Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Colorectal Carcinoma Patients
2.2. Immunohistochemical Staining and Scoring
2.3. Statistical Analysis
3. Results
3.1. Clinicopathologic Significance of Immunohistochemical Expressions of FAM83H and SCRIB in CRCs
3.2. Individual Expressions of FAM83H and SCRIB Were Associated with the Survival of CRC Patients
3.3. The Co-Expression Pattern of FAM83H and SCRIB Predicted the Survival of CRC Patients
3.4. Individual and Co-Expression Patterns of FAM83H and SCRIB Were Associated with Survival in the Subpopulation of CRCs According to Therapeutic Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, P.S.; Becerik, S.; Cogulu, D.; Emingil, G.; Ozdemir-Ozenen, D.; Han, S.T.; Sulima, P.P.; Firatli, E.; Hart, T.C. Novel FAM83H mutations in Turkish families with autosomal dominant hypocalcified amelogenesis imperfecta. Clin. Genet. 2009, 75, 401–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Lee, S.K.; Lee, Z.H.; Park, J.C.; Lee, K.E.; Lee, M.H.; Park, J.T.; Seo, B.M.; Hu, J.C.; Simmer, J.P. FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. Am. J. Hum. Genet. 2008, 82, 489–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.M.; Park, S.H.; Bae, J.S.; Noh, S.J.; Tao, G.Z.; Kim, J.R.; Kwon, K.S.; Park, H.S.; Park, B.H.; Lee, H.; et al. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC. Sci. Rep. 2017, 7, 3274. [Google Scholar] [CrossRef]
- Snijders, A.M.; Lee, S.Y.; Hang, B.; Hao, W.; Bissell, M.J.; Mao, J.H. FAM83 family oncogenes are broadly involved in human cancers: An integrative multi-omics approach. Mol. Oncol. 2017, 11, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Li, H.F.; Hu, Y.J.; Jiang, M.J.; Liu, Q.S.; Zhou, J. Family with Sequence Similarity 83 Member H Promotes the Viability and Metastasis of Cervical Cancer Cells and Indicates a Poor Prognosis. Yonsei Med. J. 2019, 60, 611–618. [Google Scholar] [CrossRef]
- Kim, K.M.; Hussein, U.K.; Park, S.H.; Kang, M.A.; Moon, Y.J.; Zhang, Z.; Song, Y.; Park, H.S.; Bae, J.S.; Park, B.H.; et al. FAM83H is involved in stabilization of beta-catenin and progression of osteosarcomas. J. Exp. Clin. Cancer Res. 2019, 38, 267. [Google Scholar] [CrossRef] [Green Version]
- Hussein, U.K.; Ha, S.H.; Ahmed, A.G.; Kim, K.M.; Park, S.H.; Kim, C.Y.; Kwon, K.S.; Zhang, Z.; Lee, S.A.; Park, H.S.; et al. FAM83H and SCRIB stabilize beta-catenin and stimulate progression of gastric carcinoma. Aging 2020, 12, 11812–11834. [Google Scholar] [CrossRef]
- Lin, S.; Du, J.; Hao, J.; Luo, X.; Wu, H.; Zhang, H.; Zhao, X.; Xu, L.; Wang, B. Identification of Prognostic Biomarkers Among FAM83 Family Genes in Human Ovarian Cancer Through Bioinformatic Analysis and Experimental Verification. Cancer Manag. Res. 2021, 13, 8611–8627. [Google Scholar] [CrossRef]
- Kim, K.M.; Hussein, U.K.; Bae, J.S.; Park, S.H.; Kwon, K.S.; Ha, S.H.; Park, H.S.; Lee, H.; Chung, M.J.; Moon, W.S.; et al. The Expression Patterns of FAM83H and PANX2 Are Associated With Shorter Survival of Clear Cell Renal Cell Carcinoma Patients. Front. Oncol. 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.; Zhang, C.; Hou, B. FAM83H overexpression predicts worse prognosis and correlates with less CD8(+) T cells infiltration and Ras-PI3K-Akt-mTOR signaling pathway in pancreatic cancer. Clin. Transl. Oncol. 2020, 22, 2244–2252. [Google Scholar] [CrossRef]
- Kuga, T.; Kume, H.; Adachi, J.; Kawasaki, N.; Shimizu, M.; Hoshino, I.; Matsubara, H.; Saito, Y.; Nakayama, Y.; Tomonaga, T. Casein kinase 1 is recruited to nuclear speckles by FAM83H and SON. Sci. Rep. 2016, 6, 34472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.W.; Ahn, A.R.; Ha, S.H.; Hussein, U.K.; Do Yang, J.; Kim, K.M.; Park, H.S.; Park, S.H.; Yu, H.C.; Jang, K.Y. Expression of FAM83H and ZNF16 are associated with shorter survival of patients with gallbladder carcinoma. Diagn. Pathol. 2020, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Muthuswamy, S.K. Polarity protein alterations in carcinoma: A focus on emerging roles for polarity regulators. Curr. Opin. Genet. Dev. 2010, 20, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsum, I.A.; Martin, C.; Humbert, P.O. Scribble regulates an EMT polarity pathway through modulation of MAPK-ERK signaling to mediate junction formation. J. Cell. Sci. 2013, 126, 3990–3999. [Google Scholar] [CrossRef] [Green Version]
- Santoni, M.J.; Kashyap, R.; Camoin, L.; Borg, J.P. The Scribble family in cancer: Twentieth anniversary. Oncogene 2020, 39, 7019–7033. [Google Scholar] [CrossRef]
- Martin-Belmonte, F.; Perez-Moreno, M. Epithelial cell polarity, stem cells and cancer. Nat. Rev. Cancer 2011, 12, 23–38. [Google Scholar] [CrossRef]
- Moreno-Bueno, G.; Portillo, F.; Cano, A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 2008, 27, 6958–6969. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, H.; Bian, Y.; An, J.; Duan, X.; Wan, J.; Yao, X.; Du, C.; Ni, C.; Zhu, L.; et al. Low SCRIB expression in fibroblasts promotes invasion of lung cancer cells. Life Sci. 2020, 256, 117955. [Google Scholar] [CrossRef]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.; Nieto, M.A. Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Shen, H.; Huang, C.; Wu, J.; Li, J.; Hu, T.; Wang, Z.; Zhang, H.; Shao, Y.; Fu, Z. SCRIB Promotes Proliferation and Metastasis by Targeting Hippo/YAP Signalling in Colorectal Cancer. Front. Cell Dev. Biol. 2021, 9, 656359. [Google Scholar] [CrossRef]
- Zhao, D.; Yin, Z.; Soellner, M.B.; Martin, B.R. Scribble sub-cellular localization modulates recruitment of YES1 to regulate YAP1 phosphorylation. Cell Chem. Biol. 2021, 28, 1235–1241.e5. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Meyer, A.S.; Weiler, S.M.E.; Rupp, C.; Toth, M.; Sticht, C.; Singer, S.; Thomann, S.; Roessler, S.; Schorpp-Kistner, M.; et al. Cytoplasmic localization of the cell polarity factor scribble supports liver tumor formation and tumor cell invasiveness. Hepatology 2018, 67, 1842–1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, L.; Rosenberg, A.; Bergami, K.C.; Yu, M.; Xuan, Z.; Jaffe, A.B.; Allred, C.; Muthuswamy, S.K. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008, 135, 865–878. [Google Scholar] [CrossRef] [Green Version]
- Hussein, U.K.; Ahmed, A.G.; Choi, W.K.; Kim, K.M.; Park, S.H.; Park, H.S.; Noh, S.J.; Lee, H.; Chung, M.J.; Moon, W.S.; et al. SCRIB Is Involved in the Progression of Ovarian Carcinomas in Association with the Factors Linked to Epithelial-to-Mesenchymal Transition and Predicts Shorter Survival of Diagnosed Patients. Biomolecules 2021, 11, 405. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Digestive System Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2019. [Google Scholar]
- Grothey, A.; Sargent, D.J. Adjuvant Therapy for Colon Cancer: Small Steps Toward Precision Medicine. JAMA Oncol. 2016, 2, 1133–1134. [Google Scholar] [CrossRef]
- Li, C.; Tang, Z.; Zhang, W.; Ye, Z.; Liu, F. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res. 2021, 49, W242–W246. [Google Scholar] [CrossRef]
- Amin, M.B.; American Joint Committee on Cancer; American Cancer Society. AJCC Cancer Staging Manual, 8th ed.; American Joint Committee on Cancer; Springer: Chicago, IL, USA, 2017. [Google Scholar]
- Allred, D.; Harvey, J.M.; Berardo, M.; Clark, G.M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 1998, 11, 155–168. [Google Scholar]
- Ahn, A.R.; Noh, S.J.; Hussein, U.K.; Park, H.S.; Chung, M.J.; Lee, H.; Moon, W.S.; Kang, M.J.; Kim, H.J.; Lee, N.R.; et al. FAM83H and Nectin1 expression are related with survival and relapse of bladder urothelial carcinoma patients. BMC Urol. 2021, 21, 143. [Google Scholar] [CrossRef]
- De Long, E.R.; De Long, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, Z.; Zhuang, H.; Li, Z.; Ma, Z.; Huang, B.; Liu, C.; Gong, Y.; Zou, Y.; Zheng, Z.; et al. Identification of Prognostic and Therapeutic Biomarkers among FAM83 Family Members for Pancreatic Ductal Adenocarcinoma. Dis. Markers 2021, 2021, 6682697. [Google Scholar] [CrossRef]
- Gan, J.; Li, Y.; Meng, Q. Systematic Analysis of Expression Profiles and Prognostic Significance for FAM83 Family in Non-small-Cell Lung Cancer. Front. Mol. Biosci. 2020, 7, 572406. [Google Scholar] [CrossRef]
- Tokuchi, K.; Kitamura, S.; Maeda, T.; Watanabe, M.; Hatakeyama, S.; Kano, S.; Tanaka, S.; Ujiie, H.; Yanagi, T. Loss of FAM83H promotes cell migration and invasion in cutaneous squamous cell carcinoma via impaired keratin distribution. J. Dermatol. Sci. 2021, 104, 112–121. [Google Scholar] [CrossRef]
- Zhang, T.; Lai, S.; Cai, Y.; Huang, Z.; Li, Y.; Chen, S.; Zhang, Z.; Ye, Z.; Lai, X.; Zhai, E.; et al. Comprehensive Analysis and Identification of Prognostic Biomarkers and Therapeutic Targets Among FAM83 Family Members for Gastric Cancer. Front. Cell Dev. Biol. 2021, 9, 719613. [Google Scholar] [CrossRef]
- Shen, H.; Meng, Y.; Hu, T.; Li, S.; Du, M.; Xin, J.; Gu, D.; Wang, M.; Fu, Z. Genetic variants in Hippo signalling pathway-related genes affect the risk of colorectal cancer. Arch. Toxicol. 2021, 95, 271–281. [Google Scholar] [CrossRef]
- Lulic, L.; Jakovcevic, A.; Manojlovic, L.; Dediol, E.; Banks, L.; Tomaic, V. Human DLG1 and SCRIB Are Distinctly Regulated Independently of HPV-16 during the Progression of Oropharyngeal Squamous Cell Carcinomas: A Preliminary Analysis. Cancers 2021, 13, 4461. [Google Scholar] [CrossRef]
- Cho, E.S.; Kang, H.E.; Kim, N.H.; Yook, J.I. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Arch. Pharm. Res. 2019, 42, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Shim, J.S. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016, 21, 965. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Estrella, M.R.; Hu, Y.Y.; Chan, H.L.; Zhang, H.D.; Kim, J.W.; Simmer, J.P.; Hu, J.C. Fam83h is associated with intracellular vesicles and ADHCAI. J. Dent. Res. 2009, 88, 991–996. [Google Scholar] [CrossRef]
- Kuga, T.; Kume, H.; Kawasaki, N.; Sato, M.; Adachi, J.; Shiromizu, T.; Hoshino, I.; Nishimori, T.; Matsubara, H.; Tomonaga, T. A novel mechanism of keratin cytoskeleton organization through casein kinase Iα and FAM83H in colorectal cancer. J. Cell Sci. 2013, 126, 4721–4731. [Google Scholar] [CrossRef] [Green Version]
Characteristics | No. | n-FAM83H | c-FAM83H | n-SCRIB | c-SCRIB | |||||
---|---|---|---|---|---|---|---|---|---|---|
Positive | p | Positive | p | Positive | p | Positive | p | |||
Age | <70 | 101 | 60 (59%) | 0.913 | 42 (42%) | 0.739 | 22 (22%) | 0.609 | 47 (47%) | 0.595 |
≥70 | 121 | 71 (59%) | 53 (44%) | 23 (19%) | 52 (43%) | |||||
Sex | Female | 97 | 58 (60%) | 0.834 | 50 (52%) | 0.020 | 2 (2%) | 0.909 | 45 (46%) | 0.635 |
Male | 125 | 73 (58%) | 45 (36%) | 25 (20%) | 54 (43%) | |||||
Tumor site | Left * | 150 | 82 (55%) | 0.058 | 61 (41%) | 0.355 | 29 919%) | 0.616 | 67 (45%) | 0.975 |
Right ** | 72 | 49 (68%) | 34 (47%) | 16 (22%) | 32 (44%) | |||||
Histologic grade | WD, MD | 205 | 117 (57%) | 0.042 | 91 (44%) | 0.095 | 41 (20%) | 0.728 | 93 (45%) | 0.422 |
PD | 17 | 14 (82%) | 4 (24%) | 4 (24%) | 6 (35%) | |||||
CEA | ≤5.0 ng/mL | 166 | 94 (57%) | 0.214 | 77 (46%) | 0.062 | 27 (16%) | 0.011 | 73 (44%) | 0.750 |
>5.0 ng/mL | 56 | 37 (66%) | 18 (32%) | 18 (32%) | 26 (46%) | |||||
CA19-9 | ≤37 kU/L | 191 | 103 (54%) | <0.001 | 81 (42%) | 0.774 | 33 (17%) | 0.006 | 82 (43%) | 0.216 |
>37 kU/L | 31 | 28 (90%) | 14 (45%) | 12 (39%) | 17 (55%) | |||||
Stage | I and II | 118 | 64 (54%) | 0.124 | 47 (40%) | 0.342 | 15 (13%) | 0.003 | 47 (40%) | 0.128 |
III and IV | 104 | 67 (64%) | 48 (46%) | 30 (29%) | 52 (50%) | |||||
T category | T1, T2, T3 | 186 | 104 (56%) | 0.033 | 81 (44%) | 0.605 | 34 (18%) | 0.094 | 79 (42%) | 0.148 |
T4 | 36 | 27 (75%) | 14 (39%) | 11 (31%) | 20 (56%) | |||||
LN metastasis | Absence | 125 | 69 (55%) | 0.190 | 49 (39%) | 0.219 | 17 (14%) | 0.005 | 50 (40%) | 0.118 |
Presence | 97 | 62 (64%) | 46 (47%) | 28 (29%) | 49 (51%) | |||||
Distant metastasis | Absence | 170 | 91 (54%) | 0.003 | 73 (43%) | 0.936 | 24 (14%) | <0.001 | 68 (40%) | 0.013 |
Presence | 52 | 40 (77%) | 22 (42%) | 21 (40%) | 31 (60%) | |||||
c-SCRIB | Negative | 123 | 64 (52%) | 0.018 | 35 (28%) | <0.001 | 15 (12%) | <0.001 | ||
Positive | 99 | 67 (68%) | 60 (61%) | 30 (30%) | ||||||
n-SCRIB | Negative | 177 | 97 (55%) | 0.011 | 74 (42%) | 0.556 | ||||
Positive | 45 | 34 (76%) | 21 (47%) | |||||||
c-FAM83H | Negative | 127 | 73 (57%) | 0.592 | ||||||
Positive | 95 | 58 (61%) |
Characteristics | No. | CSS | p | RFS | p |
---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | ||||
Age, years, ≥70 (vs. <70) | 121 | 2.408 (1.270–4.563) | 0.007 | 1.583 (0.977–2.566) | 0.062 |
Sex, male (vs. female) | 125 | 0.736 (0.415–1.034) | 0.293 | 1.030 (0.643–1.651) | 0.901 |
Tumor site, right (vs. left) | 72 | 1.614 (0.905–2.878) | 0.105 | 1.118 (0.684–1.829) | 0.656 |
Histologic grade, PD (vs. WD and MD) | 17 | 2.159 (0.916–5.088) | 0.078 | 1.536 (0.703–3.354) | 0.281 |
CEA, >5.0 ng/mL (vs. ≤5.0 ng/mL) | 56 | 2.780 (1.563–4.944) | <0.001 | 2.537 (1.577–4.080) | <0.001 |
CA19-9, >37 kU/L (vs. ≤37 kU/L) | 31 | 6.895 (3.839–12.385) | <0.001 | 4.606 (2.784–7.622) | <0.001 |
Stage, III and IV (vs. I and II) | 104 | 4.239 (2.157–8.332) | <0.001 | 6.974 (3.813–12.758) | <0.001 |
T category, T4 (vs. T1–T3) | 36 | 4.187 (2.320–7.556) | <0.001 | 3.873 (2.359–6.358) | <0.001 |
LN metastasis, presence (vs. absence) | 97 | 4.349 (2.256–8.383) | <0.001 | 4.260 (2.536–7.159) | <0.001 |
Distant metastasis, presence (vs. absence) | 52 | 9.678 (5.220–17.944) | <0.001 | 17.804 (10.460–30.305) | <0.001 |
c-SCRIB, positive (vs. negative) | 99 | 3.597 (1.897–6.819) | <0.001 | 2.175 (1.347–3.514) | 0.001 |
n-SCRIB, positive (vs. negative) | 45 | 3.940 (2.213–7.014) | <0.001 | 2.731 (1.675–4.453) | <0.001 |
c-FAM83H, positive (vs. negative) | 95 | 2.291 (1.272–4.126) | 0.006 | 1.275 (0.800–2.031) | 0.307 |
n-FAM83H, positive (vs. negative) | 131 | 6.793 (2.686–17.179) | <0.001 | 2.356 (1.379–4.026) | 0.002 |
Characteristics | CSS | p | RFS | p |
---|---|---|---|---|
HR (95% CI) | HR (95% CI) | |||
CA19-9, >37 kU/L (vs. ≤37 kU/L) | 2.677 (1.377–5.203) | 0.004 | ||
T category, T4 (vs. T1–T3) | 1.947 (1.028–3.686) | 0.041 | ||
Distant metastasis, presence (vs. absence) | 4.110 (2.009–8.411) | <0.001 | 17.804 (10.460–30.305) | <0.001 |
n-SCRIB, positive (vs. negative) | 1.884 (1.022–3.474) | 0.042 | ||
c-SCRIB, positive (vs. negative) | 2.087 (1.063–4.099) | 0.033 | ||
n-FAM83H, positive (vs. negative) | 3.170 (1.197–8.397) | 0.020 |
Co-Expression Pattern of n-FAM83H and c-SCRIB | No. | 1y-CSS (%) | 3y-CSS (%) | 1y-RFS (%) | 3y-RFS (%) |
---|---|---|---|---|---|
Co-expression Model 1 | |||||
n-FAM83H−/c-SCRIB− | 59 | 98 | 96 | 88 | 81 |
n-FAM83H−/c-SCRIB+ | 32 | 97 | 91 | 91 | 81 |
n-FAM83H+/c-SCRIB− | 64 | 91 | 83 | 78 | 75 |
n-FAM83H+/c-SCRIB+ | 67 | 81 | 53 | 67 | 45 |
Co-expression Model 2 | |||||
n-FAM83H−/c-SCRIB−, n-FAM83H−/c-SCRIB+, or n-FAM83H+/c-SCRIB− | 155 | 95 | 89 | 85 | 78 |
n-FAM83H+/c-SCRIB+ | 67 | 81 | 53 | 67 | 45 |
Characteristics | No. | CSS | RFS | |||
---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |||
Univariate analysis | ||||||
Co-expression pattern of n-FAM83H and c-SCRIB | +/+ (vs. −/−, −/+, +/−) | 67/222 | 5.387 (2.942–9.862) | <0.001 | 2.923 (1.832–4.662) | <0.001 |
Co-expression pattern of n-FAM83H and n-SCRIB | +/+ (vs. −/−, −/+, +/−) | 34/222 | 5.519 (3.083–9.879) | <0.001 | 3.368 (2.028–5.592) | <0.001 |
Multivariate analysis Model 1 | ||||||
Co-expression pattern of n-FAM83H and c-SCRIB | +/+ (vs. −/−, −/+, +/−) | 67/222 | 3.210 (1.683–6.122) | <0.001 | 1.710 (1.047–2.793) | 0.032 |
Multivariate analysis Model 2 | ||||||
Co-expression pattern of n-FAM83H and n-SCRIB | +/+ (vs. −/−, −/+, +/−) | 34/222 | 2.847 (1.537–5.272) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, T.Y.; Lee, H.I.; Park, M.S.; Seo, M.Y.; Jang, K.Y. Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics 2022, 12, 1579. https://doi.org/10.3390/diagnostics12071579
Jeong TY, Lee HI, Park MS, Seo MY, Jang KY. Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics. 2022; 12(7):1579. https://doi.org/10.3390/diagnostics12071579
Chicago/Turabian StyleJeong, Tae Young, Hae In Lee, Min Su Park, Min Young Seo, and Kyu Yun Jang. 2022. "Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients" Diagnostics 12, no. 7: 1579. https://doi.org/10.3390/diagnostics12071579
APA StyleJeong, T. Y., Lee, H. I., Park, M. S., Seo, M. Y., & Jang, K. Y. (2022). Individual and Co-Expression Patterns of FAM83H and SCRIB at Diagnosis Are Associated with the Survival of Colorectal Carcinoma Patients. Diagnostics, 12(7), 1579. https://doi.org/10.3390/diagnostics12071579