Critically Ill COVID-19 Patients Show Reduced Point of Care-Measured Butyrylcholinesterase Activity—A Prospective, Monocentric Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hospital Settings
2.2. Patients Recruitement
2.3. Patients Treatment
2.4. Data Acquisition
2.5. POCT BChE Measurements
BChE Data from Healthy Volunteers
2.6. Statistical Analysis
3. Results
3.1. Characteristics of Critically Ill COVID-19 Patients
3.2. BChE Activity Is Significantly Reduced in Critically Ill COVID-19 Patients
3.3. BChE Activity Correlates with Disease Severity in Critically Ill COVID-19 Patients
3.4. Critically Ill COVID-19 Patients Requiring vvECMO Support Demonstrated a Lower BChE Activity Compared to Patients without vvECMO Support
3.5. BChE Activity Reflects Level of Norepinephrine Support on Day Seven following ICU Admission
3.6. BChE Activity Correlates with C-Reactive Protein and Procalcitonin Levels
3.7. BChE Activity Measured within 24 h after Admission Identifies Survivors and Predicts Treatment Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gustine, J.N.; Jones, D. Immunopathology of Hyperinflammation in COVID-19. Am. J. Pathol. 2021, 191, 4–17. [Google Scholar] [CrossRef]
- Mishra, K.P.; Singh, A.K.; Singh, S.B. Hyperinflammation and Immune Response Generation in COVID-19. Neuroimmunomodulation 2020, 27, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Bachler, M.; Treml, B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics 2021, 11, 2202. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.B. Cholinergic Modulation of the Immune System Presents New Approaches for Treating Inflammation. Pharmacol. Ther. 2017, 179, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.R.; Leite, P.E.C. The Involvement of Parasympathetic and Sympathetic Nerve in the Inflammatory Reflex. J. Cell. Physiol. 2016, 231, 1862–1869. [Google Scholar] [CrossRef]
- Bahloul, M.; Baccouch, N.; Chtara, K.; Turki, M.; Turki, O.; Hamida, C.B.; Chelly, H.; Ayedi, F.; Chaari, A.; Bouaziz, M. Value of Serum Cholinesterase Activity in the Diagnosis of Septic Shock Due to Bacterial Infections. J. Intensive Care Med. 2017, 32, 346–352. [Google Scholar] [CrossRef]
- Schmidt, K.; Zivkovic, A.R.; Thiele, M.; Horter, J.; Brenner, T.; Weigand, M.A.; Kleinschmidt, S.; Hofer, S. Point-of-Care Measured Serum Cholinesterase Activity Predicts Patient Outcome Following Severe Burns. Burns 2021, 47, 863–872. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Li, A.-M.; He, S.-L.; Yao, X.-D.; Zhu, J.; Zhang, Z.-W.; Sheng, Z.-Y.; Yao, Y.-M. Serum Total Cholinesterase Activity on Admission Is Associated with Disease Severity and Outcome in Patients with Traumatic Brain Injury. PLoS ONE 2015, 10, e0129082. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Decker, S.O.; Zirnstein, A.C.; Sigl, A.; Schmidt, K.; Weigand, M.A.; Hofer, S.; Brenner, T. A Sustained Reduction in Serum Cholinesterase Enzyme Activity Predicts Patient Outcome Following Sepsis. Mediat. Inflamm. 2018, 2018, 1942193. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Schmidt, K.; Stein, T.; Münzberg, M.; Brenner, T.; Weigand, M.A.; Kleinschmidt, S.; Hofer, S. Bedside-Measurement of Serum Cholinesterase Activity Predicts Patient Morbidity and Length of the Intensive Care Unit Stay Following Major Traumatic Injury. Sci. Rep. 2019, 9, 10437. [Google Scholar] [CrossRef] [Green Version]
- Ofek, K.; Krabbe, K.S.; Evron, T.; Debecco, M.; Nielsen, A.R.; Brunnsgaad, H.; Yirmiya, R.; Soreq, H.; Pedersen, B.K. Cholinergic Status Modulations in Human Volunteers under Acute Inflammation. J. Mol. Med. 2007, 85, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Shenhar-Tsarfaty, S.; Berliner, S.; Bornstein, N.M.; Soreq, H. Cholinesterases as Biomarkers for Parasympathetic Dysfunction and Inflammation-Related Disease. J. Mol. Neurosci. 2014, 53, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Abe, T.; Saji, R.; Ogawa, F.; Taniguchi, H.; Yamaguchi, K.; Sakai, K.; Nakagawa, T.; Matsumura, R.; Oi, Y.; et al. Serum Cholinesterase Associated with COVID-19 Pneumonia Severity and Mortality. J. Infect. 2021, 82, 282–327. [Google Scholar] [CrossRef] [PubMed]
- Courties, A.; Boussier, J.; Hadjadj, J.; Yatim, N.; Barnabei, L.; Péré, H.; Veyer, D.; Kernéis, S.; Carlier, N.; Pène, F.; et al. Regulation of the Acetylcholine/A7nAChR Anti-Inflammatory Pathway in COVID-19 Patients. Sci. Rep. 2021, 11, 11886. [Google Scholar] [CrossRef] [PubMed]
- Di Maro, M.; Cataldi, M.; Santillo, M.; Chiurazzi, M.; Damiano, S.; De Conno, B.; Colantuoni, A.; Guida, B. The Cholinergic and ACE-2-Dependent Anti-Inflammatory Systems in the Lung: New Scenarios Emerging From COVID-19. Front. Physiol. 2021, 12, 653985. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Xiang, K.; Su, D.-F.; Sun, Y.; Liu, X. Activation of the Cholinergic Anti-Inflammatory Pathway as a Novel Therapeutic Strategy for COVID-19. Front. Immunol. 2021, 11, 595342. [Google Scholar] [CrossRef]
- Sridhar, G.R.; Lakshmi, G. Influence of Butyryholcholinesterase on the Course of COVID-19. Biomed. Rev. 2021, 32, 37–46. [Google Scholar]
- Zivkovic, A.R.; Schmidt, K.; Sigl, A.; Decker, S.O.; Brenner, T.; Hofer, S. Reduced Serum Butyrylcholinesterase Activity Indicates Severe Systemic Inflammation in Critically Ill Patients. Mediat. Inflamm. 2015, 2015, 274607. [Google Scholar] [CrossRef]
- Herbstreit, F.; Overbeck, M.; Berger, M.M.; Skarabis, A.; Brenner, T.; Schmidt, K. Characteristics of Critically Ill Patients with COVID-19 Compared to Patients with Influenza—A Single Center Experience. J. Clin. Med. 2021, 10, 2056. [Google Scholar] [CrossRef]
- Badulak, J.; Antonini, M.V.; Stead, C.M.; Shekerdemian, L.; Raman, L.; Paden, M.L.; Agerstrand, C.; Bartlett, R.H.; Barrett, N.; Combes, A.; et al. Extracorporeal Membrane Oxygenation for COVID-19: Updated 2021 Guidelines from the Extracorporeal Life Support Organization. ASAIO J. 2021, 67, 485–495. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines—NCBI Bookshelf. Available online: http://www.ncbi.nlm.nih.gov/books/NBK570371/ (accessed on 18 August 2022).
- Viglino, D.; Maignan, M.; Debaty, G. A Modified Sequential Organ Failure Assessment Score Using the Richmond Agitation-Sedation Scale in Critically Ill Patients. J. Thorac. Dis. 2016, 8, 311–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ARDS Definition of Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, N.R.; Epstein, S.K.; Carson, S.; Scheinhorn, D.; Christopher, K.; Muldoon, S.; National Association for Medical Direction of Respiratory Care. Management of Patients Requiring Prolonged Mechanical Ventilation: Report of a NAMDRC Consensus Conference. Chest 2005, 128, 3937–3954. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Bender, J.; Brenner, T.; Hofer, S.; Schmidt, K. Reduced Butyrylcholinesterase Activity Is an Early Indicator of Trauma-Induced Acute Systemic Inflammatory Response. J. Inflamm. Res. 2016, 9, 221–230. [Google Scholar] [CrossRef]
- Hojyo, S.; Uchida, M.; Tanaka, K.; Hasebe, R.; Tanaka, Y.; Murakami, M.; Hirano, T. How COVID-19 Induces Cytokine Storm with High Mortality. Inflamm. Regen. 2020, 40, 37. [Google Scholar] [CrossRef]
- Marin, B.G.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; et al. Predictors of COVID-19 Severity: A Literature Review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and Outcomes of COVID-19 Hospitalisations: Systematic Review and Meta-Analysis. BMJ Evid.-Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef] [PubMed]
- Distelmaier, K.; Winter, M.-P.; Rützler, K.; Heinz, G.; Lang, I.M.; Maurer, G.; Koinig, H.; Steinlechner, B.; Niessner, A.; Goliasch, G. Serum Butyrylcholinesterase Predicts Survival after Extracorporeal Membrane Oxygenation after Cardiovascular Surgery. Crit. Care 2014, 18, R24. [Google Scholar] [CrossRef]
- Karagiannidis, C.; Mostert, C.; Hentschker, C.; Voshaar, T.; Malzahn, J.; Schillinger, G.; Klauber, J.; Janssens, U.; Marx, G.; Weber-Carstens, S.; et al. Case Characteristics, Resource Use, and Outcomes of 10 021 Patients with COVID-19 Admitted to 920 German Hospitals: An Observational Study. Lancet Respir. Med. 2020, 8, 853–862. [Google Scholar] [CrossRef]
- Herrmann, J.; Lotz, C.; Karagiannidis, C.; Weber-Carstens, S.; Klµge, S.; Putensen, C.; Wehrfritz, A.; Schmidt, K.; Ellerkmann, R.K.; Oswald, D.; et al. Key Characteristics Impacting Survival of COVID-19 Extracorporeal Membrane Oxygenation. Crit. Care 2022, 26, 190. [Google Scholar] [CrossRef]
- Andersson, U.; Tracey, K.J. Reflex Principles of Immunological Homeostasis. Annu. Rev. Immunol. 2012, 30, 313–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tracey, K.J. Reflex Control of Immunity. Nat. Rev. Immunol. 2009, 9, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Pomara, N.; Imbimbo, B.P. Impairment of the Cholinergic Anti-Inflammatory Pathway in Older Subjects with Severe COVID-19. Med. Hypotheses 2020, 144, 110274. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, P.; Bergamaschi, L.; D’Angelo, E.C.; Donati, F.; Giannella, M.; Tedeschi, S.; Pascale, R.; Bartoletti, M.; Tesini, G.; Biffi, M.; et al. Preliminary Experience with Low Molecular Weight Heparin Strategy in COVID-19 Patients. Front. Pharmacol. 2020, 11, 1124. [Google Scholar] [CrossRef]
- Tritschler, T.; Le Gal, G.; Brosnahan, S.; Carrier, M. POINT: Should Therapeutic Heparin Be Administered to Acutely Ill Hospitalized Patients with COVID-19? Yes. Chest 2022, 161, 1446–1448. [Google Scholar] [CrossRef]
Characteristics of Critically ill COVID-19 Patients | |||
---|---|---|---|
number of patients (n) | 52 | ||
age (years) | 59 (51–66) | ||
male | 36 (69%) | ||
clinical data | |||
CCI | 2 (2–3) | ||
BMI (kg/m²) | 31 (28–36) | ||
at ICU admission | |||
spontaneous breathing oxygen dependent | 6 (11.5%) | ||
ventilated | 46 (88.5 %) | ||
non-invasive | 6 (11.5%) | ||
invasive | 40 (77%) | ||
vvECMO during ICU stay | 40 (77%) | ||
initiation at referring ICU | 25 (48%) | ||
initiation after ICU admission | 15 (28%) | ||
outcome | |||
28-day survivors | 19 (36 %) | ||
disease severity | day 1 | day 3 | day 7 |
SOFA Score * | 13 (10–15) n = 52 | 12 (10–14) n = 52 | 12 (9–15) n = 48 |
inflammation parameters | day 1 | day 3 | day 7 |
PCT * (ng/mL) | 1.3 (0.45–2.3) | 0.7 (0.3–1.5) | 0.8 (0.3–2.8) |
WBC * (nL−1) | 11.9 (9.3–17.0) | 12.9 (9.0–15.5) | 13.4 (9.9–21.0) |
CRP * (mg/L) | 22.2 (12.8–29.4) | 13.9 (7.4–22.5) | 15.9 (9.2–27.6) |
IL 6 * (pg/mL) | 154.5 (53.2–403.1) | 140.0 (71.2–404.6) | 243.3 (115.8–687.0) |
BChE * (U/L) | 1.308 (923–1.618) | 1180 (773–1.493) | 1076 (862–1.476) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espeter, F.; Künne, D.; Garczarek, L.; Kuhlmann, H.; Skarabis, A.; Zivkovic, A.R.; Brenner, T.; Schmidt, K. Critically Ill COVID-19 Patients Show Reduced Point of Care-Measured Butyrylcholinesterase Activity—A Prospective, Monocentric Observational Study. Diagnostics 2022, 12, 2150. https://doi.org/10.3390/diagnostics12092150
Espeter F, Künne D, Garczarek L, Kuhlmann H, Skarabis A, Zivkovic AR, Brenner T, Schmidt K. Critically Ill COVID-19 Patients Show Reduced Point of Care-Measured Butyrylcholinesterase Activity—A Prospective, Monocentric Observational Study. Diagnostics. 2022; 12(9):2150. https://doi.org/10.3390/diagnostics12092150
Chicago/Turabian StyleEspeter, Florian, David Künne, Lena Garczarek, Henning Kuhlmann, Annabell Skarabis, Aleksandar R. Zivkovic, Thorsten Brenner, and Karsten Schmidt. 2022. "Critically Ill COVID-19 Patients Show Reduced Point of Care-Measured Butyrylcholinesterase Activity—A Prospective, Monocentric Observational Study" Diagnostics 12, no. 9: 2150. https://doi.org/10.3390/diagnostics12092150
APA StyleEspeter, F., Künne, D., Garczarek, L., Kuhlmann, H., Skarabis, A., Zivkovic, A. R., Brenner, T., & Schmidt, K. (2022). Critically Ill COVID-19 Patients Show Reduced Point of Care-Measured Butyrylcholinesterase Activity—A Prospective, Monocentric Observational Study. Diagnostics, 12(9), 2150. https://doi.org/10.3390/diagnostics12092150