Immunological Interactions between Intestinal Helminth Infections and Tuberculosis
Abstract
:1. Introduction
2. Article Search Strategy for the Current Review
3. The Host Immune Response to Helminths
4. The Host Immune Response to T.B.
4.1. Innate Responses to T.B.
4.2. Adaptive Immune Responses to T.B.
5. Host Immune Response during Helminth Coinfection with T.B.
6. Effect of Helminth Infection on T.B. Vaccine
7. Helminth and T.B. Coinfection-Immune Mediated Pathology
8. Effect of Deworming during T.B.-Helminth Coinfection
9. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Soil-transmitted helminth infections. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 16 February 2022).
- Jourdan, P.M.; Lamberton, P.H.L.; Fenwick, A.; Addiss, D.G. Soil-transmitted helminth infections. Lancet 2018, 391, 252–265. [Google Scholar] [CrossRef] [Green Version]
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Ottesen, E.; Ehrlich, S.S.; Sachs, J.D. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria: A comprehensive pro-poor health policy and strategy for the developing world. PLoS Med. 2006, 3, 576–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mkhize-Kwitshana, Z.L.; Taylor, M.; Jooste, P.; Mabaso, M.L.; Walzl, G. The influence of different helminth infection phenotypes on immune responses against HIV in co-infected adults in South Africa. BMC Infect. Dis. 2011, 11, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, C.; Watt, C.J.; Bleed, D.M.; Hosseini, S.M.; Raviglione, M.C. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. J. Am. Med. Assoc. 2005, 293, 2767–2775. [Google Scholar] [CrossRef]
- Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 55–72. [Google Scholar] [CrossRef] [Green Version]
- WHO Global Tuberculosis Report. 2021. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021 (accessed on 11 August 2022).
- Romero-Adrian, T.B.; Leal-Montiel, J.; Fernández, G.; Valecillo, A. Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World, J. Immunol. 2015, 5, 16–51. [Google Scholar] [CrossRef]
- Sia, J.K.; Georgieva, M.; Rengarajan, J. Innate Immune Defenses in Human Tuberculosis: An Overview of the Interactions between Mycobacterium tuberculosis and Innate Immune Cells. J. Immunol. Res. 2015, 2015, 747543. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Chen, Z.W. The crucial roles of Th17-related cytokines/signal pathways in M. Tuberculosis infection. Cell. Mol. Immunol. 2018, 15, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.P.; Brady, M.T.; Finlay, C.M.; Boon, L.; Mills, K.H. Infection with a Helminth Parasite Attenuates Autoimmunity through TGF-β-Mediated Suppression of Th17 and Th1 Responses. J. Immunol. 2009, 183, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Allen, J.E.; Maizels, R.M. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 2011, 11, 375–388. [Google Scholar] [CrossRef]
- Hartgers, F.C.; Yazdanbakhsh, M. Co-infection of helminths and malaria: Modulation of the immune responses to malaria. Parasite Immunol. 2006, 28, 497–506. [Google Scholar] [CrossRef]
- Abate, E.; Belayneh, M.; Gelaw, A.; Idh, J.; Getachew, A.; Alemu, S.; Diro, E.; Fikre, N.; Britton, S.; Elias, D.; et al. The Impact of Asymptomatic Helminth Co-Infection in Patients with Newly Diagnosed Tuberculosis in North-West Ethiopia. PLoS ONE 2012, 7, e42901. [Google Scholar] [CrossRef] [Green Version]
- Babu, S.; Nutman, T.B. Helminth-Tuberculosis Co-infection: An Immunologic Perspective. Trends Immunol. 2016, 37, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Gashaw, F. Immune Profiles of Patients Co-Infected with Soil-Transmitted Helminths and Mycobacterium tuberculosis: Implications for Control. EC Mcrobiology 2018, 14, 824–830. [Google Scholar]
- Abate, E.; Belayneh, M.; Idh, J.; Diro, E.; Elias, D.; Britton, S.; Aseffa, A.; Stendahl, O.; Schön, T. Asymptomatic Helminth Infection in Active Tuberculosis Is Associated with Increased Regulatory and Th-2 Responses and a Lower Sputum Smear Positivity. PLoS Negl. Trop. Dis. 2015, 4, e0003994. [Google Scholar] [CrossRef] [Green Version]
- Simon, G.G. Impacts of neglected tropical disease on incidence and progression of HIV/AIDS, tuberculosis, and malaria. Int. J. Infect. Dis. 2016, 42, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, N.; Kleynhans, L.; Thiart, L.; van Helden, P.D.; Brombacher, F.; Horsnell, W.G.; Walzl, G. Acute helminth infection enhances early macrophage mediated control of mycobacterial infection. Nat. Publ. Group 2013, 6, 931–941. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, M.K.; Fletcher, T.E.; Muller, J.; Tanner, R.; Matsumiya, M.; Bailey, J.W.; Jones, J.; Smith, S.G.; Koh, G.; Horsnell, W.G.; et al. Human Hookworm Infection Enhances Mycobacterial Growth Inhibition and Associates with Reduced Risk of Tuberculosis Infection. Front. Immunol. 2018, 14, 2893. [Google Scholar] [CrossRef]
- Santos, J.H.A.; Bührer-Sékula, S.; Melo, G.C.; Cordeiro-Santos, M.; Pimentel, J.P.D.; Gomes-Silva, A.; Costa, A.G.; Saraceni, V.; Da-Cruz, A.M.; Lacerda, M.V.G. Ascaris lumbricoides coinfection reduces tissue damage by decreasing IL-6 levels without altering clinical evolution of pulmonary tuberculosis or Th1/Th2/Th17 cytokine profile. Rev. Da Soc. Bras. De Med. Trop. 2019, 52, e20190315. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, T.A.; Khayumbi, J.; Ongalo, J.; Tonui, J.; Campbell, A.; Allana, S.; Gurrion Ouma, S.; Odhiambo, F.H.; Gandhi, N.R.; Day, C.L. CD4 T Cells in Mycobacterium tuberculosis and Schistosoma mansoni Co-infected Individuals Maintain Functional TH1 Responses. Front Immunol. 2020, 11, 127. [Google Scholar] [CrossRef]
- Maizels, R.M.; Smits, H.H.; McSorley, H.J. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity 2018, 49, 801–818. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Bundy, D.A.P.; Beegle, K.; Brooker, S.; Drake, L.; de Silva, N.; Montresor, A.; Engels, D.; Jukes, M.; Chitsulo, L.; et al. Chapter 24 Helminth Infections: Soil-Transmitted Helminth Infections and Schistosomiasis. In Disease Control Priorities in Developing Countries; The International Bank for Reconstruction and Development: Washington, DC, USA, 2004; pp. 467–482. [Google Scholar]
- Maizels, R.M.; Balic, A.; Gomez-Escobar, N.; Nair, M.; Taylor, M.D.; Allen, J.E. Helminth parasites—Masters of regulation. Immunol. Rev. 2004, 201, 89–116. [Google Scholar] [CrossRef] [PubMed]
- Littleton, J.; Park, J.; Nelesone, T. Helminths and tb in polynesia: The implications for health practice. Ann. Anthropol. Pract. 2012, 36, 274–294. [Google Scholar] [CrossRef]
- McSorley, H.J.; Hewitson, J.P.; Maizels, R.M. Immunomodulation by helminth parasites: Defining mechanisms and mediators. Int. J. Parasitol. 2013, 43, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Hammad, H.; Lambrecht, B.N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity 2015, 43, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Grencis, R.K. Immunity to Helminths: Resistance, Regulation, and Susceptibility to Gastrointestinal Nematodes. Annu. Rev. Immunol. 2015, 33, 201–225. [Google Scholar] [CrossRef]
- Elias, D.; Britton, S.; Aseffa, A.; Engers, H.; Akuffo, H. Poor immunogenicity of BCG in helminth infected population is associated with increased in vitro TGF-β production. Vaccine 2008, 6, 3897–3902. [Google Scholar] [CrossRef]
- Fessler, J.; Felber, A.; Duftner, C.; Dejaco, C. Therapeutic potential of regulatory T cells in autoimmune disorders. BioDrugs 2013, 19, 281–291. [Google Scholar] [CrossRef]
- Okeke, E.B.; Uzonna, J.E. The pivotal role of regulatory T cells in the regulation of innate immune cells. Front. Immunol. 2019, 10, 680. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.D.; van der Werf, N.; Maizels, R.M. T cells in helminth infection: The regulators and the regulated. Trends Immunol. 2012, 33, 181–189. [Google Scholar] [CrossRef]
- Wammes, L.J.; Mpairwe, H.; Elliott, A.M.; Yazdanbakhsh, M. Helminth therapy or elimination: Epidemiological, immunological, and clinical considerations. Lancet Infect. Dis. 2014, 14, 1150–1162. [Google Scholar] [CrossRef]
- Amoah, A.S.; Boakye, D.A.; Yazdanbakhsh, M.; van Ree, R. Influence of Parasitic Worm Infections on Allergy Diagnosis in Sub-Saharan Africa. Curr. Allergy Asthma Rep. 2017, 17, 65. [Google Scholar] [CrossRef] [Green Version]
- Mkhize-Kwitshana, Z.L.; Naidoo, P.; Nkwanyana, N.M.; Mabaso, M.L.H. Concurrent allergy and helminthiasis in underprivileged urban South African adults previously residing in rural areas. Parasite Immunol. 2022, 44, e12913. [Google Scholar] [CrossRef]
- Dennis, R.D.; Schubert, U.; Bauer, C. Angiogenesis and parasitic helminth-associated neovascularization. Parasitology 2011, 138, 426–439. [Google Scholar] [CrossRef]
- O’Garra, A.; Redford, P.S.; McNab, F.W.; Bloom, C.I.; Wilkinson, R.J.; Berry, M.P. The Immune Response in Tuberculosis. Annu. Rev. Immunol. 2013, 31, 475–527. [Google Scholar] [CrossRef]
- Amelio, P.; Portevin, D.; Reither, K.; Mhimbira, F.; Mpina, M.; Tumbo, A.; Nickel, B.; Marti, H.; Knopp, S.; Ding, S.; et al. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. PLoS Negl. Trop. Dis. 2017, 11, e0005817. [Google Scholar] [CrossRef] [Green Version]
- De Martino, M.; Lodi, L.; Galli, L.; Chiappini, E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr 2019, 7, 350. [Google Scholar] [CrossRef] [Green Version]
- Lyadova, I.V.; Panteleev, A.V. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm. 2015, 2015, 854507. [Google Scholar] [CrossRef] [Green Version]
- Herbst, S.; Schaible, U.E.; Schneider, B.E. Interferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis. PLoS ONE 2011, 6, 19105. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.T.; Stenger, S.; Tang, D.H.; Modlin, R.L. Cutting Edge: Vitamin D-Mediated Human Antimicrobial Activity against Mycobacterium tuberculosis Is Dependent on the Induction of Cathelicidin. J. Immunol. 2007, 179, 2060–2063. [Google Scholar] [CrossRef] [Green Version]
- Vankayalapati, R.; Barnes, P.F. Innate and adaptive immune responses to human Mycobacterium tuberculosis infection. Tuberculosis 2009, 89 (Suppl. S1), S77–S80. [Google Scholar] [CrossRef]
- Moraco, A.H.; Kornfeld, H. Cell death and autophagy in tuberculosis. Semin. Immunol. 2014, 26, 497–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Jankovic, D.; Oler, A.J.; Wei, G.; Sharma, S.; Hu, G.; Guo, L.; Yagi, R.; Yamane, H.; Punkosdy, G.; et al. The Transcription Factor T-bet Is Induced by Multiple Pathways and Prevents an Endogenous Th2 Cell Program during Th1 Cell Responses. Immunity 2012, 37, 660–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, A.M. Cell-Mediated Immune Responses in Tuberculosis. Annu. Rev. Immunol. 2009, 27, 393–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.L.; Chan, J.; Lin, P.L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal. Immunol. 2011, 4, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Khader, S.A.; Bell, G.K.; Pearl, J.E.; Fountain, J.J.; Rangel-Moreno, J.; Cilley, G.E.; Shen, F.; Eaton, S.M.; Gaffen, S.L.; Swain, S.L.; et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 2007, 8, 369–377. [Google Scholar] [CrossRef]
- Cooper, A.M.; Khader, S.A. ‘The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol. Rev. 2008, 226, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 2007, 13, 139–145. [Google Scholar] [CrossRef]
- Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005, 6, 1133–1141. [Google Scholar] [CrossRef] [Green Version]
- Elias, D.; Mengistu, G.; Akuffo, H.; Britton, S. Are intestinal helminths risk factors for developing active tuberculosis? Trop Med. Int. Health 2006, 11, 551–558. [Google Scholar] [CrossRef]
- Hawn, T.R.; Day, T.A.; Scriba, T.J.; Hatherill, M.; Hanekom, W.A.; Evans, T.G.; Churchyard, G.J.; Kublin, J.G.; Bekker, L.G.; Self, S.G. Tuberculosis Vaccines and Prevention of Infection. Microbiol. Mol. Biol. Rev. 2014, 78, 650–671. [Google Scholar] [CrossRef]
- Potian, J.A.; Rafi, W.; Bhatt, K.; McBride, A.; Gause, W.C.; Salgame, P. Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defence by engaging the IL-4 receptor pathway. J. Exp. Med. 2011, 208, 1863–1874. [Google Scholar] [CrossRef] [Green Version]
- Tristão-Sá, R.; Ribeiro-Rodrigues, R.; Johnson, L.T.; Pereira, F.E.; Dietze, R. Intestinal nematodes and pulmonary tuberculosis. Rev. Da Soc. Bras. De Med. Trop. 2002, 35, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Alemu, G.; Mama, M. Intestinal helminth coinfection and associated factors among tuberculosis patients in Arba Minch, Ethiopia. BMC Infect. Dis. 2017, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Tegegne, Y.; Wondmagegn, T.; Worku, L.; Jejaw Zeleke, A. Prevalence of Intestinal Parasites and Associated Factors among Pulmonary Tuberculosis Suspected Patients Attending University of Gondar Hospital, Gondar, Northwest Ethiopia. J. Parasitol. Res. 2018, 2018, 9372145. [Google Scholar] [CrossRef] [Green Version]
- Taghipour, A.; Javanmard, E.; Mirjalali, H.; Haghighi, A.; Tabarsi, P.; Sohrabi, M.R.; Zali, M.R. Blastocystis subtype 1 (allele 4); Predominant subtype among tuberculosis patients in Iran. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 201–206. [Google Scholar] [CrossRef]
- Taghipour, A.; Azimi, T.; Javanmard, E.; Pormohammad, A.; Olfatifar, M.; Rostami, A.; Tabarsi, P.; Sohrabi, M.R.; Mirjalali, H.; Haghighi, A. Immunocompromised patients with pulmonary tuberculosis; a susceptible group to intestinal parasites. Gastroenterol Hepatol. Bed. Bench. Winter 2018, 11 (Suppl. S1), S134–S139. [Google Scholar]
- Mhimbira, F.; Hella, J.; Said, K.; Kamwela, L.; Sasamalo, M.; Maroa, T.; Chiryamkubi, M.; Mhalu, G.; Schindler, C.; Reither, K.; et al. Prevalence and clinical relevance of helminth coinfections among tuberculosis patients in urban Tanzania. PLoS Negl. Trop. Dis. 2017, 11, e0005342. [Google Scholar] [CrossRef] [Green Version]
- Taghipour, A.; Malih, N.; Köksal, F.; Jokelainen, P.; Ghaffarifar, F. Toxoplasma gondii seroprevalence among tuberculosis patients: A systematic review and meta-analysis. Microb. Pathog. 2021, 159, 105083. [Google Scholar] [CrossRef]
- Kathamuthu, G.R.; Munisankar, S.; Sridhar, R.; Baskaran, D.; Babu, S. Helminth mediated modulation of the systemic and mycobacterial antigen—Stimulated cytokine profiles in extra-pulmonary tuberculosis. PLoS Negl. Trop. Dis. 2019, 13, e0007265. [Google Scholar] [CrossRef]
- Elias, D.; Wolday, D.; Akuffo, H.; Petros, B.; Bronner, U.; Britton, S. Effect of deworming on human T cell responses to mycobacterial antigens in helminth-exposed individuals before and after bacille Calmette-Guérin (BCG) vaccination. Clin. Exp. Immunol. 2001, 219, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.R.; Boussinesq, M.; Coulson, T.; Elson, L.; Nutman, T.; Bradley, J.E. Onchocerciasis modulates the immune response to mycobacterial antigens. Clin. Exp. Immunol. 1999, 117, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Elias, D.; Akuffo, H.; Pawlowski, A.; Haile, M.; Schön, T.; Britton, S. Schistosoma mansoni infection reduces the protective efficacy of BCG vaccination against virulent Mycobacterium tuberculosis. Vaccine 2005, 23, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Nutman, T.B. Helminth-Induced Immune Regulation: Implications for Immune Responses to Tuberculosis. PLoS Pathog. 2015, 11, e1004582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toulza, F.; Tsang, L.; Ottenhoff, T.H.; Brown, M.; Dockrell, H.M. Mycobacterium tuberculosis-specific CD4+ T-cell response is increased, and Treg cells decreased, in anthelmintic-treated patients with latent T.B. Eur. J. Immunol. 2016, 46, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Wammes, L.J.; Hamid, F.; Wiria, A.E.; May, L.; Kaisar, M.M.; Prasetyani-Gieseler, M.A.; Djuardi, Y.; Wibowo, H.; Kruize, Y.C.; Verweij, J.J.; et al. Community deworming alleviates geohelminth-induced immune hyporesponsiveness. Proc. Natl. Acad. Sci. USA 2016, 113, 12526–12531. [Google Scholar] [CrossRef] [Green Version]
- Hasanain, A.F.; Zayed, A.A.; Mahdy, R.E.; Nafee, M.; Attia, R.A.; Mohamed, A.O. Hookworm infection among patients with pulmonary tuberculosis: Impact of coinfection on the therapeutic failure of pulmonary tuberculosis. Int. J. Mycobacteriology 2015, 4, 318–322. [Google Scholar] [CrossRef] [Green Version]
- Mkhize-Kwitshana, Z.L.; Mabaso, M.L.H. The neglected triple disease burden and interaction of helminths, HIV and tuberculosis: An opportunity for integrated action in South Africa. South Afr. Med. J. 2014, 104, 258–259. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, I.; Mungai, P.; Wamachi, A.; Kioko, J.; Ouma, J.H.; Kazura, J.W.; King, C.L. Helminth- and Bacillus Calmette-Guérin-induced immunity in children sensitized in utero to filariasis and schistosomiasis. J. Immunol. 1999, 162, 6843–6848. [Google Scholar]
- Adams, J.F.; Schölvinck, E.H.; Gie, R.P.; Potter, P.C.; Beyers, N.; Beyers, A.D. Early report Decline in total serum IgE after treatment for tuberculosis. Lancet 1999, 353, 2030–2034. [Google Scholar] [CrossRef]
- Van Soelen, N.; Mandalakas, A.M.; Kirchner, H.L.; Walzl, G.; Grewal, H.M.; Jacobsen, M.; Hesseling, A.C. Effect of Ascaris Lumbricoides specific IgE on tuberculin skin test responses in children in a high-burden setting: A cross-sectional community-based study. BMC Infect. Dis. 2012, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, L.M.; Hermans, P.W.; Warris, A.; de Groot, R.; Maes, M.; Villalba, J.A.; del Nogal, B.; van den Hof, S.; Mughini Gras, L.; van Soolingen, D.; et al. Helminths and skewed cytokine profiles increase tuberculin skin test positivity in Warao Amerindians. Tuberculosis 2012, 92, 505–512. [Google Scholar] [CrossRef]
- Wassie, L.; Aseffa, A.; Abebe, M.; Gebeyehu, M.Z.; Zewdie, M.; Mihret, A.; Erenso, G.; Chanyalew, M.; Tilahun, H.; Yamuah, L.K.; et al. Parasitic infection may be associated with discordant responses to QuantiFERON and tuberculin skin test in apparently healthy children and adolescents in a tuberculosis endemic setting, Ethiopia. BMC Infect. Dis. 2013, 13, 265. [Google Scholar] [CrossRef]
- Biraro, I.A.; Egesa, M.; Toulza, F.; Levin, J.; Cose, S.; Joloba, M.; Smith, S.; Dockrell, H.M.; Katamba, A.; Elliott, A.M. Impact of Co-Infections and BCG Immunisation on Immune Responses among Household Contacts of Tuberculosis Patients in a Ugandan Cohort. PLoS ONE 2014, 9, e111517. [Google Scholar] [CrossRef]
- Gebreegziabiher, D.; Desta, K.; Desalegn, G.; Howe, R.; Abebe, M. The Effect of Maternal Helminth Infection on Maternal and Neonatal Immune Function and Immunity to Tuberculosis. PLoS ONE 2014, 9, e93429. [Google Scholar] [CrossRef]
- Abate, E.; Elias, D.; Getachew, A.; Alemu, S.; Diro, E.; Britton, S.; Aseffa, A.; Stendahl, O.; Schön, T. Effects of albendazole on the clinical outcome and immunological responses in helminth co-infected tuberculosis patients: A double blind randomised clinical trial. Int. J. Parasitol. 2015, 45, 133–140. [Google Scholar] [CrossRef]
- Monin, L.; Griffiths, K.L.; Lam, W.Y.; Gopal, R.; Kang, D.D.; Ahmed, M.; Rajamanickam, A.; Cruz-Lagunas, A.; Zúñiga, J.; Babu, S.; et al. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. J. Clin. Investig. 2015, 125, 4699–4713. [Google Scholar] [CrossRef] [Green Version]
- Rafi, W.; Bhatt, K.; Gause, W.C.; Salgame, P. Neither primary nor memory immunity to Mycobacterium tuberculosis infection is compromised in mice with chronic enteric helminth infection. Infect. Immun. 2015, 83, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Anuradha, R.; Munisankar, S.; Bhootra, Y.; Dolla, C.; Kumaran, P.; Nutman, T.B.; Babu, S. Anthelmintic Therapy Modifies the Systemic and Mycobacterial Antigen-Stimulated Cytokine Profile in Helminth-Latent Mycobacterium tuberculosis Coinfection. Infect. Immun. 2017, 85, e00973-16. [Google Scholar] [CrossRef] [Green Version]
- Ly, L.H. and McMurray, D.N. Tuberculosis: Vaccines in the pipeline. Expert Rev. Vaccines 2008, 7, 635–650. [Google Scholar] [CrossRef]
- Pang, Y.; Zhao, A.; Cohen, C.; Kang, W.; Lu, J.; Wang, G.; Zhao, Y.; Zheng, S. Current status of new tuberculosis vaccine in children. Hum. Vaccines Immunother. 2016, 12, 960–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, P. Tuberculosis vaccines—An update. Nat. Rev. Microbiol. 2007, 5, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Xin-Xu, L.; Xiao-Nong, Z. Co-infection of tuberculosis and parasitic diseases in humans: A systematic review. Parasites Vectors 2013, 6, 79. [Google Scholar]
- Workineh, M.; Mathewos, B.; Tekeste, Z. Effect of helminths on immunity, clinical response and vaccination against tuberculosis: A review. Adv. J. Biol. Sci. Res. 2013, 1, 13–21. [Google Scholar]
- Borkow, G.; Bentwich, Z. Chronic immune activation associated with chronic helminthic and human immunodeficiency virus infections: Role of hyporesponsiveness and anergy. Clin. Microbiol. Rev. 2004, 17, 1012–1030. [Google Scholar] [CrossRef]
- Weisman, Z.; Kalinkovich, A.; Stein, M.; Greenberg, Z.; Borkow, G.; Adlerstein, D.; Mahdi, J.A.; Bentwich, Z. Effects of Helminth Eradication on the Immune System. Pathog Immun. 2017, 2, 293–307. [Google Scholar] [CrossRef]
- Maguire, J.H. Introduction to Helminth Infections. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Lancet Infect. Dis. 2014, 2, 3196–3198. [Google Scholar]
- Resende, C.T.; Hirsch, C.S.; Toossi, Z.; Dietze, R.; Ribeiro-Rodrigues, R. Intestinal helminth coinfection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin. Exp. Immunol. 2007, 147, 45–52. [Google Scholar] [CrossRef]
- Schmiedel, Y.; Mombo-Ngoma, G.; Labuda, L.A.; Janse, J.J.; de Gier, B.; Adegnika, A.A.; Issifou, S.; Kremsner, P.G.; Smits, H.H.; Yazdanbakhsh, M. CD4+CD25 hiFOXp3+ regulatory t cells and cytokine responses in human schistosomiasis before and after treatment with praziquantel. PLoS Negl. Trop. Dis. 2015, 9, e0003995. [Google Scholar] [CrossRef] [Green Version]
- Borkow, G.; Teicher, C.; Bentwich, Z. Helminth-HIV coinfection: Should we deworm? PLoS Negl. Trop. Dis. 2007, 1, 2–3. [Google Scholar] [CrossRef]
References | Study Type, Location and Helminth(s) | Study Aim | Major Findings |
---|---|---|---|
[72] | Human study in Kenya. Wuchereria bancrofti and Schistosoma haematobium | To investigate whether prenatal immunity to helminths persists in childhood and if it alters the immune response to BCG | Compared to patients who had prenatal sensitization 10–14 months after BCG immunization, T cell IFN-γ production was 26-fold higher in infants who were not sensitized to filariae or schistosomes in utero. |
[73] | Human study in South Africa. Ascaris lumbricoides and Trichuris trichiura | To determine total serum IgE before and after tuberculosis therapy | T.B. therapy resulted in reduced serum Ascaris-specific IgE levels. Tuberculin induration was found to be inversely related to IgE in patients but not in controls. |
[65] | Human study in West Cameroon. Onchocerca volvulus | To determine total serum IgE before and after tuberculosis therapy | T.B. therapy resulted in reduced serum Ascaris-specific IgE levels. Tuberculin induration was found to be inversely related to IgE in patients but not in controls. |
[64] | Human study in East Ethiopia. Ascaris lumbricoides, hookworms, Trichuris trichiura, Strongyloides stercoralis, Hymenolepis nana and Taenia spp. | To investigate the effect of intestinal helminths on the immune response to PPD in naturally immunized or BCG-vaccinated individuals | Individuals who received BCG vaccination and were infected with helminths had reduced T cell and PPD skin test responses. Increased T cell proliferation and IFN were associated with improved BCG efficacy following anthelmintic therapy. |
[66] | An experimental study in Ethiopia. Schistosoma mansoni | To investigate whether chronic helminth-infected individuals have reduced efficacy of BCG vaccine compared to uninfected persons | Possibly through attenuation of protective immune responses to mycobacterial antigens and/or by polarizing the general immune responses to the Th2 profile, S. mansoni infection reduced the protective efficacy of BCG vaccination against Mtb. |
[53] | Human study in Ethiopia. Ascaris lumbricoides, Hookworm, Strongloides stercoralis, Trichuris trichiura, S. mansoni and Enterobius vermicularis | To study the prevalence of intestinal helminth infections and their association with active T.B. in T.B. patients and healthy household contacts | In addition to HIV infection, intestinal helminth infection may be a risk factor for the development of active pulmonary T.B. This discovery could have significant consequences for the control of tuberculosis in helminth-endemic areas around the world. |
[30] | Human study in Ethiopia. Trichuris trichiura, Ascaris lumbricoides, hookworms, Taenia spp., Hymenolepis nana and Enterobius vermicularis | This study tested anti-helminthic medication before BCG vaccination to determine if it could improve BCG vaccination immunogenicity in helminth-infected patients | Chronic worm infection reduced BCG immunogenicity in humans. This was linked to increased TGF-β production but not a better Th2 immune response. |
[74] | Human study in South Africa. Ascaris lumbricoides and Trichuris trichiura | To investigate whether helminth infection could affect a child’s ability to generate a proper Th1 immune response, which was defined by a positive tuberculin skin test (TST) | Helminth infection/exposure may reduce the immune response to Mtb infection. In younger children, being Ascaris IgE-positive significantly reduced the likelihood of being TST-positive, but this effect faded as they grew older. |
[75] | Human study in Venezuela. Ascaris lumbricoides and Trichuris trichiura | To investigate the effects of parasite infections, malnutrition and plasma cytokine profiles on tuberculin skin test (TST) positivity | TST positivity was associated with low plasma Th1 cytokine levels in indigenous Venezuelan children with T.B. contacts and helminth infections. |
[19] | Animal study in South Africa. Nippostrongylus brasiliensis (Nb) | To investigate the impact of acute Nb-induced lung damage and long-term parasite lung conditioning on the host’s ability to control mycobacterial infection | The findings show that early stage Nb infection induces a macrophage response that protects against subsequent mycobacterial infection. |
[76] | Human study in Ethiopia. Giardia lamblia, Ascaris lumbricoides, Hookworm spp., Strongyloides stercoralis, Trichuris trichuria, Enterobius vermicularis, Taenia spp., Hymenolepis nana, Schistosoma mansoni or trophozoite stage of Entamoeba histolytica. | To diagnose latent Mtb infection using the tuberculin skin test (TST) and the IFN-γ release assays in helminth infected school children | The tuberculin skin test should be used with caution in areas where parasitic intestinal infections are common. |
[77] | Human study in Uganda. Hookworm, Trichuris trichiura, Hymenolepis nana, Schistosoma mansoni, Ascaris lumbricoides, Hymenolepis nana and Schistosoma mansoni | To determine whether coinfections such as helminths, malaria and HIV modulate the immune system and increase susceptibility to latent tuberculosis infection (LTBI), leading to the persistence of the tuberculosis epidemic | Concurrent helminth, malaria and HIV infections did not affect cytokine responses profile in individuals with LTBI. |
[78] | Human study in Ethiopia. Schistosoma mansoni | To investigate whether maternal helminth infection affects maternal and neonatal immunological function and T.B. immunity | The combination of early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) elicited a significantly lower IFN-γ response in helminth-positive than in helminth-negative participants. Cord blood mononuclear cells’ (CBMCs) IFN-γ response, total IgE and cross-placental transfer of T.B.-specific IgG were all negatively correlated with maternal helminth infection. |
[17] | Human study in Ethiopia. Ascaris lumbricoides Hookworm spp. Strongyloides stercoralis Trichuris trichiura Hymenolepis nana Taenia spp. | To examine the clinical and immunological effects of helminth infection on T.B. | Asymptomatic helminth infection had a profound influence on the immunological profile of individuals with T.B. This favored Th2 immune responses such as increased regulatory T cells and IL-5 and IL-10 secreting cells. |
[79] | Human study in Ethiopia. Ascaris lumbricoides | To investigate the clinical and immunological outcomes of patients coinfected with helminths and T.B. after albendazole treatment | The decrease in eosinophil counts and IL-10 demonstrated that asymptomatic helminth infection considerably impacts host immunity during tuberculosis and can be efficiently reversed with albendazole treatment. Helminth infection has clinical effects on chronic infectious diseases such as tuberculosis, and these effects should be further explored. |
[80] | An animal study in the USA. Schistosoma mansoni | To investigate whether Mtb-specific T cell responses can be reversibly impaired by treatment of S. mansoni coinfection, without impacting arginase-1-expressing macrophage-mediated T.B. control | Anthelminthic treatment improved Mtb-specific T cell responses. In T.B.-infected mice, arginase-1-expressing macrophages in the lung formed granulomas and exacerbated inflammation. |
[81] | An experimental animal study in USA. Heligmosomoides polygyrus | To investigate whether Mtb infection would be modulated in mice with chronic H. polygyrus infection | Despite a systemic increase in FoxP3+ T regulatory cells, neither primary nor memory immunity conferred by Mycobacterium bovis BCG vaccination were affected in mice with chronic enteric helminth infection. |
[82] | Human study in India. Strongyloides stercoralis | To investigate whether helminth modulation of cytokine responses in latent T.B. coinfection is reversible after anthelminthic therapy | In Strongyloides stercoralis-latent T.B. coinfection, anthelmintic therapy reversed the modulation of systematic and T.B. antigen-stimulated cytokine responses. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhengu, K.N.; Naidoo, P.; Singh, R.; Mpaka-Mbatha, M.N.; Nembe, N.; Duma, Z.; Pillay, R.; Mkhize-Kwitshana, Z.L. Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics 2022, 12, 2676. https://doi.org/10.3390/diagnostics12112676
Bhengu KN, Naidoo P, Singh R, Mpaka-Mbatha MN, Nembe N, Duma Z, Pillay R, Mkhize-Kwitshana ZL. Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics. 2022; 12(11):2676. https://doi.org/10.3390/diagnostics12112676
Chicago/Turabian StyleBhengu, Khethiwe Nomcebo, Pragalathan Naidoo, Ravesh Singh, Miranda N. Mpaka-Mbatha, Nomzamo Nembe, Zamathombeni Duma, Roxanne Pillay, and Zilungile L. Mkhize-Kwitshana. 2022. "Immunological Interactions between Intestinal Helminth Infections and Tuberculosis" Diagnostics 12, no. 11: 2676. https://doi.org/10.3390/diagnostics12112676
APA StyleBhengu, K. N., Naidoo, P., Singh, R., Mpaka-Mbatha, M. N., Nembe, N., Duma, Z., Pillay, R., & Mkhize-Kwitshana, Z. L. (2022). Immunological Interactions between Intestinal Helminth Infections and Tuberculosis. Diagnostics, 12(11), 2676. https://doi.org/10.3390/diagnostics12112676