Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Histological Grading
2.3. Image Acquisition
2.4. Data Collection and Follow-Up
2.5. Tumor Segmentation
2.6. Radiomics Feature Extraction and Selection
2.7. Radiomics Model, Clinical Model and Combined Model Building and Evaluation
2.8. Statistical Analysis
3. Results
3.1. Clinical Data
3.2. Feature Selection
3.3. Radiomics Models Evaluation
3.4. Performance Evaluation of the Clinical and Combined Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hidalgo, M.; Álvarez, R.; Gallego, J.; Ponce, C.G.; Laquente, B.; Macarulla, T.; Muñoz, A.; Salgado, M.; Vera, R.; Adeva, J.; et al. Consensus guidelines for diagnosis, treatment and follow-up of patients with pancreatic cancer in Spain. Clin. Transl. Oncol. 2016, 19, 667–681. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 2020, 5, 698–710. [Google Scholar] [CrossRef]
- Brown, Z.J.; Cloyd, J.M. Surgery for pancreatic cancer: Recent progress and future directions. Hepatobiliary Surg. Nutr. 2021, 10, 376–378. [Google Scholar] [CrossRef]
- Stark, A.P.; Sacks, G.D.; Rochefort, M.M.; Donahue, T.R.; Reber, H.A.; Tomlinson, J.S.; Dawson, W.; Eibl, G.; Hines, O.J. Long-term survival in patients with pancreatic ductal adenocarcinoma. Surgery 2016, 159, 1520–1527. [Google Scholar] [CrossRef] [Green Version]
- Golan, T.; Sella, T.; Margalit, O.; Amit, U.; Halpern, N.; Aderka, D.; Shacham-Shmueli, E.; Urban, D.; Lawrence, Y. Short- and long-term survival in metastatic pancreatic adenocarcinoma, 1993–2013. J. Natl. Compr. Cancer Netw. 2017, 15, 1022–1027. [Google Scholar] [CrossRef]
- Macías, N.; Sayagués, J.M.; Esteban, C.; Iglesias, M.; Gonzalez, L.; Quiñones-Sampedro, J.; Gutiérrez, M.L.; Corchete, L.A.; Abad, M.M.; Bengoechea, O.; et al. Histologic tumor grade and preoperative bilary drainage are the unique independent prognostic factors of survival in pancreatic ductal adenocarcinoma patients after pancreaticoduodenectomy. J. Clin. Gastroenterol. 2018, 52, e11–e17. [Google Scholar] [CrossRef]
- Pekgöz, M. Post-endoscopic retrograde cholangiopancreatography pancreatitis: A systematic review for prevention and treatment. World J. Gastroenterol. 2019, 25, 4019–4042. [Google Scholar] [CrossRef]
- Hüttner, F.J.; Fitzmaurice, C.; Schwarzer, G.; Seiler, C.M.; Antes, G.; Büchler, M.W.; Diener, M.K. Pylorus-preserving pancreaticoduodenectomy (pp Whipple) versus pancreaticoduodenectomy (classic Whipple) for surgical treatment of periampullary and pancreatic carcinoma. Cochrane Database Syst. Rev. 2016, 2016, CD006053. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.; Han, I.W.; Ryu, Y.; Hwang, D.W.; Heo, J.S.; Choi, D.W.; Shin, S.H. Predictive nomogram for early recurrence after pancreatectomy in resectable pancreatic cancer: Risk classification using preoperative clinicopathologic factors. Cancers 2020, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.-J.M.; van Dam, R.M.; et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: Results of the dutch randomized phase Ⅲ PREOPANC trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Dhir, M.; Zenati, M.S.; Hamad, A.; Singhi, A.D.; Bahary, N.; Hogg, M.E.; Zeh, H.J., III; Zureikat, A.H. FOLFIRINOX versus gemcitabine/nab-paclitaxel for neoadjuvant treatment of resectable and borderline resectable pancreatic head adenocarcinoma. Ann. Surg. Oncol. 2018, 25, 1896–1903. [Google Scholar] [CrossRef]
- Pedrazzoli, S. Pancreatoduodenectomy (PD) and postoperative pancreatic fistula (POPF): A systematic review and analysis of the POPF-related mortality rate in 60,739 patients retrieved from the English literature published between 1990 and 2015. Medicine 2017, 96, e6858. [Google Scholar] [CrossRef]
- Wang, J.; Ma, R.; Churilov, L.; Eleftheriou, P.; Nikfarjam, M.; Christophi, C.; Weinberg, L. The cost of perioperative complications following pancreaticoduodenectomy: A systematic review. Pancreatology 2018, 18, 208–220. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [Green Version]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Liu, Z.; He, L.; Chen, X.; Pan, D.; Ma, Z.; Liang, C.; Tian, J.; Liang, C. Radiomics signature: A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung Cancer. Radiology 2016, 281, 947–957. [Google Scholar] [CrossRef]
- Wu, W.; Li, J.; Ye, J.; Wang, Q.; Zhang, W.; Xu, S. Differentiation of Glioma Mimicking Encephalitis and Encephalitis Using Multiparametric MR-Based Deep Learning. Front. Oncol. 2021, 11, 639062. [Google Scholar] [CrossRef]
- Li, Q.; He, X.-Q.; Fan, X.; Zhu, C.-N.; Lv, J.-W.; Luo, T.-Y. Development and Validation of a Combined Model for Preoperative Prediction of Lymph Node Metastasis in Peripheral Lung Adenocarcinoma. Front. Oncol. 2021, 11, 675877. [Google Scholar] [CrossRef]
- Stanzione, A.; Gambardella, M.; Cuocolo, R.; Ponsiglione, A.; Romeo, V.; Imbriaco, M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur. J. Radiol. 2020, 129, 109095. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Odze, R.D.; Klimstra, D.; Paradis, V.; Rugge, M.; Schirmacher, P.; Washington, K.M.; Carneiro, F.; Cree, I.A.; The WHO Classification of Tumours Editorial Board. The 2019 WHO classification of tumours of the digestive system. Histopathology 2020, 76, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Chun, Y.S.; Pawlik, T.M.; Vauthey, J.N. 8th Edition of the AJCC Cancer Staging Manual: Pancreas and Hepatobiliary Cancers. Ann. Surg. Oncol. 2018, 25, 845–847. [Google Scholar] [CrossRef]
- Chang, N.; Cui, L.; Luo, Y.; Chang, Z.; Yu, B.; Liu, Z. Development and multicenter validation of a CT-based radiomics signature for discriminating histological grades of pancreatic ductal adenocarcinoma. Quant. Imaging Med. Surg. 2020, 10, 692–702. [Google Scholar] [CrossRef]
- Dunet, V.; Halkic, N.; Sempoux, C.; Demartines, N.; Montemurro, M.; Prior, J.O.; Schmidt, S. Prediction of tumour grade and survival outcome using pre-treatment PET- and MRI-derived imaging features in patients with resectable pancreatic ductal adenocarcinoma. Eur. Radiol. 2021, 31, 992–1001. [Google Scholar] [CrossRef]
- Xuan, P.; Sun, C.; Zhang, T.; Ye, Y.; Shen, T.; Dong, Y. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs. Front. Genet. 2019, 10, 459. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, F.; Ganeshan, B.; Kozarski, R.; Miles, K.A.; Goh, V. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: Contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 2013, 266, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Cassinotto, C.; Chong, J.; Zogopoulos, G.; Reinhold, C.; Chiche, L.; Lafourcade, J.-P.; Cuggia, A.; Terrebonne, E.; Dohan, A.; Gallix, B. Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur. J. Radiol. 2017, 90, 152–158. [Google Scholar] [CrossRef]
- Xing, H.; Hao, Z.; Zhu, W.; Sun, D.; Ding, J.; Zhang, H.; Liu, Y.; Huo, L. Preoperative prediction of pathological grade in pancreatic ductal adenocarcinoma based on 18F-FDG PET/CT radiomics. EJNMMI Res. 2021, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Han, F.; Jin, Y.; Wang, X.; Zhang, J. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2020, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Wasif, N.; Ko, C.Y.; Farrell, J.; Wainberg, Z.; Hines, O.J.; Reber, H.; Tomlinson, J.S. Impact of tumor grade on prognosis in pancreatic cancer: Should we include grade in AJCC staging? Ann. Surg. Oncol. 2010, 17, 2312–2320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.; Yang, P.; Huang, R.; Xu, L.; Wang, J.; Liu, W.; Zhang, L.; Wan, D.; Huang, Q.; Lu, Y.; et al. A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2019, 25, 584–594. [Google Scholar] [CrossRef] [Green Version]
- Prokesch, R.W.; Chow, L.C.; Beaulieu, C.F.; Bammer, R.; Jeffrey, R.B., Jr. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: Secondary signs. Radiology 2002, 224, 764–768. [Google Scholar] [CrossRef]
- Nakahodo, J.; Kikuyama, M.; Nojiri, S.; Chiba, K.; Yoshimoto, K.; Kamisawa, T.; Horiguchi, S.I.; Honda, G. Focal Parenchymal Atrophy of Pancreas: An Important Sign of Underlying High-Grade Pancreatic Intraepithelial Neoplasia Without Invasive Carcinoma, i.e., Carcinoma in Situ. Pancreatology 2020, 20, 1689–1697. [Google Scholar] [CrossRef]
Characteristics | Internal Training Group | External Validation Group | ||||||
---|---|---|---|---|---|---|---|---|
Low-Grade Group | High-Grade Group | Statistics | p Value | Low-Grade Group | High-Grade Group | Statistics | p Value | |
Clinical characteristics | ||||||||
Age(y), mean ± SD | 61.32 ± 9.72 | 61.33 ± 9.13 | −0.010 | 0.990 | 60.94 ± 11.48 | 60.46 ± 8.67 | 0.126 | 0.901 |
Gender | 4.238 | 0.040 * | 0.002 | 0.961 | ||||
Female | 42(35.9) | 18(22.2) | 8(47.1) | 6(46.2) | ||||
Male | 75(64.1) | 63(77.8) | 9(52.9) | 7(53.8) | ||||
Abdominal pain | 0.386 | 0.534 | 0.475 | 0.491 | ||||
Yes | 70(59.8) | 52(64.2) | 7(41.2) | 7(53.8) | ||||
No | 47(40.2) | 29(35.8) | 10(58.8) | 6(46.2) | ||||
Backache | 1.186 | 0.276 | 1.186 | 0.276 | ||||
Yes | 24(20.5) | 22(27.2) | 3(17.6) | 2(15.4) | ||||
No | 93(79.5) | 59(72.8) | 14(82.4) | 11(84.6) | ||||
Pancreatitis | 0.338 | 0.561 | 0.136 | 0.713 | ||||
Yes | 18(15.4) | 15(18.5) | 2(11.8) | 1(7.7) | ||||
No | 99(84.6) | 66(81.50 | 15(88.2) | 12(92.3) | ||||
Jaundice | 0.406 | 0.524 | 0.475 | 0.491 | ||||
Yes | 19(16.2) | 16(19.8) | 10(58.8) | 6(46.2) | ||||
No | 98(83.8) | 65(80.2) | 7(41.2) | 7(53.8) | ||||
Operation | 1.202 | 0.273 | 0.305 | 0.580 | ||||
Pancreaticoduodenectomy | 86(73.5) | 65(80.2) | 13(76.5) | 11(84.6) | ||||
Distal pancreatectomy | 31(26.5) | 16(19.8) | 4(23.5) | 2(15.4) | ||||
Pathological characteristics | ||||||||
Lymph node metastasis | 10.482 | 0.005 * | 4.344 | 0.037 * | ||||
Negative | 84(71.8) | 41(50.6) | 14(82.4) | 6(17.6) | ||||
Positive | 32(27.4) | 40(49.4) | 3(17.6) | 7(53.8) | ||||
Duodenum Invasion | 0.748 | 0.387 | 2.330 | 0.127 | ||||
Negative | 75(64.1) | 47(58.0) | 7(41.2) | 9(69.2) | ||||
Positive | 42(35.9) | 34(42.0) | 10(58.8) | 4(30.8) | ||||
Surgical margin status | 2.783 | 0.095 | 0.305 | 0.580 | ||||
Negative | 110(94.0) | 80(98.8) | 13(76.5) | 11(84.6) | ||||
Positive | 7(6.0) | 1(1.2) | 4(23.5) | 2(15.4) | ||||
Perineural invasion | 2.054 | 0.152 | 1.639 | 0.201 | ||||
Negative | 20(17.1) | 8(9.9) | 2(11.8) | 0(0.0) | ||||
Positive | 97(82.9) | 73(90.1) | 15(88.2) | 13(100) | ||||
Imaging characteristics | ||||||||
CT-reported tumor size(mm) | 28.03 ± 11.02 | 29.11 ± 11.30 | −0.669 | 0.504 | 28.65 ± 9.27 | 31.31 ± 9.93 | −0.755 | 0.456 |
Location | 1.726 | 0.422 | 0.679 | 0.410 | ||||
Head and neck | 88(75.2) | 66(81.5) | 15(88.2) | 10(76.9) | ||||
Body and tail | 29(24.8) | 15(18.5) | 2(11.8) | 3(23.1) | ||||
Tumor density | 0.772 | 0.680 | - | - | ||||
Hypodensity | 114(97.4) | 80(98.8) | 17(100) | 13(100) | ||||
Isodensity | 2(1.7) | 1(1.2) | 0(0.0) | 0(0.0) | ||||
Hyperdensity | 1(0.9) | 0(0.0) | 0(0.0) | 0(0.0) | ||||
T stage | 9.347 | 0.025 * | 2.90 | 0.235 | ||||
cT1 | 30(25.6) | 9(11.1) | 3(17.6) | 0(0.0) | ||||
cT2 | 72(61.5) | 55(67.9) | 12(70.6) | 10(76.9) | ||||
cT3-4 | 15(12.8) | 17(21.0) | 2(11.8) | 3(23.1) | ||||
Metastasis | 0.140 | 0.709 | 0.084 | 0.773 | ||||
cM0 | 115(98.3) | 79(97.5) | 15(88.2) | 11(84.6) | ||||
cM1 | 2(1.7) | 2(2.5) | 2(11.8) | 2(15.4) | ||||
Parenchymal atrophy | 0.003 | 0.958 | 0.136 | 0.713 | ||||
Yes | 64(55.2) | 45(55.6) | 3(17.6) | 3(23.1) | ||||
No | 52(44.8) | 36(44.4) | 14(82.4) | 10(76.9) | ||||
PD dilatation | 0.121 | 0.728 | 0.679 | 0.410 | ||||
Yes | 90(76.9) | 64(79.0) | 15(88.2) | 10(76.9) | ||||
No | 27(23.1) | 17(21.0) | 2(11.8) | 3(23.1) | ||||
CBD dilatation | 0.062 | 0.803 | 0.197 | 0.657 | ||||
Yes | 76(65.0) | 54(66.7) | 4(23.5) | 4(30.8) | ||||
No | 41(35.0) | 27(33.3) | 13(76.5) | 9(69.2) | ||||
Laboratory characteristics | ||||||||
CA-199 level | 5.446 | 0.020 * | 0.151 | 0.697 | ||||
Normal | 34(29.1) | 12(14.9) | 5(29.4) | 3(23.1) | ||||
Abnormal | 83(70.9) | 69(85.2) | 12(70.6) | 10(76.9) | ||||
CEA level | 0.001 | 0.972 | 0.197 | 0.657 | ||||
Normal | 98(83.8) | 68(84.0) | 13(76.5) | 9(69.2) | ||||
Abnormal | 19(16.2) | 13(16.0) | 4(23.5) | 4(30.8) | ||||
TBIL level | 0.338 | 0.561 | 0.362 | 0.547 | ||||
Normal | 54(46.2) | 34(42.0) | 6(35.3) | 6(46.2) | ||||
Abnormal | 63(53.8) | 47(58.0) | 11(46.2) | 7(53.8) |
CT Scanning Phase | ID | Radiomics Features’ Name |
---|---|---|
Arterial phase | 1 | original_shape_Elongation |
2 | original_shape_Flatness | |
3 | wavelet-LHH_glcm_Autocorrelation | |
4 | wavelet-LHH_glcm_JointAverage | |
5 | wavelet-LHH_glszm_SmallAreaEmphasis | |
6 | wavelet-HLL_glszm_SmallAreaLowGrayLevelEmphasis | |
Venous phase | 1 | original_shape_Flatness |
2 | wavelet-LHH_firstorder_Median | |
3 | wavelet-HHH_glcm_ClusterShade |
Model | AUC | Sensitivity | Specificity | Accuracy | f1_Score | Recall |
---|---|---|---|---|---|---|
LR | 0.715 (0.658–0.772) | 0.469 | 0.838 | 0.687 | 0.551 | 0.469 |
KNN | 0.722 (0.664–0.779) | 0.667 | 0.667 | 0.667 | 0.621 | 0.667 |
Bayes | 0.727 (0.667–0.784) | 0.58 | 0.744 | 0.677 | 0.595 | 0.58 |
SVM | 0.787 (0.734–0.839) | 0.556 | 0.855 | 0.732 | 0.629 | 0.556 |
RF | 0.943 (0.915–0.967) | 0.864 | 0.863 | 0.864 | 0.838 | 0.864 |
Models | AUC | 95%CI |
---|---|---|
LR | 0.733 | 0.548–0.912 |
Bayes | 0.857 | 0.727–0.988 |
KNN | 0.722 | 0.538–0.905 |
SVM | 0.810 | 0.648–0.972 |
RF | 0.810 | 0.636–0.984 |
Model | AUC | Sensitivity | Specificity | Accuracy | f1_Score | Recall |
---|---|---|---|---|---|---|
RF | 0.943 (0.915–0.967) | 0.864 | 0.863 | 0.864 | 0.838 | 0.864 |
Clinical | 0.728 (0.667–0.790) | 0.481 | 0.812 | 0.677 | 0.549 | 0.481 |
Combine | 0.961 (0.938–0.980) | 0.864 | 0.940 | 0.909 | 0.886 | 0.864 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, H.; Li, Y.; Yang, Y.; Liu, H.; Zhang, J.; Liang, H.; Yan, G.; Liu, Y. Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China. Diagnostics 2022, 12, 1915. https://doi.org/10.3390/diagnostics12081915
Liao H, Li Y, Yang Y, Liu H, Zhang J, Liang H, Yan G, Liu Y. Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China. Diagnostics. 2022; 12(8):1915. https://doi.org/10.3390/diagnostics12081915
Chicago/Turabian StyleLiao, Hongfan, Yongmei Li, Yaying Yang, Huan Liu, Jiao Zhang, Hongwei Liang, Gaowu Yan, and Yanbing Liu. 2022. "Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China" Diagnostics 12, no. 8: 1915. https://doi.org/10.3390/diagnostics12081915
APA StyleLiao, H., Li, Y., Yang, Y., Liu, H., Zhang, J., Liang, H., Yan, G., & Liu, Y. (2022). Comparison of Multiple Radiomics Models for Identifying Histological Grade of Pancreatic Ductal Adenocarcinoma Preoperatively Based on Multiphasic Contrast-Enhanced Computed Tomography: A Two-Center Study in Southwest China. Diagnostics, 12(8), 1915. https://doi.org/10.3390/diagnostics12081915