Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tissue Selection, Collection, and Preparation
2.2. Laser-Induced Fluorescence Spectroscopy (LIF)
2.3. Tissue Reflectance and Transmittance Measurements via Integrating Spheres
2.4. Estimating Tissue’s Optical Parameters
2.5. Fluence Rate Modeling and Simulation Using COMSOL Multiphysics Software
3. Results
3.1. Laser-Induced Fluorescence Characteristics
Statistical Validation via PLSR
3.2. Optical Absorption and Scattering Properties
Fluence Rate Distribution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaudiuso, R.; Melikechi, N.; Abdel-Salam, Z.A.; Harith, M.A.; Palleschi, V.; Motto-Ros, V.; Busser, B. Laser-Induced Breakdown Spectroscopy for Human and Animal Health: A Review. Spectrochim. Acta Part B At. Spectrosc. 2019, 152, 123–148. [Google Scholar] [CrossRef]
- Hamdy, O.; Abdel-Salam, Z.; Abdel-Harith, M. Discrimination between Fresh, Chilled, and Frozen/ Thawed Chicken Based on Its Skin’s Spectrochemical and Optical Properties. Anal. Methods 2020, 12, 2093–2101. [Google Scholar] [CrossRef]
- Niemz, M.H. Laser-Tissue Interactions: Fundamentals and Applications, 4th ed.; Springer Nature Switzerland: Cham, Switzerland, 2019; ISBN 9783030119164. [Google Scholar]
- Abdel-Salam, Z.; Harith, M.A. Laser Spectrochemical Characterization of Semen. Talanta 2012, 99, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Salam, Z.; Abdel-Salam, S.A.M.; Harith, M.A. Application of Laser Spectrochemical Analytical Techniques to Follow Up Spoilage of White Meat in Chicken. Food Anal. Methods 2017, 10, 2365–2372. [Google Scholar] [CrossRef]
- Arabi, D.S.; Hamdy, O.; Abdel-Salam, Z.A.; Mohamed, M.S.M.; Abdel-Harith, M. Utilization of Spectrochemical Analysis and Diffuse Optical Techniques to Reveal Adulteration of Alike Fish Species and Their Microbial Contamination. Food Anal. Methods 2022, 15, 1062–1073. [Google Scholar] [CrossRef]
- Mu, T.; Chen, S.; Zhang, Y.; Chen, H.; Guo, P.; Meng, F. Portable Detection and Quantification of Olive Oil Adulteration by 473-Nm Laser-Induced Fluorescence. Food Anal. Methods 2016, 9, 275–279. [Google Scholar] [CrossRef]
- El-Sharkawy, Y.H.; Elbasuney, S. Design and Implementation of Novel Hyperspectral Imaging for Dental Carious Early Detection Using Laser Induced Fluorescence. Photodiagnosis Photodyn. Ther. 2018, 24, 166–178. [Google Scholar] [CrossRef]
- Nour, M.; Hamdy, O.; Faid, A.H.; Eltayeb, E.A.; Zaky, A.A. Utilization of Gold Nanoparticles for the Detection of Squamous Cell Carcinoma of the Tongue Based on Laser—Induced Fluorescence and Diffuse Reflectance Characteristics: An in Vitro Study. Lasers Med. Sci. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Aldén, M. Spatially and Temporally Resolved Laser/Optical Diagnostics of Combustion Processes: From Fundamentals to Practical Applications. Proc. Combust. Inst. 2022; in press. [Google Scholar] [CrossRef]
- Kulapaditharom, B.; Boonkitticharoen, V. Laser-Induced Fluorescence Imaging in Localization of Head and Neck Cancers. Ann. Otol. Rhinol. Laryngol. 1998, 107, 241–246. [Google Scholar] [CrossRef]
- Tuchin, V.V. Tissue Optics and Photonics: Light-Tissue Interaction. J. Biomed. Photonics Eng. 2015, 1, 98–134. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, Y.; Tanikawa, Y.; Okada, E.; Kawaguchi, H.; Nemoto, M. In Situ Estimation of Optical Properties of Rat and Monkey Brains Using Femtosecond Time-Resolved Measurements. Sci. Rep. 2019, 9, 9165. [Google Scholar] [CrossRef] [Green Version]
- Eisel, M.; Ströbl, S.; Pongratz, T.; Stepp, H.; Rühm, A.; Sroka, R. Investigation of Optical Properties of Dissected and Homogenized Biological Tissue. J. Biomed. Opt. 2018, 23, 091418. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, O.; Fathy, M.; Al-Saeed, T.A.; El-Azab, J.; Solouma, N.H. Estimation of Optical Parameters and Fluence Rate Distribution in Biological Tissues via a Single Integrating Sphere Optical Setup. Optik 2017, 140, 1004–1009. [Google Scholar] [CrossRef]
- Hamdy, O.; El-Azab, J.; Al-Saeed, T.A.; Hassan, M.F.; Solouma, N.H. A Method for Medical Diagnosis Based on Optical Fluence Rate Distribution at Tissue Surface. Materials 2017, 10, 1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdy, S.; Hamdy, O.; Hassan, M.A.; Eldosoky, M.A.A. A Modified Source-Detector Configuration for the Discrimination between Normal and Diseased Human Breast Based on the Continuous-Wave Diffuse Optical Imaging Approach: A Simulation Study. Lasers Med. Sci. 2022, 37, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Wu, H. Biomedical Optics: Principles and Imaging; Wiley-Interscience: Hobokon, NJ, USA, 2007. [Google Scholar]
- Cook, P.D.; Bixler, J.N.; Thomas, R.J.; Early, E.A. Prediction of Tissue Optical Properties Using the Monte Carlo Modeling of Photon Transport in Turbid Media and Integrating Spheres. OSA Contin. 2020, 3, 1456–1475. [Google Scholar] [CrossRef]
- Ullah, H.; Shehzad, A.; Batool, Z.; Nazir, A. Diffuse Wave Spectroscopy for Optical Properties Measurements of Normal and Coagulated Chicken Liver Using Ultrafast Femtosecond Wavelength Range (390-435 Nm). J. Optoelectron. Adv. Mater. 2020, 22, 121–128. [Google Scholar]
- Fredriksson, I.; Larsson, M.; Strömberg, T. Inverse Monte Carlo Method in a Multilayered Tissue Model for Diffuse Reflectance Spectroscopy. J. Biomed. Opt. 2012, 17, 047004-1–12. [Google Scholar] [CrossRef]
- O’Sullivan, T.D.; Cerussi, A.E.; Cuccia, D.J.; Tromberg, B.J. Diffuse Optical Imaging Using Spatially and Temporally Modulated Light. J. Biomed. Opt. 2012, 17, 071311. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.-J.; Xing, D.; Wu, G.-Y.; Jin, Y.; Gu, H.-M. Optical Properties of Human Normal Small Intestine Tissue Determined by Kubelka-Munk Method in Vitro. World J. Gastroenterol. 2003, 9, 2068–2072. [Google Scholar] [CrossRef]
- Murphy, A.B. Modified Kubelka—Munk Model for Calculation of the Reflectance of Coatings with Optically-Rough Surfaces. J. Phys. D. Appl. Phys. 2006, 39, 3571–3581. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers 2021, 13, 3484. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, O.; Ismail, T. Study of Optical Power Variations in Multi-Layer Human Skin Model for Monitoring the Light Dose. In Proceedings of the NILES 2019—Novel Intelligent and Leading Emerging Sciences Conference, Giza, Egypt, 28–30 October 2019. [Google Scholar]
- Zanchetta, G.; Lanfranco, R.; Giavazzi, F.; Bellini, T.; Buscaglia, M. Emerging Applications of Label-Free Optical Biosensors. Nanophotonics 2017, 6, 627–645. [Google Scholar] [CrossRef]
- Abuelmakarem, H.S.; Hamdy, O.; Sliem, M.A.; El-azab, J.; Om-Hashem, M.A.; Ahmed, W.A. Colonic Carcinoma Diagnosis Using Chitosan Nanoparticles Based on the Optical Properties. J. Phys. Conf. Ser. 2020, 1472, 012001. [Google Scholar] [CrossRef]
- Hamdy, O.; Youssef, D.; El-azab, J. Detection of Breast Diseases Using Numerical Study of Light Propagation. In Proceedings of the 2018 9th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 20–22 December 2018; pp. 53–56. [Google Scholar]
- Firbank, M.; Hiraoka, M.; Essenpreis, M.; Delpy, D.T. Measurement of the Optical Properties of the Skull in the Wavelength Range 650–950 Nm. Phys. Med. Biol. 1993, 38, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Soleimanzad, H.; Gurden, H.; Pain, F. Optical Properties of Mice Skull Bone in the 455- to 705-Nm Range. J. Biomed. Opt. 2017, 22, 010503. [Google Scholar] [CrossRef]
- Pitzschke, A.; Lovisa, B.; Seydoux, O.; Haenggi, M.; Oertel, M.F.; Zellweger, M.; Tardy, Y.; Wagnières, G. Optical Properties of Rabbit Brain in the Red and Near-Infrared: Changes Observed under in Vivo, Postmortem, Frozen, and Formalin-Fixated Conditions. J. Biomed. Opt. 2015, 20, 025006. [Google Scholar] [CrossRef]
- Shanshool, A.S.; Lazareva, E.N.; Hamdy, O.; Tuchin, V.V. Optical Properties and Fluence Distribution in Rabbit Head Tissues at Selected Laser Wavelengths. Materials 2022, 15, 5696. [Google Scholar] [CrossRef]
- Molenaar, R.; ten Bosch, J.J.; Zijp, J.R. Determination of Kubelka–Munk Scattering and Absorption Coefficients by Diffuse Illumination. Appl. Opt. 1999, 38, 2068–2077. [Google Scholar] [CrossRef]
- Albani, J.R. Principles and Applications of Fluorescence Spectroscopy; Wiley: Hoboken, NJ, USA, 2007; ISBN 9780470692059. [Google Scholar]
- Zacharioudaki, D.-E.; Fitilis, I.; Kotti, M. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef]
- Ergon, R. Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR). In Mathematical and Statistical Methods in Food Science and Technology; Granato, D., Ares, G., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Wentzell, P.D. Montoto, LV Comparison of Principal Components Regression and Partial Least Squares Regression through Generic Simulations of Complex Mixtures. Chemom. Intell. Lab. Syst. 2003, 65, 257–279. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A Review of Variable Selection Methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Bakdash, J.Z.; Marusich, L.R. Repeated Measures Correlation. Front. Psychol. 2017, 8, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamdy, O.; Mohammed, H.S. Variations in Tissue Optical Parameters with the Incident Power of an Infrared Laser. PLoS ONE 2022, 17, e0263164. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, M.; Arridge, S.R.; Hiraoka, M.; Delpy, D.T. The Finite Element Method for the Propagation of Light in Scattering Media: Boundary and Source Conditions. Med. Phys. 1995, 22, 1779–1792. [Google Scholar] [CrossRef]
- Lu, H.; Floris, F.; Rensing, M.; Andersson-Engels, S. Fluorescence Spectroscopy Study of Protoporphyrin IX in Optical Tissue Simulating Liquid Phantoms. Materials 2020, 13, 2105. [Google Scholar] [CrossRef]
- Hoffman, R.M.; Yang, M. Whole-Body Imaging with Fluorescent Proteins. Nat. Protoc. 2006, 1, 1429–1438. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, É.A.; Kochubey, V.I.; Tuchin, V. V Optical Properties of the Subcutaneous Adipose Tissue in the Spectral Range 400–2500 Nm. Opt. Spectrosc. 2005, 99, 836–842. [Google Scholar] [CrossRef]
- Beek, J.F.; Blokland, P.; Posthumus, P.; Aalders, M.; Pickering, J.W.; Sterenborg, H.J.C.M.; Van Gemert, M.J.C. In Vitro Double-Integrating-Sphere Optical Properties of Tissues between 630 and 1064 Nm. Phys. Med. Biol. 1997, 42, 2255–2261. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Tuchin, V. V Optical Properties of Skin, Subcutaneous, and Muscle Tissues: A Review. J. Innov. Opt. Health Sci. 2011, 4, 9–38. [Google Scholar] [CrossRef]
- Kwaśny, M.; Bombalska, A. Applications of Laser-Induced Fluorescence in Medicine. Sensors 2022, 22, 2956. [Google Scholar] [CrossRef]
- Amani, M.; Bavali, A.; Parvin, P. Optical Characterization of the Liver Tissue Affected by Fibrolamellar Hepatocellular Carcinoma Based on Internal Filters of Laser—Induced Fluorescence. Sci. Rep. 2022, 12, 6116. [Google Scholar] [CrossRef] [PubMed]
- Eliat, F.; Sohn, R.; Renner, H.; Kagermeier, T.; Volkery, S.; Brinkmann, H.; Kirschnick, N.; Kiefer, F.; Grabos, M.; Becker, K.; et al. Tissue Clearing May Alter Emission and Absorption Properties of Common Fluorophores. Sci. Rep. 2022, 12, 5551. [Google Scholar] [CrossRef] [PubMed]
- Ghisaidoobe, A.B.T.; Chung, S.J. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques. Int. J. Mol. Sci. 2014, 15, 22518–22538. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.G.; Georgakoudi, I.; Zhang, Q.; Wu, J.; Feld, M.S. Intrinsic Fluorescence Spectroscopy in Turbid Media: Disentangling Effects of Scattering and Absorption. Appl. Opt. 2001, 40, 4633–4646. [Google Scholar] [CrossRef]
- Glorieux, S.; Steen, L.; Van de Walle, D.; Dewettinck, K.; Foubert, I.; Fraeye, I. Effect of Meat Type, Animal Fat Type, and Cooking Temperature on Microstructural and Macroscopic Properties of Cooked Sausages. Food Bioprocess Technol. 2019, 12, 16–26. [Google Scholar] [CrossRef]
- El-Zayat, S.R.; Sibaii, H.; El-Shamy, K.A. Physiological Effects of Fat Loss. Bull. Natl. Res. Cent. 2019, 43, 208. [Google Scholar] [CrossRef] [Green Version]
- Lanka, P.; Segala, A.; Farina, A.; Konugolu Venkata Sekar, S.; Nisoli, E.; Valerio, A.; Taroni, P.; Cubeddu, R.; Pifferi, A. Non-Invasive Investigation of Adipose Tissue by Time Domain Diffuse Optical Spectroscopy. Biomed. Opt. Express 2020, 11, 2779–2793. [Google Scholar] [CrossRef]
- Filatova, S.A.; Shcherbakov, I.A.; Tsvetkov, V.B. Optical Properties of Animal Tissues in the Wavelength Range from 350 to 2600 Nm. J. Biomed. Opt. 2017, 22, 035009. [Google Scholar] [CrossRef]
- Lee, S.; Youn, J.-I. Evaluation of Diffuse Reflectance in Multi-Layered Tissue for High Intensity Laser Therapy. J. Opt. Soc. Korea 2013, 17, 205–212. [Google Scholar] [CrossRef]
- Sheet, A.H.; Hamdy, O.; Abdel-Salam, Z.; Abdel-Harith, M. Combining Laser-Irradiation and Glycerol Immersion of Skeletal Muscles to Improve Their Optical Transparency. Opt. Laser Technol. 2022, 148, 107760. [Google Scholar] [CrossRef]
Tissue | Optical Parameters | ||||||
---|---|---|---|---|---|---|---|
µa [cm−1] | [cm−1] | ||||||
808 nm | 830 nm | 980 nm | 808 nm | 830 nm | 980 nm | ||
This work | Hydrated skin | 0.84 ± 0.47 | 2.68 ± 0.03 | 2.01 ± 0.04 | 26.2 ± 1.59 | 29.8 ± 0.02 | 32.5 ± 0.05 |
Dry skin | 0.5 ± 0.01 | 0.14 ± 0.01 | 0.48 ± 0.02 | 24.1 ± 0.04 | 38.7 ± 0.04 | 26.1 ± 0.07 | |
Native adipose tissue | 0.34 ± 0.14 | 1.7 ± 0.01 | 1.61 ± 0.017 | 11.2 ± 018 | 19 ± 0.01 | 24 ± 0.02 | |
Boiled adipose tissue | 0.13 ± 0.04 | 0.34 ± 0.15 | 1.63 ± 0.018 | 13.2 ± 0.06 | 11.1 ± 0.16 | 24.2 ± 0.03 | |
Bashkatov et al. [45] | Adipose tissue | 0.8 ± 0.2 | 1 ± 0.4 | 1.2 ± 0.5 | 11 ± 3 | 12 ± 4 | 13 ± 4 |
Beek et al. [46] | Rabbit skin | 0.7 ± 0.07 (at 790 nm) | 18.4 ± 0.05 (at 790 nm) | ||||
Piglet skin | 1.6 ± 0.1 (at 850 nm) | 14.3 ± 1.5 (at 850 nm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdy, O.; Abdel-Salam, Z.; Abdel-Harith, M. Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties. Diagnostics 2022, 12, 2846. https://doi.org/10.3390/diagnostics12112846
Hamdy O, Abdel-Salam Z, Abdel-Harith M. Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties. Diagnostics. 2022; 12(11):2846. https://doi.org/10.3390/diagnostics12112846
Chicago/Turabian StyleHamdy, Omnia, Zienab Abdel-Salam, and Mohamed Abdel-Harith. 2022. "Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties" Diagnostics 12, no. 11: 2846. https://doi.org/10.3390/diagnostics12112846
APA StyleHamdy, O., Abdel-Salam, Z., & Abdel-Harith, M. (2022). Optical Characterization of Biological Tissues Based on Fluorescence, Absorption, and Scattering Properties. Diagnostics, 12(11), 2846. https://doi.org/10.3390/diagnostics12112846