Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Establishment of the Prediction Model
2.3. Blood Sample Collection
2.4. miRNA Isolation and Reverse Transcription
2.5. Mature miRNA qPCR Analysis
2.6. Enzyme-Linked Immunosorbent Assay
2.7. Statistical Analysis
2.8. Data Sharing Statement
3. Results
3.1. Characteristics of the First-Trimester Study Population
3.2. First-Trimester Biomarker Analysis and Screening Method Comparison
3.3. Characteristics of the Third-Trimester Study Population
3.4. Third-Trimester Biomarker Analysis and Screening Method Comparison
3.5. The Development of PE Prediction Models for the First and the Third Trimesters
4. Discussion
Principal Findings
5. Results
6. Clinical Implications
7. Research Implications
8. Strengths and Limitations
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambert, G.; Brichant, J.F.; Hartstein, G.; Bonhomme, V.; Dewandre, P.Y. Preeclampsia: An update. Acta Anaesthesiol. Belg. 2014, 65, 137–149. [Google Scholar] [PubMed]
- Bokslag, A.; van Weissenbruch, M.; Mol, B.W.; de Groot, C.J.M. Preeclampsia; short and long-term consequences for mother and neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Force, U.P.S.T.; Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Barry, M.J.; Davidson, K.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Krist, A.H.; et al. Screening for Preeclampsia. JAMA 2017, 317, 1661–1667. [Google Scholar] [CrossRef]
- Villa, P.; Kajantie, E.; Räikkönen, K.; Pesonen, A.-K.; Hämäläinen, E.; Vainio, M.; Taipale, P.; Laivuori, H. Aspirin in the prevention of pre-eclampsia in high-risk women: A randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG: Int. J. Obstet. Gynaecol. 2012, 120, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, D.; Nicolaides, K.H. Aspirin delays the development of preeclampsia. Am. J. Obstet. Gynecol. 2019, 220, 580.e1–580.e6. [Google Scholar] [CrossRef]
- Mayrink, J.; Costa, M.L.; Cecatti, J.G. Preeclampsia in 2018: Revisiting Concepts, Physiopathology, and Prediction. Sci. World J. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.L.; Jiang, P. Bioinformatics Approaches for Fetal DNA Fraction Estimation in Noninvasive Prenatal Testing. Int. J. Mol. Sci. 2017, 18, 453. [Google Scholar] [CrossRef] [Green Version]
- Fantone, S.; Mazzucchelli, R.; Giannubilo, S.R.; Ciavattini, A.; Marzioni, D.; Tossetta, G. AT-rich interactive domain 1A protein expression in normal and pathological pregnancies complicated by preeclampsia. Histochem. Cell Biol. 2020, 154, 339–346. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Lv, Y.; Lu, C.; Ji, X.; Miao, Z.; Long, W.; Ding, H.; Lv, M. Roles of microRNAs in preeclampsia. J. Cell. Physiol. 2018, 234, 1052–1061. [Google Scholar] [CrossRef]
- Huang, X.; Le, Q.-T.; Giaccia, A.J. MiR-210—Micromanager of the hypoxia pathway. Trends Mol. Med. 2010, 16, 230–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavelloni, A.; Ramazzotti, G.; Poli, A.; Piazzi, M.; Focaccia, E.; Blalock, W.; Faenza, I. MiRNA-210: A Current Overview. Anticancer Res. 2017, 37, 6511–6521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jairajpuri, D.S.; Malalla, Z.H.; Mahmood, N.; Almawi, W.Y. Circulating microRNA expression as predictor of preeclampsia and its severity. Gene 2017, 627, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, P.; Hao, S.; Liu, L.; Zhao, J.; Hou, Y. Differential expression of microRNAs in the placentae of Chinese patients with severe pre-eclampsia. Clin. Chem. Lab. Med. (CCLM) 2009, 47, 923–929. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zhou, H.; Lin, H.; Qi, J.; Zhu, C.; Gao, Z.; Wang, H. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies. Reproduction 2012, 143, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, O.P.; Murugesan, S.; Moodley, J.; Mackraj, I. Differential expression of miRNAs are associated with the insulin signaling pathway in preeclampsia and gestational hypertension. Clin. Exp. Hypertens. 2018, 40, 744–751. [Google Scholar] [CrossRef]
- Choi, S.-Y.; Yun, J.; Lee, O.-J.; Han, H.-S.; Yeo, M.-K.; Lee, M.-A.; Suh, K.-S. MicroRNA expression profiles in placenta with severe preeclampsia using a PNA-based microarray. Placenta 2013, 34, 799–804. [Google Scholar] [CrossRef]
- Weedon-Fekjær, M.; Sheng, Y.; Sugulle, M.; Johnsen, G.; Herse, F.; Redman, C.; Lyle, R.; Dechend, R.; Staff, A. Placental miR-1301 is dysregulated in early-onset preeclampsia and inversely correlated with maternal circulating leptin. Placenta 2014, 35, 709–717. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Ohkuchi, A.; Masuyama, H.; Yamamoto, T.; Kikuchi, T.; Taguchi, N.; Wolf, C.; Saito, S. Economic evaluation of the sFlt-1/PlGF ratio for the short-term prediction of preeclampsia in a Japanese cohort of the PROGNOSIS Asia study. Hypertens. Res. 2021, 44, 822–829. [Google Scholar] [CrossRef]
- Schlembach, D.; Hund, M.; Schroer, A.; Wolf, C. Economic assessment of the use of the sFlt-1/PlGF ratio test to predict preeclampsia in Germany. BMC Heal. Serv. Res. 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, X.; Biswas, A.; Huang, X.; Lee, K.J.; Li, K.T.T.; Masuyama, H.; Ohkuchi, A.; Park, J.S.; Saito, S.; Tan, K.H.; et al. Short-Term Prediction of Adverse Outcomes Using the sFlt-1 (Soluble fms-Like Tyrosine Kinase 1)/PlGF (Placental Growth Factor) Ratio in Asian Women With Suspected Preeclampsia. Hypertension 2019, 74, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Gesuita, R.; Licini, C.; Picchiassi, E.; Tarquini, F.; Coata, G.; Fantone, S.; Tossetta, G.; Ciavattini, A.; Castellucci, M.; Di Renzo, G.C.; et al. Association between first trimester plasma htra1 level and subsequent preeclampsia: A possible early marker? Pregnancy Hypertens. 2019, 18, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Licini, C.; Avellini, C.; Picchiassi, E.; Mensà, E.; Fantone, S.; Ramini, D.; Tersigni, C.; Tossetta, G.; Castellucci, C.; Tarquini, F.; et al. Pre-eclampsia predictive ability of maternal miR-125b: A clinical and experimental study. Transl. Res. 2020, 228, 13–27. [Google Scholar] [CrossRef]
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [CrossRef]
- Lozano-Bartolomé, J.; Llauradó, G.; Otin, M.P.; Altuna-Coy, A.; Rojo-Martínez, G.; Vendrell, J.; Jorba, R.; Rodriguez-Gallego, E.; Chacón, M.R. Altered Expression of miR-181a-5p and miR-23a-3p Is Associated With Obesity and TNFα-Induced Insulin Resistance. J. Clin. Endocrinol. Metab. 2018, 103, 1447–1458. [Google Scholar] [CrossRef] [Green Version]
- Prince, C.S.; Maloyan, A.; Myatt, L. Maternal obesity alters brain derived neurotrophic factor (BDNF) signaling in the placenta in a sexually dimorphic manner. Placenta 2016, 49, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Muralimanoharan, S.; Guo, C.; Myatt, L.; Maloyan, A. Sexual dimorphism in miR-210 expression and mitochondrial dysfunction in the placenta with maternal obesity. Int. J. Obes. 2015, 39, 1274–1281. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Song, W.-Y.; Xie, Y.; Hu, L.-L.; Hou, X.-M.; Wang, R.; Gao, Y.; Zhang, J.-N.; Zhang, L.; Li, W.-W.; et al. miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Luo, R.; Wang, Y.; Xu, P.; Cao, G.; Zhao, Y.; Shao, X.; Li, Y.-X.; Chang, C.; Peng, C.; Wang, Y.-L. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A. Sci. Rep. 2016, 6, 19588. [Google Scholar] [CrossRef] [Green Version]
- Spencer, K.; Heath, V.; Ong, C.Y.T.; Nicolaides, K.; El-Sheikhah, A. Ethnicity and the need for correction of biochemical and ultrasound markers of chromosomal anomalies in the first trimester: A study of Oriental, Asian and Afro-Caribbean populations. Prenat. Diagn. 2005, 25, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Pooh, R.K.; Zheng, M.; Ma, R.; Chaiyasit, N.; Tokunaka, M.; Shaw, S.W.; Seshadri, S.; Choolani, M.; Wataganara, T.; et al. Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population. Am. J. Obstet. Gynecol. 2019, 221, 650.e1–650.e16. [Google Scholar] [CrossRef] [PubMed]
- Wataganara, T.; Leetheeragul, J.; Pongprasobchai, S.; Sutantawibul, A.; Phatihattakorn, C.; Angsuwathana, S. Prediction and prevention of pre-eclampsia in Asian subpopulation. J. Obstet. Gynaecol. Res. 2018, 44, 813–830. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Leung, T.Y.; Sahota, D.; Cheng, Y.K.Y.; Leung, W.C.; Lo, T.K.; Poon, L.C.Y. Body mass index at 11–13 weeks’ gestation and pregnancy complications in a Southern Chinese population: A retrospective cohort study. J. Matern. Neonatal Med. 2018, 32, 2056–2068. [Google Scholar] [CrossRef] [PubMed]
- You, S.-H.; Cheng, P.-J.; Chung, T.-T.; Kuo, C.-F.; Wu, H.-M.; Chu, P.-H. Population-based trends and risk factors of early- and late-onset preeclampsia in Taiwan 2001–2014. BMC Pregnancy Childbirth 2018, 18, 199. [Google Scholar] [CrossRef]
Normal (n = 139) | PE (n = 13) | p | |
---|---|---|---|
Maternal Characteristics | |||
Age, year, mean (SD) | 32 (3.2) | 34 (4.0) | 0.15 |
BMI, kg/m2, mean (SD) | 24.1 (5.7) | 29.8 (4.5) | <0.001 |
Pregnancy outcomes | |||
Systolic Blood Pressure, mmHg, mean (SD) | 127 (12.2) | 153 (15.7) | <0.001 |
Diastolic Blood Pressure, mmHg, mean (SD) | 75 (12.2) | 90 (12.2) | <0.001 |
Gestational Week, week, mean (SD) | 38 (2.0) | 36 (1.2) | <0.001 |
Newborn Weight, g, mean (SD) | 3050 (678.1) | 2718 (365.6) | <0.05 |
Proteinuria, n (%) | 20 (14%) | 8 (62%) | <0.001 |
Screening Method | AUC | 95% CI | 10% FPR | Cut-Off |
---|---|---|---|---|
sFlt-1/PlGF Ratio MoM | 0.504 | 0.34–0.67 | 0% | NA |
miR-181a MoM | 0.686 | 0.56–0.82 | 23% | 0.1393 |
miR-210 MoM | 0.761 | 0.65–0.88 | 31% | 0.1377 |
miR-223 MoM | 0.584 | 0.45–0.72 | 8% | 0.0658 |
BMI | 0.809 | 0.70–0.92 | 39% | NA |
miR-210 MoM + BMI | 0.838 | 0.74–0.94 | 54% | NA |
miR-210 MoM + miR-181a MoM + BMI | 0.845 | 0.76–0.93 | 62% | NA |
Normal (n = 150) | PE (n = 27) | p | |
---|---|---|---|
Maternal characteristics | |||
Age, year, mean (SD) | 32 (4.0) | 34 (4.9) | 0.09 |
Third trimester BMI, kg/m2, mean (SD) | 25.8 (4.5) | 28.7 (5.7) | <0.01 |
Pregnancy outcomes | |||
Systolic Blood Pressure, mmHg, mean (SD) | 130 (16.2) | 157 (21.8) | <0.001 |
Diastolic Blood Pressure, mmHg, mean (SD) | 76 (11.8) | 94 (15.3) | <0.001 |
Gestational Week, week, mean (SD) | 38 (1.2) | 36 (2.9) | <0.001 |
Newborn Weight, g, mean (SD) | 3030 (375.3) | 2632 (722.2) | <0.001 |
Proteinuria, n (%) | 25 (17%) | 17 (63%) | <0.001 |
Screening Method | AUC | 95% CI | 10% FPR | Cut-Off |
---|---|---|---|---|
sFlt-1/PlGF Ratio MoM | 0.739 | 0.61–0.87 | 63% | NA |
miR-181a MoM | 0.667 | 0.54–0.79 | 37% | 7.690 |
miR-210 MoM | 0.719 | 0.61–0.83 | 44% | 7.136 |
miR-223 MoM | 0.709 | 0.59–0.83 | 41% | 5.128 |
BMI | 0.645 | 0.52–0.77 | 33% | NA |
Protein + BMI | 0.795 | 0.69–0.90 | 59% | NA |
Protein + miR-181a MoM | 0.791 | 0.68–0.90 | 56% | NA |
Protein + miR-210 MoM | 0.806 | 0.70–0.91 | 59% | NA |
Protein + miR-223 MoM | 0.831 | 0.73–0.93 | 67% | NA |
Protein + miRNAs | 0.856 | 0.76–0.95 | 70% | NA |
Protein + miRNAs + BMI | 0.864 | 0.78–0.95 | 67% | NA |
Cohort | Cut-Off Value | AUC | 95% CI | Sensitivity | Specificity | PPV | NPV | p |
---|---|---|---|---|---|---|---|---|
First trimester | ||||||||
Training | >0.09 | 0.848 | 0.73–0.96 | 80% | 85% | 27% | 98% | <0.01 |
Validation | 0.852 | 0.74–0.98 | 75% | 87% | 40% | 97% | <0.01 | |
Third trimester | ||||||||
Training | >0.18 | 0.852 | 0.73–0.98 | 69% | 93% | 68% | 93% | <0.001 |
Validation | 0.886 | 0.77–1.00 | 64% | 92% | 53% | 95% | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Teng, S.-W.; Lin, T.-Y.; Lovel, R.; Sung, H.-Y.; Chang, W.-Y.; Wu, T.B.-C.; Chen, H.-Y.; Wang, L.-M.; Shaw, S.W. Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia. Diagnostics 2022, 12, 1533. https://doi.org/10.3390/diagnostics12071533
Lin W, Teng S-W, Lin T-Y, Lovel R, Sung H-Y, Chang W-Y, Wu TB-C, Chen H-Y, Wang L-M, Shaw SW. Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia. Diagnostics. 2022; 12(7):1533. https://doi.org/10.3390/diagnostics12071533
Chicago/Turabian StyleLin, Willie, Sen-Wen Teng, Tzu-Yi Lin, Ronald Lovel, Hsin-Yu Sung, Wen-Ying Chang, Tang Bo-Chung Wu, Hsuan-Yu Chen, Le-Ming Wang, and Steven W. Shaw. 2022. "Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia" Diagnostics 12, no. 7: 1533. https://doi.org/10.3390/diagnostics12071533
APA StyleLin, W., Teng, S. -W., Lin, T. -Y., Lovel, R., Sung, H. -Y., Chang, W. -Y., Wu, T. B. -C., Chen, H. -Y., Wang, L. -M., & Shaw, S. W. (2022). Combinatorial Analysis of Circulating Biomarkers and Maternal Characteristics for Preeclampsia Prediction in the First and Third Trimesters in Asia. Diagnostics, 12(7), 1533. https://doi.org/10.3390/diagnostics12071533