Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson’s Disease: An Exploratory Resting-State Functional Connectivity MRI Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutiérrez-Rojas, L.; Porras-Segovia, A.; Dunne, H.; Andrade-González, N.; Cervilla, J.A. Prevalence and correlates of major depressive disorder: A systematic review. Braz. J. Psychiatry 2020, 42, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Tsuno, N.; Homma, A. What is the association between depression and Alzheimer’s disease? Expert Rev. Neurother. 2009, 9, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Richard, E.; Reitz, C.; Honig, L.H. Late-Life Depression, Mild Cognitive Impairment, and Dementia. JAMA Neurol. 2013, 70, 383–389. [Google Scholar] [CrossRef]
- Burn, D.J. Beyond the iron mask: Towards better recognition and treatment of depression associated with Parkinson’s disease. Mov. Disord. 2002, 17, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.L.; Gonzalez, M.P.; Becker, J.T.; Reynolds, C.F., 3rd; Sudilovsky, A.; DeKOSKY, S.T. Symptoms of depression in Alzheimer’s disease, frontal lobe-type dementia, and subcortical dementia. Ann. N. Y. Acad. Sci. 1995, 769, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Alfano, V.; Longarzo, M.; Mele, G.; Esposito, M.; Aiello, M.; Salvatore, M.; Grossi, D.; Cavaliere, C. Identifying a Common Functional Framework for Apathy Large-Scale Brain Network. J. Pers. Med. 2021, 11, 679. [Google Scholar] [CrossRef]
- Blass, D.M.; Rabins, P.V. Depression in frontotemporal dementia. Psychosomatics 2009, 50, 239–247. [Google Scholar] [CrossRef]
- Kraus, C.; Kadriu, B.; Lanzenberger, R.; Zarate, C.A., Jr.; Kasper, S. Prognosis and improved outcomes in major depression: A review. Transl. Psychiatry 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Raichle, M.E. The Brain’s Default Mode Network. Annu. Rev. Neurosci. 2015, 38, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, C.; Li, G.; Lin, X.; Jiang, D.; Xu, Y.; Tian, H.; Wang, W.; Song, X. The rise and fall of MRI studies in major depressive disorder. Transl. Psychiatry 2019, 9, 335. [Google Scholar] [CrossRef]
- Wang, L.; Hermens, D.F.; Hickie, I.B.; Lagopoulos, J. A systematic review of resting-state functional-MRI studies in major depression. J. Affect. Disord. 2012, 142, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Cai, W.; Ryali, S.; Supekar, K.; Menon, V. Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 2016, 14, e1002469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulden, N.; Khusnulina, A.; Davis, N.J.; Bracewell, R.M.; Bokde, A.L.; McNulty, J.P.; Mullins, P.G. The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage 2014, 99, 180–190. [Google Scholar] [CrossRef]
- Hermans, E.J.; Henckens, M.J.A.G.; Joëls, M.; Fernández, G. Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends Neurosci. 2014, 37, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Fadel, E.; Boeker, H.; Gaertner, M.; Richter, A.; Kleim, B.; Seifritz, E.; Grimm, S.; Wade-Bohleber, L.M. Differential Alterations in Resting State Functional Connectivity Associated with Depressive Symptoms and Early Life Adversity. Brain Sci. 2021, 11, 591. [Google Scholar] [CrossRef] [PubMed]
- Brakowski, J.; Spinelli, S.; Dörig, N.; Bosch, O.G.; Manoliu, A.; Grosse Holtforth, M.; Seifritz, S. Resting state brain network function in major depression—Depression symptomatology, antidepressant treatment effects, future research. J. Psychiatr. Res. 2017, 92, 147–159. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, H.; Xu, X.; Zuo, Z. Brain structural and functional changes in patients with major depressive disorder: A literature review. PeerJ 2019, 7, e8170. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Farmer, M.; Fogelman, P.; Gotlib, I.H. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry 2015, 78, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.M.; Guillery, R.W. Functional organization of thalamocortical relays. J. Neurophysiol. 1996, 76, 1367–1395. [Google Scholar] [CrossRef]
- Brown, E.C.; Clark, D.L.; Hassel, S.; MacQueen, G.; Ramasubbu, R. Thalamocortical connectivity in major depressive disorder. J. Affect. Disord. 2017, 217, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Vertes, R.P.; Linley, S.B.; Hoover, W.B. Limbic circuitry of the midline thalamus. Neurosci. Biobehav. Rev. 2015, 54, 89–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, M.; Alcaraz, F.; Marchand, A.R.; Coutureau, E. Functional heterogeneity of the limbic thalamus: From hippocampal to cortical functions. Neurosci. Biobehav. Rev. 2015, 54, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Hamani, C.; Mayberg, H.; Stone, S.; Laxton, A.; Haber, S.; Lozano, A.M. The subcallosal cingulate gyrus in the context of major depression. Biol. Psychiatry 2011, 69, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Price, J.L.; Drevets, W.C. Neurocircuitry of mood disorders. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2010, 35, 192–216. [Google Scholar] [CrossRef]
- Liebermann, D.; Ostendorf, F.; Kopp, U.A.; Kraft, A.; Bohner, G.; Nabavi, D.G.; Kathmann, N.; Ploner, C.J. Subjective cognitive-affective status following thalamic stroke. J. Neurol. 2013, 260, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.R.; Patwardhan, K.; Pai, A.R. Problems of face recognition in patients with behavioral variant frontotemporal dementia. Indian J. Psychol. Med. 2017, 39, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, E.F.; Fregni, F.; Maia, F.M.; Melo, L.M.; Sato, J.R.; Cruz, A.C., Jr.; Amaro, E., Jr. Abnormal visual activation in Parkinson’s disease patients. Mov. Disord. 2010, 25, 1590–1596. [Google Scholar] [CrossRef]
- Weil, R.S.; Schrag, A.E.; Warren, J.D.; Crutch, S.J.; Lees, A.J.; Morris, H.R. Visual dysfunction in Parkinson’s disease. Brain 2016, 139, 2827–2843. [Google Scholar] [CrossRef] [Green Version]
- Leyland, L.A.; Bremner, F.D.; Mahmood, R.; Hewitt, S.; Durteste, M.; Cartlidge, M.R.; Weil, R.S. Visual tests predict dementia risk in Parkinson disease. Neurol. Clin. Pract. 2020, 10, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Federico, G.; Osiurak, F.; Brandimonte, M.A.; Salvatore, M.; Cavaliere, C. The visual encoding of graspable unfamiliar objects. Psychol. Res. 2021, in press. [Google Scholar] [CrossRef]
- Pupíková, M.; Šimko, P.; Gajdoš, M.; Rektorová, I. Modulation of working memory and resting-state fMRI by tDCS of the right frontoparietal network. Neural Plast. 2021, 2021, 5594305. [Google Scholar] [CrossRef] [PubMed]
- Sedwick, L.A. Assessment of visual impairment in patients with Alzheimer’s disease. Am. J. Ophthalmol. 1987, 104, 113–120. [Google Scholar]
- Kaskie, B.; Storandt, M. Visuospatial deficit in dementia of the Alzheimer type. Arch. Neurol. 1995, 52, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Mendez, M.F.; Tomsak, R.L.; Remler, B.M. Disorders of the visual system in Alzheimer’s disease. J. Clin. Neuroophthalmol. 1990, 10, 62–69. [Google Scholar]
- Weightman, M.J.; Air, T.M.; Baune, B.T. A review of the role of social cognition in major depressive disorder. Front. Psychiatry 2014, 5, 179. [Google Scholar] [CrossRef] [Green Version]
- Mangun, G.R.; Buonocore, M.H.; Girelli, M.; Jha, A.P. ERP and fMRI measures of visual spatial selective attention. Hum. Brain Mapp. 1998, 6, 383–389. [Google Scholar] [CrossRef]
- Cai, S.; Chong, T.; Zhang, Y.; Li, J.; von Deneen, K.M.; Ren, J.; Dong, M.; Huang, L.; Alzheimer’s Disease Neuroimaging Initiative. Altered Functional Connectivity of Fusiform Gyrus in Subjects with Amnestic Mild Cognitive Impairment: A Resting-State fMRI Study. Front. Hum. Neurosci. 2015, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Butter, C.M.; Trobe, J.D.; Foster, N.L.; Berent, S. Visual-spatial deficits explain visual symptoms in Alzheimer’s disease. Am. J. Ophthalmol. 1996, 122, 97–105. [Google Scholar] [CrossRef]
- Golby, A.; Silverberg, G.; Race, E.; Gabrieli, S.; O’shea, J.; Knierim, K. Memory encoding in Alzheimer’s disease: An fMRI study of explicit and implicit memory. Brain 2005, 128, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Yetkin, F.Z.; Rosenberg, R.N.; Weiner, M.F.; Purdy, P.D.; Cullum, C.M. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur. Radiol. 2006, 16, 193–206. [Google Scholar] [CrossRef]
- Bejanin, A.; Tammewar, G.; Marx, G.; Cobigo, Y.; Iaccarino, L.; Kornak, J.; Rabinovici, G.D. Longitudinal structural and metabolic changes in frontotemporal dementia. Neurology 2020, 95, e140–e154. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.C.; Chan, L.L.; Tan, L.C.; Tan, E.K. Depression, anxiety, and apathy in Parkinson’s disease: Insights from neuroimaging studies. Eur. J. Neurol. 2016, 23, 1001–1019. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Ribaldi, F.; Altomare, D.; Jovicich, J.; Ferrari, C.; Picco, A.; Pizzini, F.B.; Soricelli, A.; Mega, A.; Ferretti, A.; Drevelegas, A.; et al. Accuracy and reproducibility of automated white matter hyperintensities segmentation with lesion segmentation tool: A European multi-site 3T study. Magn. Reson. Imaging 2021, 76, 108–115. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory (BDI-II); Pearson: London, UK, 1996. [Google Scholar]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical Surface-Based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [Green Version]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing author(s). J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Sheline, Y.I. Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiatry 2003, 54, 338–352. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, C.; Cao, X.H.; Xiang, J.; Chen, J.J.; Zhang, K.R. Resting-state functional connectivity abnormalities in first-onset unmedicated depression. Neural Regen. Res. 2014, 9, 153–163. [Google Scholar] [PubMed]
- Kronmüller, K.T.; Schröder, J.; Köhler, S. Hippocampal volume in first episode and recurrent depression. Psychiatry Res. 2009, 174, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, G.S.; Kelly, R.E., Jr. Research advances in geriatric depression. World Psychiatry 2009, 8, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Abe, O.; Yamasue, H.; Kasai, K.; Yamada, H.; Aoki, S.; Inoue, H.; Takei, K.; Suga, M.; Matsuo, K.; Kato, T.; et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010, 181, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Lorenzetti, V.; Allen, N.B.; Fornito, A.; Yücel, M. Structural brain abnormalities in major depressive disorder: A selective review of recent MRI studies. J. Affect. Disord. 2009, 117, 1–17. [Google Scholar] [CrossRef]
- Greicius, M.D.; Flores, B.H.; Menon, V.; Glover, G.H.; Solvason, H.B.; Kenna, H.; Reiss, A.L.; Schatzberg, A.F. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 2007, 62, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Postuma, R.B.; Dagher, A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb. Cortex 2006, 16, 1508–1521. [Google Scholar] [CrossRef]
- Behrens, T.E.; Johansen-Berg, H.; Woolrich, M.W.; Smith, S.M.; Wheeler-Kingshott, C.A.; Boulby, P.A.; Barker, G.J.; Sillery, E.L.; Sheehan, K.; Ciccarelli, O.; et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 2003, 6, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Johansen-Berg, H.; Behrens, T.E.; Sillery, E.; Ciccarelli, O.; Thompson, A.J.; Smith, S.M.; Matthews, P.M. Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb. Cortex 2005, 15, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Snyder, A.Z.; Fox, M.D.; Sansbury, M.W.; Shimony, J.S.; Raichle, M.E. Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 2008, 100, 1740. [Google Scholar] [CrossRef]
- Clarke, S.; Riahi-Arya, S.; Tardif, E.; Eskenasy, A.C.C.; Probst, A. Thalamic projections of the fusiform gyrus in man. Eur. J. Neurosci. 1999, 11, 1835–1838. [Google Scholar] [CrossRef] [PubMed]
- Sabatinelli, D.; Fortune, E.E.; Li, Q.; Siddiqui, A.; Krafft, C.; Oliver, W.T.; Beck, S.; Jeffries, J. Emotional perception: Meta-analyses of face and natural scene processing. Neuroimage 2011, 54, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- Milak, M.S.; Parsey, R.V.; Keilp, J.; Oquendo, M.A.; Malone, K.M.; Mann, J.J. Neuroanatomic correlates of psychopathologic components of major depressive disorder. Arch. Gen. Psychiatry 2005, 62, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, T.; Okamoto, Y.; Okada, G.; Takaishi, Y.; Takamura, M.; Mantani, A.; Kurata, A.; Otagaki, Y.; Yamashita, H.; Yamawaki, S. Association of thalamic hyperactivity with treatment-resistant depression and poor response in early treatment for major depression: A resting-state fMRI study using fractional amplitude of low-frequency fluctuations. Transl. Psychiatry 2016, 6, e754. [Google Scholar] [CrossRef] [PubMed]
- Beauregard, M.; Lévesque, J.; Bourgouin, P. Neural correlates of conscious self-regulation of emotion. J. Neurosci. Offic. J. Soc. Neurosci. 2001, 21, RC165. [Google Scholar] [CrossRef]
- George, M.S.; Wassermann, E.M.; Kimbrell, T.A.; Little, J.T.; Williams, W.E.; Danielson, A.L.; Greenberg, B.D.; Hallett, M.; Post, R.M. Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: A placebo-controlled crossover trial. Am. J. Psychiatry 1997, 154, 1752–1756. [Google Scholar] [CrossRef] [PubMed]
- Sheline, Y.I.; Price, J.L.; Yan, Z.; Mintun, M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. USA 2010, 107, 11020–11025. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.; Bo, Q.; Cao, J.; Chen, G.; Chen, N.; Chen, W.; et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Duan, M.; Chen, X.; Chang, X.; He, H.; Li, Y.; Luo, C.; Yao, D. Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: A preliminary study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 302–310. [Google Scholar] [CrossRef]
- Yu, M.; Linn, K.A.; Shinohara, R.T.; Oathes, D.J.; Cook, P.A.; Duprat, R.; Moore, T.M.; Oquendo, M.A.; Phillips, M.L.; McInnis, M.; et al. Childhood trauma history is linked to abnormal brain connectivity in major depression. Proc. Natl. Acad. Sci. USA 2019, 116, 8582–8590. [Google Scholar] [CrossRef] [Green Version]
- Mulders, P.C.; van Eijndhoven, P.F.; Schene, A.H.; Beckmann, C.F.; Tendolkar, I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci. Biobehav. Rev. 2015, 56, 330–344. [Google Scholar] [CrossRef] [PubMed]
depFTD | depPD | Non-depFTD | Non-depPD | HC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range | Mean (SD) | Range | |
Age | 63.2 (7.3) | 53–75 | 65.5 (9.2) | 63–80 | 70.1 (5.6) | 64–81 | 64.2 (7.1) | 52–71 | 57.7 (6.7) | 48–70 |
Gender | 4F–5M | \ | 4F–4M | \ | 2F–6M | \ | 4F–5M | \ | 7F–9M | \ |
Education | 9.2 (3.4) | 5–13 | 10.1 (3.6) | 8–18 | 15.4 (3.7) | 8–18 | 11.2 (3.7) | 8–18 | 14.9 (3.5) | 8–18 |
BDI | 31.1 (10.2) | 20–54 | 24.2 (5.6) | 20–37 | 9.6 (4.8) | 2–17 | 3.7 (2.3) | 1–6 | 6.6 (4.6) | 1–16 |
MMSE | 22.9 (5.8) | 14–29 | 23.6 (6.1) | 13–29 | 27.6 (2.3) | 24–30 | 27.4 (1.5) | 25–30 | 28.5 (1.4) | 27–30 |
UPDRS | \ | \ | 33.2 (10.9) | 17–50 | \ | \ | 20.1 (8.6) | 11–36 | \ | \ |
Seed | Target | T-Score | p-FDR |
---|---|---|---|
Depressed patients > HC | |||
Left thalamus | Left posterior-temporal fusiform cortex | 4.2 | 0.01 |
Depressed FTD > HC | |||
Left thalamus | Left posterior-temporal fusiform cortex | 3.6 | 0.05 |
Depressed PD > HC | |||
Left thalamus | Left posterior-temporal fusiform cortex | 3.6 | 0.04 |
Network Seed | Target | T-Score | p-FDR |
---|---|---|---|
Depressed patients > HC | |||
Left LP (DMN) | Left LPFC (CEN) | 3.6 | 0.03 |
MPFC (DMN) | 3.1 | 0.03 | |
Depressed FTD > HC | |||
Left LP (DMN) | Left LPFC (CEN) | 4.1 | 0.01 |
MPFC (DMN) | 2.7 | 0.05 | |
Depressed PD > HC | |||
Left LP (DMN) | Left LPFC (CEN) | 2.3 | 0.05 |
MPFC (DMN) | 2.8 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfano, V.; Federico, G.; Mele, G.; Garramone, F.; Esposito, M.; Aiello, M.; Salvatore, M.; Cavaliere, C. Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson’s Disease: An Exploratory Resting-State Functional Connectivity MRI Study. Diagnostics 2022, 12, 959. https://doi.org/10.3390/diagnostics12040959
Alfano V, Federico G, Mele G, Garramone F, Esposito M, Aiello M, Salvatore M, Cavaliere C. Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson’s Disease: An Exploratory Resting-State Functional Connectivity MRI Study. Diagnostics. 2022; 12(4):959. https://doi.org/10.3390/diagnostics12040959
Chicago/Turabian StyleAlfano, Vincenzo, Giovanni Federico, Giulia Mele, Federica Garramone, Marcello Esposito, Marco Aiello, Marco Salvatore, and Carlo Cavaliere. 2022. "Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson’s Disease: An Exploratory Resting-State Functional Connectivity MRI Study" Diagnostics 12, no. 4: 959. https://doi.org/10.3390/diagnostics12040959
APA StyleAlfano, V., Federico, G., Mele, G., Garramone, F., Esposito, M., Aiello, M., Salvatore, M., & Cavaliere, C. (2022). Brain Networks Involved in Depression in Patients with Frontotemporal Dementia and Parkinson’s Disease: An Exploratory Resting-State Functional Connectivity MRI Study. Diagnostics, 12(4), 959. https://doi.org/10.3390/diagnostics12040959