Precursor Lesions of Gallbladder Carcinoma: Disease Concept, Pathology, and Genetics
Abstract
:1. Introduction
2. Pyloric Gland Adenoma
2.1. Clinicopathological Features
2.2. Gross and Microscopic Pathology
Author a | Patients b | Age c | Tumor Size d | Invasion e | Genetics f | Ref. g | |
---|---|---|---|---|---|---|---|
1 | Adsay | 13 | NA | NA | 7.6–15.4% * | NA | [16] |
2 | He | 23 | 62.8 (44–87) | 15.1 (5–45) | 8.7% | CTNNB1 (100%) KRAS (4.2%) GNAS (0%) | [17] |
3 | Albores-Saavedra | 165 | NA | NA | 0.03% | NA | [18] |
4 | Wani | 29 | NA | 8.2 (3–16) | NA | NA | [20] |
5 | Chang | 19 | NA | NA | 0% | CTNNB1 (80%) | [21] |
6 | Yanagisawa | 17 | NA | NA | NA | CTNNB1 (62.5% **) | [21] |
2.3. Molecular Features of PGA
3. Intracholecystic Papillary Neoplasm
3.1. Clinical Features of ICPN
3.2. Pathology of ICPN
3.3. Molecular Features of ICPN
4. Biliary Intraepithelial Neoplasia
4.1. Pathology of BilIN
4.2. Molecular Features of Gallbladder BilIN
5. Pancreatobiliary Maljunction
5.1. Clinical Features
5.2. Gross and Microscopic Pathology
5.3. Molecular Studies on PBM
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P.; Sunkara, T.; Thandra, K.C.; Barsouk, A. Epidemiology of gallbladder cancer. Clin. Exp. Hepatol. 2019, 5, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 coutries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef]
- Vega, E.A.; Newhook, T.E.; Vauthey, J.-N. ASO Author Reflections: Gallbladder Cancer Research, “One for All and All for One” Strategy to Improve Research. Ann. Surg. Oncol. 2021, 28, 2683–2684. [Google Scholar] [CrossRef]
- Jang, J.; Yoo, D.-S.; Chun, B.C. Spatial epidemiologic analysis of the liver cancer and gallbladder cancer incidence and its determinants in South Korea. BMC Public Health 2021, 21, 2090. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Sharma, K.; Gupta, A.; Yadav, A.; Kumar, A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J. Gastroenterol. 2017, 23, 3978–3998. [Google Scholar] [CrossRef] [PubMed]
- Nemunaitis, J.M.; Brown-Glabeman, U.; Soares, H.; Belmonte, J.; Liem, B.; Nir, I.; Phuoc, V.; Gullapalli, R.R. Gallbladder cancer: Review of a rare orphan gastrointestinal cancer with a focus on populations of New Mexico. BMC Cancer 2018, 18, 665. [Google Scholar] [CrossRef]
- Kalbi, D.P.; Bapatla, A.; Chaudhary, A.J.; Bashar, S.; Iqbal, S. Surveillance of Gallbladder Polyps: A Literature Review. Cureus 2021, 13, e16113. [Google Scholar] [CrossRef]
- McCain, R.S.; Diamond, A.; Jones, C.; Coleman, H.G. Current practices and future prospects for the management of gallbladder polyps: A topical review. World J. Gastroenterol. 2018, 24, 2844–2852. [Google Scholar] [CrossRef]
- Addeo, P.; Centonze, L.; LoCicero, A.; Faitot, F.; Jedidi, H.; Felli, E.; Fuchshuber, P.; Bachellier, P. Incidental Gallbladder Carcinoma Discovered after Laparoscopic Cholecystectomy: Identifying Patients Who will Benefit from Reoperation. J. Gastrointest. Surg. 2017, 22, 606–614. [Google Scholar] [CrossRef]
- Bosman, F.T.; Carneiro, F.; Hruban, R.H.; Theise, N.D. WHO classification of tumours. In Digestive System Tumours, 4th ed.; International Agency for Research on Cancer: Lyon, France, 2010. [Google Scholar]
- Albores-Saavedra, J.; Henson, D.E.; Klimstra, D.S. Tumors of the Gallbladder, Extrahepatic Bile Ducts, and Vaterian System; American Registry of Pathology: Washington, DC, USA, 2015. [Google Scholar]
- Adsay, N.V.; Klimstra, D.S. Benign and malignant tumors of the gallbladder and extrahepatic biliay tract. In Surgical Pathology of the GI Tract, Liver, Biliary Tract, and Pancreas, 3rd ed.; Odze, R., Goldblum, J., Eds.; Elsevier: Philadelphia, PA, USA, 2014; pp. 1021–1054. [Google Scholar]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours. In Digestive System Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019. [Google Scholar]
- Basturk, O.; Aishima, S.; Esposito, I. Pyloric gland adenoma of the gallbladder. In WHO Classification of Tumours. Digestive System Tumours. WHO Classification of Tumours Editorial Board, 5th ed.; IARC Press: Lyon, France, 2019. [Google Scholar]
- Roa, J.C.; Basturk, O.; Adsay, V. Dysplasia and carcinoma of the gallbladder: Pathological evaluation, sampling, differential diagnosis and clinical implications. Histopathology 2021, 79, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Adsay, V.; Jang, K.-T.; Roa, J.C.; Dursun, N.; Ohike, N.; Bagci, P.; Basturk, O.; Bandyopadhyay, S.; Cheng, J.D.; Sarmiento, J.M.; et al. Intracholecystic Papillary-Tubular Neoplasms (ICPN) of the Gallbladder (Neoplastic Polyps, Adenomas, and Papillary Neoplasms That Are ≥1.0 cm). Am. J. Surg. Pathol. 2012, 36, 1279–1301. [Google Scholar] [CrossRef]
- He, C.; Fukumura, Y.; Toriyama, A.; Ogura, K.; Sasahara, N.; Mitani, K.; Yao, T. Pyloric gland adenoma (PGA) of the gallbladder. A unique and distinct tumor from PGAs of the stomach, duodenum, and pancreas. Am. J. Surg. Pathol. 2018, 42, 1237–1245. [Google Scholar] [CrossRef]
- Albores-Saavedra, J.; Chablé-Montero, F.; González-Romo, M.A.; Jaramillo, M.R.; Henson, D.E. Adenomas of the gallbladder. Morphologic features, expression of gastric and intestinal mucins, and incidence of high-grade dysplasia/carcinoma in situ and invasive carcinoma. Hum. Pathol. 2012, 43, 1506–1513. [Google Scholar] [CrossRef]
- Foster, D.R. Gall-bladder polyps in Peutz-Jeghers syndrome. Postgrad. Med. J. 1980, 56, 373–376. [Google Scholar] [CrossRef]
- Wani, Y.; Notohara, K.; Fujisawa, M. Aberrant expression of an “intestinal marker” Cdx2 in pyloric gland adenoma of the gallbladder. Virchows Arch. 2008, 453, 521–527. [Google Scholar] [CrossRef]
- Yanagisawa, N.; Mikami, T.; Saegusa, M.; Okayasu, I. More frequent beta-catenin exon 3 mutations in gallbladder adenomas than in carcinomas indicate different lineages. Cancer Res. 2001, 61, 19–22. [Google Scholar]
- Pehlivanoglu, B.; Balci, S.; Basturk, O.; Bagci, P.; Seven, I.E.; Memis, B.; Dursun, N.; Jang, K.-T.; Saka, B.; Ohike, N.; et al. Intracholecystic tubular non-mucinous neoplasm (ICTN) of the gallbladder: A clinicopathologically distinct, invasion-resistant entity. Virchows Arch. 2020, 478, 435–447. [Google Scholar] [CrossRef]
- Chang, H.J.; Jee, C.D.; Kim, W.H. Mutation and altered expression of beta-catenin during gallbladder carcinogenesis. Am. J. Surg. Pathol. 2002, 26, 758–766. [Google Scholar] [CrossRef]
- Matsubara, A.; Sekine, S.; Kushima, R.; Ogawa, R.; Taniguchi, H.; Tsuda, H.; Kanai, Y. Frequent GNAS and KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J. Pathol. 2013, 229, 579–589. [Google Scholar] [CrossRef]
- Hida, R.; Yamamoto, H.; Hirahashi, M.; Kumagai, R.; Nishiyama, K.; TGi, T.; Esaki, M.; Kitazono, T.; Oda, Y. Duodenal neoplasms of gastric phenotype-an immunohistochemical and genetic study with a practical approach to the classification. Am. J. Surg. Pathol. 2017, 41, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Kuboki, Y.; Hatori, T.; Yamamoto, M.; Shimizu, K.; Shiratori, K.; Shibata, N.; Shimizu, M.; Furukawa, T. The discrete nature and distinguishing molecular features of pancreatic intraductal tubulopapillary neoplasms and intraductal papillary mucinous neoplasms of the gastric type, pyloric gland variant. J. Pathol. 2013, 231, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Mamat, O.; Fukumura, Y.; Saito, T.; Takahashi, M.; Mitomi, H.; Sai, J.K.; Kawasaki, S.; Yao, T. Fundic gland differentiation of oncocytic/pancreatobiliary subtypes of pancreatic intraductal papillary mucinous neoplasm. Histopathology 2016, 69, 570–581. [Google Scholar] [CrossRef]
- Basturk, O.; Aishima, S.; Esposito, I. Intracholecystic papillary neoplasm. In WHO Classification of Tumours. Digestive System Tumours. WHO Classification of Tumours Editorial Board, 5th ed.; IARC Press: Lyon, France, 2019. [Google Scholar]
- Akita, M.; Fujikura, K.; Ajiki, T.; Fukumoto, T.; Otani, K.; Hirose, T.; Tominaga, M.; Itoh, T.; Zen, Y. Intracholecystic papillary neoplasms are distinct from papillary gallbladder cancers: A clinicopathologic and exome-sequencing study. Am. J. Surg. Pathol. 2019, 43, 783–791. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Basturk, O.; Esposito, I.; Klimstra, D.S.; Komuta, M.; Zen, Y. Intraductal papillary neoplasm of the bile ducts. In WHO Classification of Tumours. Digestive System Tumours. WHO Classification of Tumours Editorial Board, 5th ed.; IARC Press: Lyon, France, 2019. [Google Scholar]
- Nakanuma, Y.; Nomura, Y.; Watanabe, H.; Terada, T.; Sato, Y.; Kakuda, Y.; Sugino, T.; Ohnishi, Y.; Okamura, Y. Pathological characterization of intracholecystic papillary neoplasm: A recently proposed preinvasive neoplasm of gallbladder. Ann. Diagn. Pathol. 2021, 52, 151723. [Google Scholar] [CrossRef]
- Mochidome, N.; Koga, Y.; Ohishi, Y.; Miyazaki, T.; Matsuda, R.; Yamada, Y.; Aishima, S.; Nakamura, M.; Oda, Y. Prognostic implications of the coexisting precursor lesion types in invasive gallbladder cancer. Hum. Pathol. 2021, 114, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Muranushi, R.; Saito, H.; Matsumoto, A.; Kato, T.; Tanaka, N.; Nakazato, K.; Morinaga, N.; Shitara, Y.; Ishizaki, M.; Yoshida, T.; et al. A case report of intracholecystic papillary neoplasm of the gallbladder resembling a submucosal tumor. Surg. Case Rep. 2018, 4, 124. [Google Scholar] [CrossRef] [Green Version]
- Yokode, M.; Hanada, K.; Shimizu, A.; Minami, T.; Hirohata, R.; Abe, T.; Amano, H.; Yonehara, S.; Zen, Y. Intracholecystic papillary neoplasm of the gallbladder protruding into the common bile duct: A case report. Mol. Clin. Oncol. 2019, 11, 488–492. [Google Scholar] [CrossRef] [Green Version]
- Logrado, A.; Constantino, J.; Daniel, C.; Pereira, J.; Carvalho, M.T.; Casimiro, C. Low-Grade Dysplastic Intracholecystic Papillary Neoplasia: A Case Report. Am. J. Case Rep. 2021, 22, e929788. [Google Scholar] [CrossRef] [PubMed]
- Basturk, O.; Aishima, S.; Esposito, I. Biliary intraepithelial neoplasia. In WHO Classification of Tumours. Digestive System Tumours. WHO Classification of Tumours Editorial Board, 5th ed.; IARC Press: Lyon, France, 2019. [Google Scholar]
- Zen, Y.; Aishima, S.; Ajioka, Y.; Haratake, J.; Kage, M.; Kondo, F.; Nimura, Y.; Sakamoto, M.; Sasaki, M.; Shimamatsu, K.; et al. Proposal of histological criteria for intraepithelial atypical/proliferative biliary epithelial lesions of the bile duct in hepatolithiasis with respect to cholangiocarcinoma: Preliminary report based on interobserver agreement. Pathol. Int. 2005, 55, 180–188. [Google Scholar] [CrossRef]
- Zen, Y.; Adsay, V.; Bardadin, K.; Colombari, R.; Ferrell, L.; Haga, H.; Hong, S.-M.; Hytiroglou, P.; Klöppel, G.; Lauwers, G.Y.; et al. Biliary intraepithelial neoplasia: An international interobserver agreement study and proposal for diagnostic criteria. Mod. Pathol. 2007, 20, 701–709. [Google Scholar] [CrossRef]
- Nakanuma, Y.; Sugino, T.; Okamura, Y.; Nomura, Y.; Watanabe, H.; Terada, T.; Sato, Y. Characterization of high-grade biliary intraepithelial neoplasm of the gallbladder in comparison with intracholecystic papillary neoplasm. Hum. Pathol. 2021, 116, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Meirelles-Costa, A.L.A.; Bresciani, C.J.C.; Perez, R.O.; Bresciani, B.H.; Siqueira, S.A.C.; Cecconello, I. Are histological alterations observed in the gallbladder precancerous lesions? Clinics 2010, 65, 143–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Chen, J.; Wei, H.; Gao, P.; Shi, J.; Zhang, J.; Zhao, F. The risk factor of gallbladder cancer: Hyperplasia of mucous epithelium caused by gallstones with p16/Cyclin D1/CDK4 pathway. Exp. Mol. Pathol. 2011, 91, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-T.; Kim, J.; Jang, Y.H.; Lee, W.J.; Ryu, J.K.; Park, Y.-K.; Kim, S.W.; Kim, W.H.; Yoon, Y.B.; Kim, C.Y. Genetic alterations in gallbladder adenoma, dysplasia and carcinoma. Cancer Lett. 2001, 169, 59–68. [Google Scholar] [CrossRef]
- Wistuba, I.I.; Maitra, R.; Carraso, R.; Tang, M.; Troncoso, P.; Minna, J.D.; Gazdar, A.F. High resolution chromosome 3p, 8p, 9q and 22q allelotyping analysis in the pathogenesis of gallbladder carcinoma. Br. J. Cancer 2002, 87, 432–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, K.; Mohapatra, T.; Das, P.; Misra, M.C.; Gupta, M.; Ghosh, M.; Kabra, M.; Bansail, V.K.; Kuma, S.; Sreenivias, V.; et al. Sequential occurrence of preneoplastic lesions and accumulationof loss of heterozygosity in patients with gallbladder stones suggest causal association with gallbladder cancer. Ann. Surg. 2016, 260, 1073–1080. [Google Scholar] [CrossRef]
- Koda, M.; Yashima, K.; Kawaguchi, K.; Andachi, H.; Hosoda, A.; Shiota, G.; Ito, H.; Murawaki, Y. Expression of Fhit, Mlh1, and P53 protein in human gallbladder carcinoma. Cancer Lett. 2003, 199, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Wistuba, I.I.; Ashfaq, R.; Maitra, A.; Alvarez, H.; Riquelme, E.; Gazdar, A.F. Fragile histidine triad gene abnormalties in the pathogenesis of gallbladder carcinoma. Am. J. Pathol. 2002, 160, 2073–2079. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Peng, X.; Dong, K.; Long, J.; Guo, X.; Li, H.; Bai, Y.; Yang, X.; Wang, D.; Lu, X.; et al. Genomic characterization of co-existing neoplasia and carcinoma lesions reveals distinct evolutionary paths of gallbladder cancer. Nat. Commun. 2021, 12, 4753. [Google Scholar] [CrossRef]
- Kamisawa, T.; Ando, H.; Suyama, M.; Shimada, M.; Morine, Y.; Shimada, H. Japanese clinical practice guidelines for pancreaticobiliary maljunction. J. Gastroenterol. 2012, 47, 731–759. [Google Scholar] [CrossRef]
- Kamisawa, T.; Honda, G. Pancreatobiliary maljunction: Markedly high risk for biliary cancer. Digestion 2019, 99, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Morine, Y.; Mori, H.; Utsunomiya, T.; Imura, S.; Ikemoto, T.; Shimada, M. Epidemiology and clinical features of pancreaticobiliary maljunction. Jpn. Biliary Assoc. 2011, 25, 133–140, (In Japanese with English Abstract). [Google Scholar]
- Ono, A.; Arizono, S.; Isoda, H.; Togashi, K. Imaging of Pancreaticobiliary Maljunction. RadioGraphics 2020, 40, 378–392. [Google Scholar] [CrossRef]
- Funabiki, T.; Matsubara, T.; Miyakawa, S.; Ishihara, S. Pancreatobiliary maljunction and carcinogenesis to biliary and pancreatic malignancy. Langenbecks Arch. Surg. 2009, 394, 159–169. [Google Scholar] [CrossRef]
- Saikusa, N.; Naito, S.; Iinuma, Y.; Ohtani, T.; Yokoyama, N.; Nitta, K. Invasive cholangiocarcinoma identified in congenital biliary dilatation in a 3-year-old boy. J. Pediatr. Surg. 2009, 44, 2202–2205. [Google Scholar] [CrossRef] [PubMed]
- Muraki, T.; Pehlivanoglu, B.; Memis, B.; Reid, M.D.; Uehara, T.; Basturk, O.; Pernicka, J.G.; Klimstra, D.S.; Jarnagin, W.R.; Ito, T.; et al. Pancreatobiliary Maljunction-Associated Gallbladder Cancer is as Common in the West, Shows Distinct Clinicopathologic Characteristics and Offers an Invaluable Model for Anatomy-Induced Reflux-Associated Physio-Chemical Carcinogenesis. Ann. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, Y.; Takase, M.; Mamat, O.; Hara, K.; Saito, T.; Takahashi, M.; Yao, T. Carcinogenesis from diffuse papillary hyperplasiaof the gallbladder; pathological approach with cases of pancreaticobiliary maljunction. Kan-Tan-Sui 2012, 65, 519–524. (In Japanese) [Google Scholar]
- Muraki TMemis, B.; Reid, M.D.; Uehara, T.; Ito, T.; Hasebe, O.; Okaniwa, S.; Horigome, N.; Hisa, T.; Mittal, P.; Freedman, A.; et al. Reflux-associated cholecystopathy. Analysis of 76 gallbladders from patients with supra-oddi union of the pancreatic duct and common bile duct (pancreatobiliary maljunction) elucidates a specific diagnostic pattern of mucosal hyperplasia as a prelude to carcinoma. Am. J. Surg. Pathol. 2017, 41, 1167–1177. [Google Scholar]
- Matsubayashi, H.; Matsui, T.; Sugiura, T.; Makuuchi, R.; Kaneko, J.; Satoh, J.; Satoh, T.; Fujie, S.; Ishiwatari, H.; Sasaki, K.; et al. A Large Carcinosarcoma of the Gallbladder Accompanied by Pancreaticobiliary Maljunction: A Case with a Six-year Survival. Intern. Med. 2019, 58, 2809–2817. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, T.; Otsuka, Y.; Miyata, Y.; Einama, T.; Tsujimoto, H.; Ueno, H.; Ogata, S.; Kishi, Y. Intracholecystic papillary neoplasm arising in apatient with pancreaticobiliary maljunction: A case report. World J. Surg. Oncol. 2020, 18, 292. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Li, X.; Ye, J.; Wu, X.; Tan, Z.; Liu, C.; Shen, B.; Wang, X.-A.; Wu, W.; et al. Whole-exome and targeted gene sequencing of gallbladder carcinoma identifies recurrent mutations in the ErbB pathway. Nat. Genet. 2014, 46, 872–876. [Google Scholar] [CrossRef]
- Nakamura, H.; Arai, Y.; Totoki, Y.; Shirota, T.; ElZawahry, A.; Kato, M.; Hama, N.; Hosoda, F.; Urushidate, T.; Ohashi, S.; et al. Genomic spectra of biliary tract cancer. Nat. Genet. 2015, 47, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Matsuhara, T.; Sakurai, Y.; Zhi, L.Z.; Miura, H.; Ochiai, M.; Funabiki, T. K-ras and p53 gene mutations in noncancerous biliary lesions of patients with pancreatobiliary maljunction. J. Hepato-Biliary-Pancreat. Surg. 2002, 9, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Watanabe, M.; Iwase, T.; Yamao, K.; Isaji, S. Clinical and genetic analysis of noncancerous and cancerous biliary epithelium in patients with pancreatobiliary maljunction. World J. Surg. 2002, 26, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, Y.; Kamiyama, M.; Sekido, H.; Ishikawa, T.; Miura, Y.; Kamiya, N.; Morita, T.; Shimada, H. Telomerase activity and Bcl-2 expression in gallbladders of pancreaticobiliary maljunction patients: A preliminary study. J. Hepato-Biliary-Pancreat. Surg. 2004, 11, 34–39. [Google Scholar] [CrossRef]
- Tomioka, Y.; Sung, Y.; Sawada, R.; Hong, S.; Akita, M.; Itoh, T.; Ajiki, T.; Fukumoto, T.; Zen, Y. IL-33 overexpression in gallbladder cancers associated with pancreatobiliary maljunction. Histopathology 2019, 75, 365–375. [Google Scholar] [CrossRef]
- Yamaguchi, J.; Sasaki, M.; Harada, K.; Zen, Y.; Sato, Y.; Ikeda, H.; Itatsu, K.; Yokoyama, Y.; Ando, H.; Ohta, T.; et al. Papillary hyperplasia of the gallbladder in pancreaticobiliary maljunction represents a senescence-related lesion induced by lysolecithin. Lab. Investig. 2009, 89, 1018–1031. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, H.; Suzuki, N.; Hirata, Y.; Hikiba, Y.; Hayakawa, Y.; Kinoshita, H.; Ihara, S.; Uchino, K.; Nishikawa, Y.; Ijichi, H.; et al. Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands. Proc. Natl. Acad. Sci. USA 2017, 114, E3806–E3815. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.H.; Joo, J.S.; Kim, S.H.; Kim, K.H.; Lee, E.S. EUS-guided fine-needle biopsy of gallbladder polypoid lesions. VideoGIE 2020, 5, 151–153. [Google Scholar] [CrossRef]
- Hijioka, S.; Nagashio, Y.; Ohba, A.; Maruki, Y.; Okusaka, T. The Role of EUS and EUS-FNA in Differentiating Benign and Malignant Gallbladder Lesions. Diagnostics 2021, 11, 1586. [Google Scholar] [CrossRef]
- Koimtzis, G.; Chalklin, C.; Carrington-Windo, E.; Ramsden, M.; Stefanopoulos, L.; Kosmidis, C. The Role of Fine Needle Aspiration Cytology in the Diagnosis of Gallbladder Cancer: A Systematic Review. Diagnostics 2021, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Canale, M.; Monti, M.; Rapposelli, I.G.; Ulivi, P.; Sullo, F.G.; Bartolini, G.; Tiberi, E.; Frassineti, G.L. Molecular Targets and Emerging Therapies for Advanced Gallbladder Cancer. Cancers 2021, 13, 5671. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, H.; de Bitter, T.J.J.; de Boer, M.T.; van der Post, R.; Nijkamp, M.W.; de Reuver, P.R.; Fehrmann, R.S.N.; Hoogwater, F.J.H. Gallbladder cancer: Current insights in genetic alterations and their possible therapeutic implications. Cancers 2021, 13, 5257. [Google Scholar] [CrossRef] [PubMed]
Author a | Patients b | Age c | Size d | Invasion e | Genetics f | Ref. g | |
---|---|---|---|---|---|---|---|
1 | Adsay | 123 * | 61 | 2.2 | 55% | NA | [16] |
2 | Akita | 7 ** | 72 (61–78) | 26 (4–80) | 57.1% | STK11 (43%) CTNNB1 (29%) APC (1%) KRAS (1%) GNAS (0%) PIK3CA (0%) | [29] |
3 | Nakanuma | 38 | 74.5 ±7.3 | 28.0 ±14.9 | 36.8% | NA | [31] |
Author a | Patients b | LOH c | Ref. d | |
---|---|---|---|---|
1 | Kim | 5 | 3p, 5q, 8p, 9p, 13q, 17p, and 18q (80% of BilIN showed LOH at a minimum of one locus) | [42] |
2 | Wistuba | 24 | 3p (36–86%) 8p (18–58%) 9q (9–58%) 22q (18–53%) | [43] |
3 | Jain | 55 | D17S786 p53 (36.0%) D3S1274 DUTT1 (25.0%) D3S1766 FHIT (23.8%) D5S409 APC (54.5%) IFNA p16 (40.0%) D9S127 FCMD (9.1%) D18S34 DCC (28.0%) D13S153 RB1 (4.7%) | [44] |
4 | Wistuba | 26 | 3p14.2 FHIT (33%) | [46] |
Author a | Patients b | Noncancerous Epithelium | Cancerous Epithelium | Ref. c | |
---|---|---|---|---|---|
1 | Matsuhara | 5 | KRAS: 33.3%/60% θ p53: 59.3%/60% θ | NA | [61] |
2 | Nagai | 36 | KRAS: 33.3%/28.6% φ p53: 0%/0% φ MSI: 0%/85.7% φ | KRAS: 60.0% p53: 35.3% MSI: 80.0% | [62] |
3 | Ichikawa | 6 * | KRAS:0% Telomerase activity **: 44.4% | KRAS: 66.6% Telomerase activity: 83.3% | [63] |
4 | Tomioka | 32 | NA | KRAS: 16% IL-33 mRNA: high | [64] |
5 | Yamaguchi | 15 | p16INK4A: high γH2AX: high EZH2: low | EZH2: high | [65] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukumura, Y.; Rong, L.; Maimaitiaili, Y.; Fujisawa, T.; Isayama, H.; Nakahodo, J.; Kikuyama, M.; Yao, T. Precursor Lesions of Gallbladder Carcinoma: Disease Concept, Pathology, and Genetics. Diagnostics 2022, 12, 341. https://doi.org/10.3390/diagnostics12020341
Fukumura Y, Rong L, Maimaitiaili Y, Fujisawa T, Isayama H, Nakahodo J, Kikuyama M, Yao T. Precursor Lesions of Gallbladder Carcinoma: Disease Concept, Pathology, and Genetics. Diagnostics. 2022; 12(2):341. https://doi.org/10.3390/diagnostics12020341
Chicago/Turabian StyleFukumura, Yuki, Lu Rong, Yifare Maimaitiaili, Toshio Fujisawa, Hiroyuki Isayama, Jun Nakahodo, Masataka Kikuyama, and Takashi Yao. 2022. "Precursor Lesions of Gallbladder Carcinoma: Disease Concept, Pathology, and Genetics" Diagnostics 12, no. 2: 341. https://doi.org/10.3390/diagnostics12020341
APA StyleFukumura, Y., Rong, L., Maimaitiaili, Y., Fujisawa, T., Isayama, H., Nakahodo, J., Kikuyama, M., & Yao, T. (2022). Precursor Lesions of Gallbladder Carcinoma: Disease Concept, Pathology, and Genetics. Diagnostics, 12(2), 341. https://doi.org/10.3390/diagnostics12020341