Link between Insulin Resistance and Obesity—From Diagnosis to Treatment
Abstract
:1. Introduction
2. Pathophysiology of IR Development
2.1. Physiological Action of Insulin
2.2. IR Cell Classification
- Pre-receptor: genetically determined disorders associated with abnormal insulin structure or the presence of specific antibodies against insulin.
- Receptor: structural or functional defects in the insulin receptor (IRec).
- Post-receptor: impaired signaling after insulin binds to IRec characterized by impaired GLUT-4 translocation to the cell membrane and reduced transport of glucose into the cell interior.
2.3. IR as a Disorder Secondary to Obesity
3. Clinical Markers of IR
- acanthosis nigricans (pseudoacanthosis nigricans),
- keratosis pilaris (follicular keratosis),
- acrochordon (skin tags, soft fibromas),
- plantar hyperkeratosis.
4. IR Laboratory Diagnostics
4.1. Hyperinsulinemic Euglycemic Glucose Clamp
4.2. Markers of Fasting Insulin
4.3. HOMA
4.4. Other Laboratory IR Markers
4.5. IR Location Subtypes
5. Treatment of IR
5.1. Lifestyle Changes
- the diet should be low energy (low carbohydrate, low glycemic index, low fat),
- it should be individualized and dependent on the patient’s body weight and physical activity,
- and the meals should be regular and frequent (4–5 times a day).
- Aerobic exercise (30–60 min of moderate to high intensity most days of the week) to achieve weight and adipose tissue loss, including a reduction in visceral abdominal and ectopic fat around the heart and in the liver. Brisk walking, Nordic walking, swimming and cycling are recommended.
- Resistance training can promote a reduction in fat mass and an increase in muscle mass, i.e., lean body mass. In addition, it increases insulin sensitivity because the extra muscle mass requires greater utilization of glucose without the participation of insulin during exercise. Interestingly, the combination of aerobic and resistance training has been shown to translate into an almost 20% better effect than either regimen on its own [46,47].
- Increasing the intensity of exercise, including high intensity interval training (HIIT), may result in a greater increase in cardiorespiratory fitness and achieve similar benefits more quickly than moderate-intensity aerobic exercise.
5.2. IR Pharmacotherapy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Contreras, P.H.; Salgado, A.M.; Bernal, Y.A.; Vigil, P. A Simple and Improved Predictor of Insulin Resistance Extracted From the Oral Glucose Tolerance Test: The I0*G60. J. Endocr. Soc. 2019, 3, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Yazıcı, D.; Sezer, H. Insulin Resistance, Obesity and Lipotoxicity. Adv. Exp. Med. Biol. 2017, 960, 277–304. [Google Scholar] [CrossRef] [PubMed]
- Koleva, D.I.; Orbetzova, M.M.; Atanassova, P.K. Adipose tissue hormones and appetite and body weight regulators in insulin resistance. Folia Med. (Plovdiv) 2013, 55, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Gepstein, V.; Weiss, R. Obesity as the Main Risk Factor for Metabolic Syndrome in Children. Front. Endocrinol. 2019, 10, 568. [Google Scholar] [CrossRef] [PubMed]
- Sesti, G. Pathophysiology of Insulin Resistance. Best Pract. Res. Clin. Endocrinol. Metab. 2006, 20, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.M.; Tucker, D.F.; Gross, D.N.; Easton, R.M.; Dipilato, L.M.; Dean, A.S.; Monks, B.R.; Birnbaum, M.J. Insulin Regulates Adipocyte Lipolysis via an Akt-Independent Signaling Pathway. Mol. Cell. Biol. 2010, 30, 5009–5020. [Google Scholar] [CrossRef] [Green Version]
- Tokarz, V.L.; MacDonald, P.E.; Klip, A. The Cell Biology of Systemic Insulin Function. J. Cell Biol. 2018, 217, 2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- le Jemtel, T.H.; Samson, R.; Milligan, G.; Jaiswal, A.; Oparil, S. Visceral Adipose Tissue Accumulation and Residual Cardiovascular Risk. Curr. Hypertens. Rep. 2018, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Ross, R.; Després, J.-P.; Matsuzawa, Y.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; et al. Review Visceral and Ectopic Fat, Atherosclerosis, and Cardiometabolic Disease: A Position Statement. Diabetes-Endocrinol. 2019, 7, 715–725. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Shoelson, S.E. Inflammation and Insulin Resistance. J. Clin. Investig. 2006, 116, 1793–1801. [Google Scholar] [CrossRef]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose Tissue and Insulin Resistance in Obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Unamuno, X.; Gómez-Ambrosi, J.; Rodríguez, A.; Becerril, S.; Frühbeck, G.; Catalán, V. Adipokine Dysregulation and Adipose Tissue Inflammation in Human Obesity. Eur. J. Clin. Investig. 2018, 48, e12997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harman-Boehm, I.; Blüher, M.; Redel, H.; Sion-Vardy, N.; Ovadia, S.; Avinoach, E.; Shai, I.; Klöting, N.; Stumvoll, M.; Bashan, N.; et al. Macrophage Infiltration into Omental Versus Subcutaneous Fat across Different Populations: Effect of Regional Adiposity and the Comorbidities of Obesity. J. Clin. Endocrinol. Metab. 2007, 92, 2240–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancello, R.; Henegar, C.; Viguerie, N.; Taleb, S.; Poitou, C.; Rouault, C.; Coupaye, M.; Pelloux, V.; Hugol, D.; Bouillot, J.-L.; et al. Reduction of Macrophage Infiltration and Chemoattractant Gene Expression Changes in White Adipose Tissue of Morbidly Obese Subjects After Surgery-Induced Weight Loss. Diabetes 2005, 54, 2277–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruun, J.M.; Helge, J.W.; Richelsen, B.; Stallknecht, B. Diet and Exercise Reduce Low-Grade Inflammation and Macrophage Infiltration in Adipose Tissue but Not in Skeletal Muscle in Severely Obese Subjects. Am. J. Physiol. -Endocrinol. Metab. 2006, 290, E961–E967. [Google Scholar] [CrossRef] [PubMed]
- Engin, A.B.; Engin, A.B. What Is Lipotoxicity? Adv. Exp. Med. Biol. 2017, 960, 197–220. [Google Scholar] [CrossRef] [PubMed]
- Boden, G. 45Obesity, Insulin Resistance and Free Fatty Acids. Curr. Opin. Endocrinol. Diabetes Obes. 2011, 18, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straczkowski, M.; Kowalska, I. The Role of Skeletal Muscle Sphingolipids in the Development of Insulin Resistance. Rev. Diabet. Stud. 2008, 5, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Blachnio-Zabielska, A.U.; Hady, H.R.; Markowski, A.R.; Kurianiuk, A.; Karwowska, A.; Górski, J.; Zabielski, P. Inhibition of Ceramide De Novo Synthesis Affects Adipocytokine Secretion and Improves Systemic and Adipose Tissue Insulin Sensitivity. Int. J. Mol. Sci. 2018, 19, 3995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, J.; Kleinridders, A.; Ronald Kahn, C. Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harb. Perspect. Biol. 2014, 6, a009191. [Google Scholar] [CrossRef] [Green Version]
- Ashwell, M.; Hsieh, S.D. Six Reasons Why the Waist-to-Height Ratio Is a Rapid and Effective Global Indicator for Health Risks of Obesity and How Its Use Could Simplify the International Public Health Message on Obesity. Int. J. Food Sci. Nutr. 2009, 56, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Datta, D.; Kassir, M.; Wollina, U.; Galadari, H.; Lotti, T.; Jafferany, M.; Grabbe, S.; Goldust, M. Acanthosis Nigricans: A Review. J. Cosmet. Dermatol. 2020, 19, 1857–1865. [Google Scholar] [CrossRef]
- Thomas, M.; Khopkar, U.S. Keratosis Pilaris Revisited: Is It More Than Just a Follicular Keratosis? Int. J. Trichology 2012, 4, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consensus Statements. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome.html (accessed on 18 March 2022).
- Plascencia Gómez, A.; Vega Memije, M.E.; Torres Tamayo, M.; Rodríguez Carreón, A.A. Skin Disorders in Overweight and Obese Patients and Their Relationship with Insulin. Actas Dermo-Sifiliográficas 2014, 105, 178–185. [Google Scholar] [CrossRef]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. Molecular Sciences The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascaso, J.F.; Pardo, S.; Real, J.T.; Lorente, R.I.; Priego, A.; Carmena, R. Diagnosing Insulin Resistance by Simple Quantitative Methods in Subjects with Normal Glucose Metabolism. Diabetes Care 2003, 26, 3320–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Placzkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Piwowar, A. Indirect Insulin Resistance Detection: Current Clinical Trends and Laboratory Limitations. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub 2019, 163, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Muniyappa, R.; Lee, S.; Chen, H.; Quon, M.J. Current Approaches for Assessing Insulin Sensitivity and Resistance in Vivo: Advantages, Limitations, and Appropriate Usage. Am. J. Physiol. Endocrinol. Metab. 2008, 294, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Mcauley, K.A.; Williams, S.M.; Mann, J.I.; Walker, R.J.; Lewis-Barned, N.J.; Temple, L.A.; Duncan, A.W. Diagnosing Insulin Resistance in the General Population. Diabetes Care 2001, 24, 460–464. [Google Scholar] [CrossRef] [Green Version]
- Borai, A.; Livingstone, C.; Shafi, S.; Zarif, H.; Ferns, G. Insulin Sensitivity (Si) Assessment in Lean and Overweight Subjects Using Two Different Protocols and Updated Software. Scand. J. Clin. Lab. Investig. 2010, 70, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, R.; Shen, S.; Hanley, A.J.; Vuksan, V.; Hamilton, J.K.; Zinman, B. Hyperbolic Relationship Between Insulin Secretion and Sensitivity on Oral Glucose Tolerance Test. Obesity 2008, 16, 1901–1907. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, J.C.; Matthews, D.R.; Hermans, M.P. Correct Homeostasis Model Assessment (HOMA) Evaluation Uses the Computer Program. Diabetes Care 1998, 21, 2191–2192. [Google Scholar] [CrossRef]
- Kim, T.J.; Kim, H.J.; Kim, Y.B.; Lee, J.Y.; Lee, H.S.; Hong, J.H.; Lee, J.W. Comparison of Surrogate Markers as Measures of Uncomplicated Insulin Resistance in Korean Adults. Korean J. Fam. Med. 2016, 37, 188. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, N.M. Proinsulin/Insulin Ratio as a Predictor of Insulin Resistance and B-Cell Dysfunction in Obese Egyptians ((Insulin Resistance & B-Cell Dysfunction in Obese Egyptians)). Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2094–2096. [Google Scholar] [CrossRef]
- Mezza, T.; Ferraro, P.M.; Sun, V.A.; Moffa, S.; Cefalo, C.M.A.; Quero, G.; Cinti, F.; Sorice, G.P.; Pontecorvi, A.; Folli, F.; et al. Increased β-Cell Workload Modulates Proinsulin-to-Insulin Ratio in Humans. Diabetes 2018, 67, 2389–2396. [Google Scholar] [CrossRef] [Green Version]
- Płaczkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Piwowar, A. Estimation of Reference Intervals of Insulin Resistance (HOMA), Insulin Sensitivity (Matsuda), and Insulin Secretion Sensitivity Indices (ISSI-2) in Polish Young People. Ann. Agric. Environ. Med. 2020, 27, 248–254. [Google Scholar] [CrossRef]
- Chung, S.T.; Matta, S.T.; Meyers, A.G.; Cravalho, C.K.; Villalobos-Perez, A.; Dawson, J.M.; Sharma, V.R.; Sampson, M.L.; Otvos, J.D.; Magge, S.N. Nuclear Magnetic Resonance Derived Biomarkers for Evaluating Cardiometabolic Risk in Youth and Young Adults Across the Spectrum of Glucose Tolerance. Front. Endocrinol. 2021, 12, 665292. [Google Scholar] [CrossRef]
- Wallace, I.R.; Mckinley, M.C.; Bell, P.M.; Hunter, S.J. Sex Hormone Binding Globulin and Insulin Resistance. Clin. Endocrinol. 2012, 78, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Ghani, M.A.; Matsuda, M.; Balas, B.; DeFronzo, R.A. Muscle and Liver Insulin Resistance Indexes Derived From the Oral Glucose Tolerance Test. Diabetes Care 2007, 30, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Rojo, R.; Alcala-Diaz, J.F.; Wopereis, S.; Perez-Martinez, P.; Quintana-Navarro, G.M.; Marin, C.; Ordovas, J.M.; van Ommen, B.; Perez-Jimenez, F.; Delgado-Lista, J.; et al. The Insulin Resistance Phenotype (Muscle or Liver) Interacts with the Type of Diet to Determine Changes in Disposition Index after 2 Years of Intervention: The CORDIOPREV-DIAB Randomised Clinical Trial. Diabetologia 2016, 59, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrom, J.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Finnish Diabetes Prevention Study Group. The Finnish Diabetes Prevention Study (DPS) Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003, 26, 3230–3236. [Google Scholar]
- Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med. Sci. Sports Exerc. 2022, 54, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Paquin, J.; Lagacé, J.C.; Brochu, M.; Dionne, I.J. Exercising for Insulin Sensitivity—Is There a Mechanistic Relationship with Quantitative Changes in Skeletal Muscle Mass? Front. Physiol. 2021, 12, 656909. [Google Scholar] [CrossRef]
- Boulé, N.G.; Prud’homme, D. Canadian Adult Obesity Clinical Practice Guidelines: Physical Activity in Obesity Management. Available online: https://obesitycanada.ca/guidelines/physicalactivity (accessed on 13 May 2022).
- Pedersen, S.D.; Manjoo, P.; Wharton, S. Canadian Adult Obesity Clinical Practice Guidelines: Pharmacotherapy in Obesity Management. Available online: https://obesitycanada.ca/guidelines/pharmacotherapy (accessed on 18 May 2022).
- Tang, T.; Norman, R.J.; Balen, A.H.; Lord, J.M. Insulin-Sensitising Drugs (Metformin, Troglitazone, Rosiglitazone, Pioglitazone, D-Chiro-Inositol) for Polycystic Ovary Syndrome. Cochrane Database Syst. Rev. 2003. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393. [Google Scholar] [CrossRef]
- Szulińska, M.; Łoniewski, I.; van Hemert, S.; Sobieska, M.; Bogdański, P. Dose-Dependent Effects of Multispecies Probiotic Supplementation on the Lipopolysaccharide (LPS) Level and Cardiometabolic Profile in Obese Postmenopausal Women: A 12-Week Randomized Clinical Trial. Nutrients 2018, 10, 773. [Google Scholar] [CrossRef] [Green Version]
Primary IR | Secondary IR |
---|---|
|
|
Measurement | Values for Recognition | Clinical Relevance |
---|---|---|
Height | — | — |
Body mass | — | — |
Body mass index (BMI) | Overweight: 25.0–29.9 kg/m2 Obese (Class I): 30.0–34.9 kg/m2 Obese (Class II): 35.0–39.9 kg/m2 Obese (Class III): ≥40.0 kg/m2 | Diagnosing the degree of obesity or overweight |
Waist circumference (WC) | ≥94 cm in males ≥80 cm in females | Diagnosis of abdominal obesity and increased cardiometabolic risk |
Waist to height ratio (WHtR) | ≥0.5 in males and females | |
Waist to hip ratio (WHR) | >0.9 in males >0.85 in females |
Type of IR | Hepatic IR | Skeletal Muscle IR |
---|---|---|
Location | Central | Peripheral |
Mechanism | Steatosis of hepatocytes → impaired inhibition of gluconeogenesis, increased glycogenolysis | Steatosis of myocytes → impaired glucose uptake by skeletal muscles |
Typical complications | Impaired fasting glucose (IFG) MAFLD | Impaired glucose tolerance (IGT) Type 2 diabetes mellitus |
Laboratory markers | HOMA, QUICKI | Matsuda index |
Specific management | Metformin, low-fat diet | Physical activity, Mediterranean diet |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołacki, J.; Matuszek, M.; Matyjaszek-Matuszek, B. Link between Insulin Resistance and Obesity—From Diagnosis to Treatment. Diagnostics 2022, 12, 1681. https://doi.org/10.3390/diagnostics12071681
Gołacki J, Matuszek M, Matyjaszek-Matuszek B. Link between Insulin Resistance and Obesity—From Diagnosis to Treatment. Diagnostics. 2022; 12(7):1681. https://doi.org/10.3390/diagnostics12071681
Chicago/Turabian StyleGołacki, Jakub, Małgorzata Matuszek, and Beata Matyjaszek-Matuszek. 2022. "Link between Insulin Resistance and Obesity—From Diagnosis to Treatment" Diagnostics 12, no. 7: 1681. https://doi.org/10.3390/diagnostics12071681
APA StyleGołacki, J., Matuszek, M., & Matyjaszek-Matuszek, B. (2022). Link between Insulin Resistance and Obesity—From Diagnosis to Treatment. Diagnostics, 12(7), 1681. https://doi.org/10.3390/diagnostics12071681