, 124, 229–236. [Google Scholar] [CrossRef]
- Pan, B.; Li, J. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 2019, 17, 8. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, A.J.; Wickramasinghe, D.; Stein, P.; Schultz, R.M.; Palko, M.E.; De Miguel, M.P.; Tessarollo, L.; Donovan, P.J. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat. Genet. 2002, 30, 446–449. [Google Scholar] [CrossRef]
- Liang, R.; Yu, W.-D.; Du, J.-B.; Yang, L.-J.; Yang, J.-J.; Xu, J.; Shang, M.; Guo, J.-Z. Cystathionine β synthase participates in murine oocyte maturatione mediated by homocysteine. Reprod. Toxicol. 2007, 24, 89–96. [Google Scholar] [CrossRef]
- Mehlmann, L.M. Stops and starts in mammalian oocytes: Recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction 2005, 130, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Hinckley, M.; Vaccari, S.; Horner, K.; Chen, R.; Conti, M. The G-proteincoupled receptors GPR3 and GPR12 are involved in cAMP signaling and maintenance of meiotic arrest in rodent oocytes. Dev. Biol. 2005, 287, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Burghardt, R.C.; Barhoumi, R.; Sewall, T.C.; Bowen JACyclic, A.M.P. Induces rapid ıncreases in gap junction permeability and changes in the cellular distribution of connexin43. J. Membr. Biol. 1995, 253, 243–253. [Google Scholar] [CrossRef]
- Sandberg, K.; Jig, H.; Clark, A.J.L.; Shapira, H.; Catt, K.J. Cloning and expression of a novel angiotensin I1 receptor subtype. J. Biol. Chem. 1992, 267, 9455–9458. [Google Scholar] [CrossRef]
- Freudzon, L.; Norris, R.P.; Hand, A.R.; Tanaka, S.; Saeki, Y.; Jones, T.L.; Rasenick, M.M.; Berlot, C.H.; Mehlmann, L.M.; Jaffe, L.A. Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein. J. Cell Biol. 2005, 171, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Jayavelu, N.D.; Battle, S.L.; Mar, J.C.; Schimmel, T.; Cohen, J.; Hawkins, R.D. Single-cell analysis of transcriptome and DNA methylome in human oocyte maturation. PLoS ONE 2020, 15, e0241698. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T. Mammalian egg activation: From Ca2+ spiking to cell cycle progression. Reproduction 2005, 130, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.T. Turning it on and off: M-phase promoting factor during meiotic maturation and fertilization. Mol. Hum. Reprod. 2004, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rudak, E.; Dor, J.; Kimchi, M.; Goldman, B.; Levran, D.; Mashiach, S. Anomalies of human oocytes from infertile women undergoing treatment by in vitro fertilization. Fertil. Steril. 1990, 54, 292–296. [Google Scholar] [CrossRef]
- Levran, D.; Farhi, J.; Nahum, H.; Glezerman, M.; Weissman, A. Maturation arrest of human oocytes as a cause of infertility. Hum. Reprod. 2002, 17, 1604–1609. [Google Scholar] [CrossRef]
- Galvão, A.; Segers, I.; Smitz, J.; Tournaye, H.; De Vos, M. In vitro maturation (IVM) of oocytes in patients with resistant ovary syndrome and in patients with repeated deficient oocyte maturation. J. Assist. Reprod. Genet. 2018, 35, 2161–2171. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.; da Silva, J.T.; Cunha, M.; Viana, P.; Oliveira, E.; Sá, R.; Soares, C.; Barros, A. Embryological, clinical and ultrastructural study of human oocytes presenting indented zona pellucida. Zygote 2015, 23, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Sang, Q.; Zhang, Z.; Shi, J.; Sun, X.; Li, B.; Yan, Z.; Xue, S.; Ai, A.; Lyu, Q.; Li, W.; et al. A pannexin 1 channelopathy causes human oocyte death. Sci. Transl. Med. 2019, 11, eaav8731. [Google Scholar] [CrossRef] [PubMed]
- Penuela, S.; Gehi, R.; Laird, D.W. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta BBA Biomembr. 2013, 1828, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, G.R.; Yadav, P.K.; Yadav, A.K.; Tiwari, M.; Gupta, A.; Sharma, A.; Pandey, A.N.; Pandey, A.K.; Chaube, S.K. Necroptosis in stressed ovary. J. Biomed. Sci. 2019, 26, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhary, G.R.; Yadav, P.K.; Yadav, A.K.; Tiwari, M.; Gupta, A.; Sharma, A.; Sahu, K.; Pandey, A.N.; Pandey, A.K.; Chaube, S.K. Necrosis and necroptosis in germ cell depletion from mammalian ovary. J. Cell. Physiol. 2018, 234, 8019–8027. [Google Scholar] [CrossRef] [PubMed]
- Coulam, C.B.; Bustillo, M.; Schulman, J.D. Empty follicle syndrome. Fertil. Steril. 1986, 46, 1153–1155. [Google Scholar] [CrossRef]
- Zreik, T.; Garcia-Velasco, J.; Vergara, T.; Arici, A.; Olive, D.; Jones, E. Empty follicle syndrome: Evidence for recurrence. Hum. Reprod. 2000, 15, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Uygur, D.; Alkan, R.N.; Batuoğlu, S. Recurrent empty follicle syndrome. J. Assist. Reprod. Genet. 2003, 20, 390–392. [Google Scholar] [CrossRef]
- Vutyavanich, T.; Piromlertamorn, W.; Ellis, J. Immature oocytes in “apparent empty follicle syndrome”: A case report. Case Rep. Med. 2010, 2010, 367505. [Google Scholar] [CrossRef]
- Revelli, A.; Carosso, A.; Grassi, G.; Gennarelli, G.; Canosa, S.; Benedetto, C. Empty follicle syndrome revisited: Definition, incidence, aetiology, early diagnosis and treatment. Reprod. Biomed. Online 2017, 35, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Jee, C.J. Empty follicle syndrome. Clin. Exp. Reprod. Med. 2012, 39, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, M.; Machtinger, R.; Yerushalmi, G.M.; Maman, E.; Seidman, D.S.; Dor, J.; Hourvitz, A. Recurrence of empty follicle syndrome with stimulated IVF cycles. Gynecol. Endocrinol. 2012, 28, 293–295. [Google Scholar] [CrossRef] [PubMed]
- Yakovi, S.; Izhaki, I.; Ben-Ami, M.; Younis, J.S. Does the empty follicle syndrome occur in cases of low number of maturing follicles in assisted reproduction? Gynecol. Endocrinol. 2019, 35, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dai, X.; Sun, Y.; Lu, Y.; Zhou, C.; Miao, Y.; Wang, Y.; Xiong, B. Stag3 regulates microtubule stability to maintain euploidy during mouse oocyte meiotic maturation. Oncotarget 2017, 8, 1593–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, J.C.; Garcia-Velasco, J.; Humaidan, P. Empty follicle syndrome after GnRHa triggering versus hCG triggering in COS. J. Assist. Reprod. Genet. 2012, 29, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.C. Clinical practice. Primary ovarian insufficiency. N. Engl. J. Med. 2009, 360, 606–614. [Google Scholar] [CrossRef]
- Jiao, S.; Yang, Y.; Chen, S. Molecular genetics of infertility: Loss-offunction mutations in humans and corresponding knockout/mutated mice. Hum. Reprod. Update 2021, 27, 154–189. [Google Scholar] [CrossRef]
- Bouilly, J.; Beau, I.; Barraud, S.; Bernard, V.; Azibi, K.; Fagart, J.; Fèvre, A.; Todeschini, A.L.; Veitia, R.A.; Beldjord, C.; et al. Identification of multiple gene mutations accounts for a new genetic architecture of primary ovarian ınsufficiency. J. Clin. Endocrinol. Metab. 2016, 101, 4541–4550. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.; Cree, L.; Shelling, A. The genetics of premature ovarian failure: Current perspectives. Int. J. Women’s Health 2015, 7, 799–810. [Google Scholar] [CrossRef]
- Fassnacht, W.; Mempel, A.; Strowitzki, T.; Vogt, P.H. Premature Ovarian Failure (POF) syndrome: Towards the molecular clinical analysis of its genetic complexity. Curr. Med. Chem. 2006, 13, 1397–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luisi, S.; Orlandini, C.; Regini, C.; Pizzo, A.; Vellucci, F.; Petraglia, F. Premature ovarian insufficiency: From pathogenesis to clinical management. J. Endocrinol. Investig. 2015, 38, 597–603. [Google Scholar] [CrossRef] [PubMed]
- European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI; Webber, M.L.; Davies, R.; Anderson, J.; Bartlett, D.; Braat, B.; Cartwright, R.; Cifkova, S.; de Muinck Keizer-Schrama, E.; Hogervorst, F.; et al. VermeulenESHRE Guideline: Management of women with prematüre ovarian insufficiency. Hum. Reprod. 2016, 31, 926–937. [Google Scholar] [PubMed] [Green Version]
- De Vos, M.; Devroey, P.; Fauser, B.J.M. Primary ovarian insufficiency. Lancet 2010, 376, 911–921. [Google Scholar] [CrossRef]
- Welt, K.C. Primary ovarian insufficiency: A more accurate term for prematüre ovarian failure. Clin. Endocrinol. 2008, 68, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Chae-Kim, J.J.; Gavrilova-Jordan, L. Premature ovarian ınsufficiency: Procreative management and preventive strategies. Biomedicines 2019, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Zhang, H.; Ke, H.; Zhang, J.; Cheng, L.; Liu, Y.; Qin, Y.; Chen, Z.-J. Premature ovarian ınsufficiency: Phenotypic characterization within different etiologies. J. Clin. Endocrinol. Metab. 2017, 102, 2281–2290. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.S.; Moraes-Ruehsen, M. A new syndrome of amenorrhae in association with hypergonadotropism and apparently normal ovarian follicular apparatus. Am. J. Obstet. Gynecol. 1969, 104, 597–600. [Google Scholar] [CrossRef]
- Haller-Kikkatalo, K.; Salumets, A.; Uibo, R. Review on autoimmune reactions in female ınfertility: Antibodies to follicle stimulating hormone. Clin. Dev. Immunol. 2011, 2012, 762541. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W.R.; Lavy, G.; DeCherney, A.H.; Visintin, I.; Economy, K.; Luborsky, J.L. Evidence of gonadal and gonadotropin antibodies in women with a suboptimal ovarian response to exogenous gonadotropin. Obstet. Gynecol. 1990, 75, 795–799. [Google Scholar]
- Tucker, E.J.; Grover, S.R.; Bachelot, A.; Touraine, P.; Sinclair, A.H. Premature ovarian insufficiency: New perspectives on genetic cause and phenotypic spectrum. Endocr. Rev. 2016, 37, 609–635. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, P.; Yuan, P.; Qiu, Q.; Yang, D. Successful live birth in a woman with resistant ovary syndrome following in vitro maturation of oocytes. J. Ovarian Res. 2016, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grynberg, M.; Peltoketo, H.; Christin-Maître, S.; Poulain, M.; Bouchard, P.; Fanchin, R. First birth achieved after ın vitro maturation of oocytes from a woman endowed with multiple antral follicles unresponsive to follicle-stimulating hormone. J. Clin. Endocrinol. Metab. 2013, 98, 4493–4498. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.-J.; Fan, H.-Y.; Zhong, Z.-S.; Chen, D.-Y.; Schatten, H.; Sun, Q.-Y. Ubiquitin–proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 2004, 121, 1275–1287. [Google Scholar] [CrossRef]
- Nakanishi, T.; Kubota, H.; Ishibashi, N.; Kumagai, S.; Watanabe, H.; Yamashita, M.; Kashiwabara, S.-I.; Miyado, K.; Baba, T. Possible role of mouse poly(A) polymerase mGLD-2 during oocyte maturation. Dev. Biol. 2006, 289, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Sang, Q.; Zhou, Z.; Mu, J.; Wang, L. Genetic factors as potential molecular markers of human oocyte and embryo quality. J. Assist. Reprod. Genet. 2021, 38, 993–1002. [Google Scholar] [CrossRef]
- Christou-Kent, M.; Kherraf, Z.E.; Amiri-Yekta, A.; Le Blévec, E.; Karaouzène, T.; Conne, B.; Escoffier, J.; Assou, S.; Guttin, A.; Lambert, E.; et al. PATL2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Mol. Med. 2018, 10, e8515. [Google Scholar] [CrossRef]
- Huang, L.; Tong, X.; Wang, F.; Luo, L.; Jin, R.; Fu, Y.; Zhou, G.; Li, D.; Song, G.; Liu, Y.; et al. Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest. Hum. Reprod. 2018, 33, 1183–1190. [Google Scholar] [CrossRef]
- Hatırnaz, Ş.; Hatırnaz, E.S.; Başbuğ, A.; Pektaş, M.K.; Erol, O.; Dahan, M.; Tan, S. In vitro maturation with letrozole priming: Can it be a solution for patients with cancerophobia? A pilot study. J. Turk. Soc. Obstet. Gynecol. 2020, 17, 247–252. [Google Scholar] [CrossRef]
- Rose, B.I. The potential of letrozole use for priming in vitro maturation cycles. Facts, Views Vis. ObGyn 2014, 6, 150–155. [Google Scholar]
- Nasmyth, K. How do so few controls so many? Cell 2005, 120, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, R.; Sang, Q.; Kuang, Y.; Sun, X.; Yan, Z.; Zhang, S.; Shi, J.; Tian, G.; Luchniak, A.; Fukuda, Y.; et al. Mutations in TUBB8 and human oocyte meiotic arrest. N. Engl. J. Med. 2016, 374, 223–232. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, Y.; Wang, W.; Chen, B.; Xu, S.; Wu, L.; Yan, Z.; Li, B.; Fu, J.; Shi, R.; et al. Identification novel mutations in TUBB8 in female infertility and a novel phenotype of large polar body in oocytes with TUBB8 mutations. J. Assist. Reprod. Genet. 2020, 37, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, B.; Li, D.; Yan, Z.; Mao, X.; Xu, Y.; Mu, J.; Li, Q.; Jin, L.; He, L.; et al. Novel mutations and structural deletions in TUBB8: Expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum. Reprod. 2016, 32, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.; Yin, C.; Li, M.; Ma, S.; Cao, Y.; Zhang, C.; Chen, T.; Zhao, H. Mutation analysis of tubulin beta 8 class VIII in infertile females with oocyte or embryonic defects. Clin. Genet. 2021, 99, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Zheng, L.; Liang, H.; Li, Y.; Zhao, H.; Li, R.; Lai, L.; Zhang, Q.; Wang, W. A novel mutation in the TUBB8 gene is associated with complete cleavage failure in fertilized eggs. J. Assist. Reprod. Genet. 2018, 35, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Eichenlaub-Ritter, U.; Vogt, E.; Cukurcam, S.; Sun, F.; Pacchierotti, F.; Parry, J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat. Res. Toxicol. Environ. Mutagen. 2008, 651, 82–92. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, B.; Fu, J.; Li, R.; Diao, F.; Li, C.; Chen, B.; Du, J.; Zhou, Z.; Mu, J.; et al. Bi-allelic missense pathogenic variants in TRIP13 cause female ınfertility characterized by oocyte maturation arrest. Am. J. Hum. Genet. 2020, 107, 15–23. [Google Scholar] [CrossRef]
- Sagata, N. Meiotic metaphase arrest in animal oocytes: Its mechanisms and biological significance. Trends Cell Biol. 1996, 6, 22–28. [Google Scholar] [CrossRef]
- Verlhac, M.H.; Kubiak, J.Z.; Clarke, H.J.; Maro, B. Microtubule and chromatin behavior follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development 1994, 120, 1017–1025. [Google Scholar] [CrossRef]
- Meng, T.; Lei, W.; Li, J.; Wang, F.; Zhao, Z.; Li, A.; Wang, Z.; Sun, Q.; Ou, X. Biochemical and biophysical research communications degradation of CCNB3 is essential for maintenance of MII arrest in oocyte. Biochem. Biophys. Res. Commun. 2020, 521, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, Y.; Oji, A.; Kojima-Kita, K.; Larasati, T.; Ikawa, M. Co-expression of sperm membrane proteins CMTM2A and CMTM2B is essential for ADAM3 localization and male fertility in mice. J. Cell Sci. 2018, 131, jcs.221481. [Google Scholar] [CrossRef] [PubMed]
- Inoue, N.; Ikawa, M.; Isotani, A.; Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005, 434, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, M.; Wada, I.; Kominami, K.; Watanabe, D.; Toshimori, K.; Nishimune, Y.; Okabe, M. The putative chaperone calmegin is required for sperm fertility. Nature 1997, 387, 607–611. [Google Scholar] [CrossRef]
- Alazami, A.M.; Awad, S.M.; Coskun, S.; Al-Hassan, S.; Hijazi, H.; Abdulwahab, F.M.; Poizat, C.; Alkuraya, F.S. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015, 16, 240. [Google Scholar] [CrossRef] [Green Version]
- Sang, Q.; Li, B.; Kuang, Y.; Wang, X.; Zhang, Z.; Chen, B.; Wu, L.; Lyu, Q.; Fu, Y.; Yan, Z.; et al. Homozygous mutations in WEE2 cause fertilization failure and female ınfertility. Am. J. Hum. Genet. 2018, 102, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Xue, S.; Yao, Z.; Shi, J.; Chen, B.; Wu, L.; Sun, L.; Xu, Y.; Yan, Z.; Li, B.; et al. Biallelic mutations in CDC20 cause female infertility characterized by abnormalities in oocyte maturation and early embryonic development. Protein Cell. 2020, 11, 921–927. [Google Scholar] [CrossRef]
- Lipkin, S.M.; Moens, P.B.; Wang, V.; Lenzi, M.; Shanmugarajah, D.; Gilgeous, A.; Thomas, J.; Cheng, J.; Touchman, J.W.; Green, E.D.; et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat. Genet. 2002, 31, 385–390. [Google Scholar] [CrossRef]
- Ryu, K.-Y.; Sinnar, S.A.; Reinholdt, L.G.; Vaccari, S.; Hall, S.; Garcia, M.A.; Zaitseva, T.S.; Bouley, D.M.; Boekelheide, K.; Handel, M.A.; et al. The mouse polyubiquitin gene Ubb ıs essential for meiotic progression. Mol. Cell. Biol. 2008, 28, 1136–1146. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Zhou, Z.; Sha, Q.; Niu, X.; Sun, X.; Shi, J.; Zhao, L.; Zhang, S.; Dai, J.; Cai, S.; et al. Homozygous mutations in BTG4 cause zygotic cleavage failure and female ınfertility. Am. J. Hum. Genet. 2020, 107, 24–33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatirnaz, S.; Hatirnaz, E.; Çelik, S.; Çalışkan, C.S.; Tinelli, A.; Malvasi, A.; Sparic, R.; Baldini, D.; Stark, M.; Dahan, M.H. Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics 2022, 12, 2501. https://doi.org/10.3390/diagnostics12102501
Hatirnaz S, Hatirnaz E, Çelik S, Çalışkan CS, Tinelli A, Malvasi A, Sparic R, Baldini D, Stark M, Dahan MH. Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics. 2022; 12(10):2501. https://doi.org/10.3390/diagnostics12102501
Chicago/Turabian StyleHatirnaz, Safak, Ebru Hatirnaz, Samettin Çelik, Canan Soyer Çalışkan, Andrea Tinelli, Antonio Malvasi, Radmila Sparic, Domenico Baldini, Michael Stark, and Michael H. Dahan. 2022. "Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS)" Diagnostics 12, no. 10: 2501. https://doi.org/10.3390/diagnostics12102501
APA StyleHatirnaz, S., Hatirnaz, E., Çelik, S., Çalışkan, C. S., Tinelli, A., Malvasi, A., Sparic, R., Baldini, D., Stark, M., & Dahan, M. H. (2022). Unraveling the Puzzle: Oocyte Maturation Abnormalities (OMAS). Diagnostics, 12(10), 2501. https://doi.org/10.3390/diagnostics12102501