Automated 3D Segmentation of the Aorta and Pulmonary Artery on Non-Contrast-Enhanced Chest Computed Tomography Images in Lung Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Information
2.2. CT Image Acquisition
2.3. Pre-Processing of CT Images
2.4. Architecture
2.5. 3D U-Net
2.6. Contrast Enhancement Model
2.7. Segmentation Model
2.7.1. Aorta Segmentation Model
2.7.2. Pulmonary Artery Segmentation Model
2.8. Vessel Diameter Measurement
3. Results
3.1. Patient Clinicopathological Features and Perioperative Results
3.2. Contrast Enhancement Model
3.3. Segmentation Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.W.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-W.; Tseng, Y.-H.; Lee, Y.-F.; Hsieh, M.-S.; Ko, W.-C.; Chen, J.-Y.; Hsu, H.-H.; Chang, Y.-C.; Chen, J.-S. Computed tomography-guided patent blue vital dye localization of pulmonary nodules in uniportal thoracoscopy. J. Thorac. Cardiovasc. Surg. 2016, 152, 535–544.e2. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-H.; Hsu, H.-H.; Yang, S.-M.; Tsai, T.-M.; Tsou, K.-C.; Liao, H.-C.; Lin, M.-W.; Chen, J.-S. Preoperative dye localization for thoracoscopic lung surgery: Hybrid versus computed tomography room. Ann. Thorac. Surg. 2018, 106, 1661–1667. [Google Scholar] [CrossRef]
- Ginsberg, R.J.; Rubinstein, L.V.; Group, L.C.S. Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Ann. Thorac. Surg. 1995, 60, 615–623. [Google Scholar] [CrossRef]
- Chiang, X.-H.; Hsu, H.-H.; Hsieh, M.-S.; Chang, C.-H.; Tsai, T.-M.; Liao, H.-C.; Tsou, K.-C.; Lin, M.-W.; Chen, J.-S. Propensity-matched analysis comparing survival after sublobar resection and lobectomy for cT1N0 lung adenocarcinoma. Ann. Surg. Oncol. 2020, 27, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.-W.; Kuo, S.-W.; Yang, S.-M.; Lee, J.-M. Robotic-assisted thoracoscopic sleeve lobectomy for locally advanced lung cancer. J. Thorac. Dis. 2016, 8, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-J.; Chiang, X.-H.; Lu, T.-P.; Hsieh, M.-S.; Lin, M.-W.; Hsu, H.-H.; Chen, J.-S. Thoracoscopic Lobectomy Versus Sublobar Resection for pStage I Geriatric Non-Small Cell Lung Cancer. Front. Oncol. 2021, 11, 11. [Google Scholar] [CrossRef]
- Kagimoto, A.; Tsutani, Y.; Kushitani, K.; Kai, Y.; Kambara, T.; Miyata, Y.; Takeshima, Y.; Okada, M. Segmentectomy vs Lobectomy for Clinical Stage IA Lung Adenocarcinoma with Spread Through Air Spaces. Ann. Thorac. Surg. 2021, 112, 935–943. [Google Scholar] [CrossRef]
- Hu, S.-Y.; Hsieh, M.-S.; Hsu, H.-H.; Tsai, T.-M.; Chiang, X.-H.; Tsou, K.-C.; Liao, H.-C.; Lin, M.-W.; Chen, J.-S. Correlation of tumor spread through air spaces and clinicopathological characteristics in surgically resected lung adenocarcinomas. Lung Cancer 2018, 126, 189–193. [Google Scholar] [CrossRef]
- Lin, M.-W.; Su, K.-Y.; Su, T.-J.; Chang, C.-C.; Lin, J.-W.; Lee, Y.-H.; Yu, S.-L.; Chen, J.-S.; Hsieh, M.-S. Clinicopathological and genomic comparisons between different histologic components in combined small cell lung cancer and non-small cell lung cancer. Lung Cancer 2018, 125, 282–290. [Google Scholar] [CrossRef]
- Li, C.; Kuo, S.-W.; Hsu, H.-H.; Lin, M.-W.; Chen, J.-S. Lung adenocarcinoma with intraoperatively diagnosed pleural seeding: Is main tumor resection beneficial for prognosis? J. Thorac. Cardiovasc. Surg. 2018, 155, 1238–1249.e1. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishna, G.; Sprung, J.; Ravi, B.S.; Chandrasekaran, K.; McGoon, M.D. Impact of pulmonary hypertension on the outcomes of noncardiac surgery: Predictors of perioperative morbidity and mortality. J. Am. Coll. Cardiol. 2005, 45, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, T.; Puri, V.; Timmerman, R.; Fernando, H.; Bradley, J.; Decker, P.A.; Paulus, R.; Putnum Jr, J.B.; Dupuy, D.E.; Meyers, B. Treatment of stage I lung cancer in high-risk and inoperable patients: Comparison of prospective clinical trials using stereotactic body radiotherapy (RTOG 0236), sublobar resection (ACOSOG Z4032), and radiofrequency ablation (ACOSOG Z4033). J. Thorac. Cardiovasc. Surg. 2013, 145, 692–699. [Google Scholar] [CrossRef]
- Wei, B.; D’Amico, T.; Samad, Z.; Hasan, R.; Berry, M.F. The impact of pulmonary hypertension on morbidity and mortality following major lung resection. Eur. J. Cardio-Thorac. Surg. 2014, 45, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Lewis, E.; Yip, R.; Jirapatnakul, A.; Reeves, A.; Yankelevitz, D.; Henschke, C.; Bhora, F. P2. 16-023 Changes of the Pulmonary Artery After Resection of Stage I Lung Cancer. J. Thorac. Oncol. 2017, 12, S2197. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin, Germany, 2015; pp. 234–241. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of theory and applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Bi, L.; Feng, D.; Kim, J. Dual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentation. Vis. Comput. 2018, 34, 1043–1052. [Google Scholar] [CrossRef]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Springer: Berlin, Germany, 2016; pp. 424–432. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Chen, L.; Liang, X.; Shen, C.; Jiang, S.; Wang, J. Synthetic CT generation from CBCT images via deep learning. Med. Phys. 2020, 47, 1115–1125. [Google Scholar] [CrossRef]
- Brunet, D.; Vrscay, E.R.; Wang, Z. On the mathematical properties of the structural similarity index. IEEE Trans. Image Processing 2011, 21, 1488–1499. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A survey on deep transfer learning. In Proceedings of the International Conference on Artificial Neural Networks, Rhodes, Greece, 4–7 October 2018; Springer: Berlin, Germany, 2018; pp. 270–279. [Google Scholar]
- Saha, P.K.; Borgefors, G.; di Baja, G.S. A survey on skeletonization algorithms and their applications. Pattern Recognit. Lett. 2016, 76, 3–12. [Google Scholar] [CrossRef]
- Jang, Y.; Jung, H.Y.; Hong, Y.; Cho, I.; Shim, H.; Chang, H.-J. Geodesic distance algorithm for extracting the ascending aorta from 3D CT images. Comput. Math. Methods Med. 2016, 2016, 4561979. [Google Scholar] [CrossRef] [PubMed]
- Isgum, I.; Staring, M.; Rutten, A.; Prokop, M.; Viergever, M.A.; Van Ginneken, B. Multi-atlas-based segmentation with local decision fusion—Application to cardiac and aortic segmentation in CT scans. IEEE Trans. Med. Imaging 2009, 28, 1000–1010. [Google Scholar] [CrossRef]
- Kurugol, S.; Estepar, R.S.J.; Ross, J.; Washko, G.R. Aorta segmentation with a 3D level set approach and quantification of aortic calcifications in non-contrast chest CT. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; IEEE: New York, NY, USA, 2012; pp. 2343–2346. [Google Scholar]
- Avila-Montes, O.C.; Kurkure, U.; Nakazato, R.; Berman, D.S.; Dey, D.; Kakadiaris, I.A. Segmentation of the thoracic aorta in noncontrast cardiac CT images. IEEE J. Biomed. Health Inform. 2013, 17, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Mukhopadhyay, S.; Mehre, S.A.; Bhattacharyya, P. Morphological geodesic active contour based automatic aorta segmentation in thoracic CT images. Proceedings of International Conference on Computer Vision and Image Processing, Roorkee, India, 9–12 September 2017; Springer: Berlin, Germany, 2017; pp. 187–195. [Google Scholar]
- Xie, Y.; Padgett, J.; Biancardi, A.M.; Reeves, A.P. Automated aorta segmentation in low-dose chest CT images. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Kurugol, S.; Come, C.E.; Diaz, A.A.; Ross, J.C.; Kinney, G.L.; Black-Shinn, J.L.; Hokanson, J.E.; Budoff, M.J.; Washko, G.R.; San Jose Estepar, R. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions. Med. Phys. 2015, 42, 5467–5478. [Google Scholar] [CrossRef]
- Sedghi Gamechi, Z.; Bons, L.R.; Giordano, M.; Bos, D.; Budde, R.P.; Kofoed, K.F.; Pedersen, J.H.; Roos-Hesselink, J.W.; de Bruijne, M. Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT. Eur. Radiol. 2019, 29, 4613–4623. [Google Scholar] [CrossRef] [PubMed]
- Noothout, J.M.; De Vos, B.D.; Wolterink, J.M.; Išgum, I. Automatic segmentation of thoracic aorta segments in low-dose chest CT. In Medical Imaging 2018: Image Processing; SPIE: Washington, DC, USA, 2018; p. 105741S. [Google Scholar]
- Lartaud, P.-J.; Hallé, D.; Schleef, A.; Dessouky, R.; Vlachomitrou, A.S.; Douek, P.; Rouet, J.-M.; Nempont, O.; Boussel, L. Spectral augmentation for heart chambers segmentation on conventional contrasted and unenhanced CT scans: An in-depth study. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1699–1709. [Google Scholar] [CrossRef]
- Morris, E.D.; Ghanem, A.I.; Dong, M.; Pantelic, M.V.; Walker, E.M.; Glide-Hurst, C.K. Cardiac substructure segmentation with deep learning for improved cardiac sparing. Med. Phys. 2020, 47, 576–586. [Google Scholar] [CrossRef]
- Sedghi Gamechi, Z.; Arias-Lorza, A.M.; Saghir, Z.; Bos, D.; de Bruijne, M. Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts. Med. Phys. 2021, 48, 7837–7849. [Google Scholar] [CrossRef]
- Moses, D.; Sammut, C.; Zrimec, T. Automatic segmentation and analysis of the main pulmonary artery on standard post-contrast CT studies using iterative erosion and dilation. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 381–395. [Google Scholar] [CrossRef] [PubMed]
- López-Linares Román, K.; Bruere, I.D.L.; Onieva, J.; Andresen, L.; Qvortrup Holsting, J.; Rahaghi, F.N.; Macía, I.; González Ballester, M.A.; San José Estepar, R. 3D pulmonary artery segmentation from CTA scans using deep learning with realistic data augmentation. In Image Analysis for Moving Organ, Breast, and Thoracic Images; Springer: Berlin, Germany, 2018; pp. 225–237. [Google Scholar]
- Haq, R.; Hotca, A.; Apte, A.; Rimner, A.; Deasy, J.O.; Thor, M. Cardio-pulmonary substructure segmentation of radiotherapy computed tomography images using convolutional neural networks for clinical outcomes analysis. Phys. Imaging Radiat. Oncol. 2020, 14, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.; Vese, L. An active contour model without edges. In Proceedings of the International Conference on Scale-Space Theories in Computer Vision, Corfu, Greece, 26–27 September 1999; Springer: Berlin, Germany, 1999; pp. 141–151. [Google Scholar]
- Xie, Y.; Liang, M.; Yankelevitz, D.F.; Henschke, C.I.; Reeves, A.P. Automated measurement of pulmonary artery in low-dose non-contrast chest CT images. In Medical Imaging 2015: Computer-Aided Diagnosis; SPIE: Washington, DC, USA, 2015; pp. 375–383. [Google Scholar]
- Asakura, K.; Mitsuboshi, S.; Tsuji, M.; Sakamaki, H.; Otake, S.; Matsuda, S.; Kaseda, K.; Watanabe, K. Pulmonary arterial enlargement predicts cardiopulmonary complications after pulmonary resection for lung cancer: A retrospective cohort study. J. Cardiothorac. Surg. 2015, 10, 113. [Google Scholar] [CrossRef] [PubMed]
AA and PA | Learning Rate | Decay | Epochs | Loss Function | Spatial Dropout 3D | Convolution Kernel Size | Activation Function | Output Layer Activation Function |
---|---|---|---|---|---|---|---|---|
Contrast enhancement model | 500 | Combination of MAE and DSSIM | 0.25 | 3 × 3 × 3 | ReLU | Sigmoid | ||
Segmentation model | Dice loss function |
Aorta | Pulmonary Artery | ||
---|---|---|---|
Model | DSC | Model | DSC |
1-AA | 0.97 ± 0.007 | 1-PA | 0.91 ± 0.002 |
2-PA | 0.93 ± 0.002 | ||
3D U-Net | 0.87 ± 0.025 | 3D U-Net | 0.87 ± 0.0004 |
Method | DSC | |
---|---|---|
Aorta | 2016 Jang et al. [25] | 0.95 ± 0.02 |
2009 Išgum et al. [26] | 0.87 ± 0.03 | |
2012 Kurugol et al. [27] | 0.93 ± 0.01 | |
2013 Avila-Montes et al. [28] | 0.88 ± 0.05 | |
2017 Dasgupta et al. [29] | 0.88 ± 0.06 | |
2014 Xie et al. [30] | 0.93 ± 0.01 | |
2015 Kurugol et al. [31]. | 0.92 ± 0.01 | |
2019 Gamechi et al. [32] | 0.95 ± 0.01 | |
2018 Noothout et al. [33] | 0.91 ± 0.04 | |
2021 Lartaud et al. [34] | 0.92 ± 0.02 | |
2020 Haq et al. [35] | 0.75 ≤ DSC ≤ 0.94 | |
2020 Morris et al. [36] | 0.85 ± 0.03 | |
2021 Sedghi Gamechi et al. [37] | 0.96 ± 0.01 | |
Proposed method | 0.97 ± 0.007 | |
Pulmonary artery | 2015 Xie et al. [38] | 0.88 |
2018 López-Linares et al. [39] | 0.89 ± 0.07 | |
2020 Haq et al. [35] | 0.80 ≤ DSC ≤ 0.91 | |
2020 Morris et al. [36] | 0.85 ± 0.03 | |
2021 Sedghi Gamechi et al. [37] | 0.94 ± 0.02 | |
Proposed method | 0.93 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.-J.; Chen, L.-W.; Lee, H.-Y.; Chung, Y.-J.; Lin, Y.-T.; Lee, Y.-C.; Chen, Y.-C.; Chen, C.-M.; Lin, M.-W. Automated 3D Segmentation of the Aorta and Pulmonary Artery on Non-Contrast-Enhanced Chest Computed Tomography Images in Lung Cancer Patients. Diagnostics 2022, 12, 967. https://doi.org/10.3390/diagnostics12040967
Wang H-J, Chen L-W, Lee H-Y, Chung Y-J, Lin Y-T, Lee Y-C, Chen Y-C, Chen C-M, Lin M-W. Automated 3D Segmentation of the Aorta and Pulmonary Artery on Non-Contrast-Enhanced Chest Computed Tomography Images in Lung Cancer Patients. Diagnostics. 2022; 12(4):967. https://doi.org/10.3390/diagnostics12040967
Chicago/Turabian StyleWang, Hao-Jen, Li-Wei Chen, Hsin-Ying Lee, Yu-Jung Chung, Yan-Ting Lin, Yi-Chieh Lee, Yi-Chang Chen, Chung-Ming Chen, and Mong-Wei Lin. 2022. "Automated 3D Segmentation of the Aorta and Pulmonary Artery on Non-Contrast-Enhanced Chest Computed Tomography Images in Lung Cancer Patients" Diagnostics 12, no. 4: 967. https://doi.org/10.3390/diagnostics12040967
APA StyleWang, H. -J., Chen, L. -W., Lee, H. -Y., Chung, Y. -J., Lin, Y. -T., Lee, Y. -C., Chen, Y. -C., Chen, C. -M., & Lin, M. -W. (2022). Automated 3D Segmentation of the Aorta and Pulmonary Artery on Non-Contrast-Enhanced Chest Computed Tomography Images in Lung Cancer Patients. Diagnostics, 12(4), 967. https://doi.org/10.3390/diagnostics12040967