Role of Polyamines as Biomarkers in Lymphoma Patients: A Pilot Study
Abstract
:1. Introduction
1.1. Lymphoma: Symptoms and Causes
1.2. Diagnosis: Inflammation Biomarkers
1.3. Polyamines
2. Materials and Methods
2.1. Clinical Characteristics of Patients
2.2. Serum Samples Preparation
2.3. Statistical Analysis
3. Results
3.1. Patients and Data
3.2. Biochemical Parameters
3.3. Serum Levels of Polyamines, Related Amino Acids and Metabolites
3.4. Multivariate Analysis
3.5. Analysis of LNH Patients with HCV+ Infection
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
NHL | non-Hodgkin’s lymphoma |
HLHL | Hodgkin’s lymphoma |
HPLC-HRMS | high-performance liquid chromatography |
NK | natural killer |
B cells | B lymphocytes |
T cells | T lymphocytes |
WHO | World Health Organization |
NLR | neutrophil/lymphocyte ratio () |
dNLR | derived NLR [= neutrophils/(white blood cells − neutrophils ratio)] |
PLR | platelet/lymphocyte ratio |
MLR | monocyte/lymphocyte ratio |
NLR | neutrophil-to-lymphocyte ratio |
LMR | lymphocyte-to-monocyte ratio |
SIRI | (neutrophil × monocyte)/lymphocyte ratio |
AISI | (neutrophil × monocyte × platelet)/lymphocyte ratio |
AMC | absolute monocyte count |
IPI | International Prognostic Index |
DLBCL | diffuse large B-cell lymphoma |
MS | mass spectrometry |
HPLC-HRMS | high-performance liquid chromatography/high-resolution mass spectrometry |
HFBA | Heptafluorobutyric acid |
QC | quality control samples |
MAD | median absolute deviation |
OPLS-DA | orthogonal partial discriminant analysis of the minimum square |
PLS-DA | partial least squares discriminant analysis |
VIP | variable importance parameter |
WBC | white blood cell |
RBC | red blood cells |
HGB | hemoglobin |
PLT | platelet |
RDW | red cell distribution |
NEUT | neutrophils |
LYMPH | lymphocytes |
MONO | monocytes |
HBV | Hepatitis B Virus |
HCV | Hepatitis C Virus |
GABA | gamma-aminobutyric acid |
SAM | S-adenosylmethionine |
References
- Kumar, A.; Misra, B.B. Challenges and opportunities in cancer metabolomics. Proteomics 2019, 19, 1900042. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, Q.; Ma, R.; Lin, X.; Xu, H.; Bi, K. Determination of polyamine metabolome in plasma and urine by ultrahigh performance liquid chromatography–tandem mass spectrometry method: Application to identify potential markers for human hepatic cancer. Anal. Chim. Acta 2013, 79, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Coradduzza, D.; Azara, E.; Medici, S.; Arru, C.; Solinas, T.; Madonia, M.; Zinellu, A.; Carru, C. A preliminary study procedure for detection of polyamines in plasma samples as a potential diagnostic tool in prostate cancer. J. Chromatogr. B 2021, 1162, 122468. [Google Scholar] [CrossRef]
- Fordellone, M.; Bellincontro, A.; Mencarelli, F. Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data. arXiv 2018, arXiv:1806.09347. [Google Scholar]
- Westerhuis, J.A.; Hoefsloot, H.C.; Smit, S.; Vis, D.J.; Smilde, A.K.; van Velzen, E.J.; van Duijnhoven, J.P.; van Dorsten, F.A. Assessment of plsda cross validation. Metabolomics 2008, 4, 81–89. [Google Scholar] [CrossRef]
- Baumann, K. Cross-validation as the objective function for variable-selection techniques. TrAC Trends Anal. Chem. 2003, 22, 395–406. [Google Scholar] [CrossRef]
- Farrés, M.; Platikanov, S.; Tsakovski, S.; Tauler, R. Comparison of the variable importance in projection (vip) and of the selectivity ratio (sr) methods for variable selection and interpretation. J. Chemom. 2015, 29, 528–536. [Google Scholar] [CrossRef]
- Küppers, R. The biology of hodgkin’s lymphoma. Nat. Rev. Cancer 2009, 9, 15–27. [Google Scholar] [CrossRef]
- Garg, S.; Rohilla, M.; Srinivasan, R.; Bal, A.; Das, A.; Dey, P.; Gupta, N.; Gupta, P.; Rajwanshi, A. Fine-needle aspiration diagnosis of lymphoma based on cytomorphology alone: How accurate is it?-a cyto-histopathology correlative study. J. Cytol. 2021, 38, 164. [Google Scholar]
- Wang, F.; Xu, R.H.; Han, B.; Shi, Y.X.; Luo, H.Y.; Jiang, W.Q.; Lin, T.Y.; Huang, H.Q.; Xia, Z.J.; Guan, Z.Z. High incidence of hepatitis b virus infection in b-cell subtype non-hodgkin lymphoma compared with other cancers. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2007, 109, 1360–1364. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Chabot-Richards, D.; Evans, M.; Spengel, K.; Andrews, J.; Kang, H.; Foucar, K. A retrospective study to assess the relative value of peripheral blood, bone marrow aspirate and biopsy morphology, immunohistochemical stains, and flow cytometric analysis in the diagnosis of chronic b cell lymphoproliferative neoplasms. Int. J. Lab. Hematol. 2015, 37, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, L.; Ma, Y.; Han, T.; Huang, M. The enhanced international prognostic index for diffuse large b-cell lymphoma. Am. J. Med. Sci. 2017, 353, 459–465. [Google Scholar] [CrossRef]
- Vaidya, R.; Witzig, T. Prognostic factors for diffuse large b-cell lymphoma in the r (x) chop era. Ann. Oncol. 2014, 25, 2124–2133. [Google Scholar] [CrossRef]
- Al-Zoughbi, W.; Hoefler, G. Tumor macroenvironment: An update. Pathobiology 2020, 87, 58–60. [Google Scholar] [CrossRef]
- Chan, A.; Dogan, A. Prognostic and predictive biomarkers in diffuse large b-cell lymphoma. Surg. Pathol. Clin. 2019, 12, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Rolland, D.C.; Basrur, V.; Jeon, Y.-K.; McNeil-Schwalm, C.; Fermin, D.; Conlon, K.P.; Zhou, Y.; Ng, S.Y.; Tsou, C.-C.; Brown, N.A. Functional proteogenomics reveals biomarkers and therapeutic targets in lymphomas. Proc. Natl. Acad. Sci. USA 2017, 114, 6581–6586. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Golubnitschaja, O.; Zhan, X. Chronic inflammation: Key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019, 10, 365–381. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.; Li, N.; Wu, L.; Gao, Y.; Xiao, C.; Jiang, H.; Zheng, Y.; Mao, C.; Deng, J. Prognostic value of neutrophil–lymphocyte ratio, platelet–lymphocyte ratio, and combined neutrophil–lymphocyte ratio and platelet–lymphocyte ratio in stage iv advanced gastric cancer. Front. Oncol. 2020, 10, 841. [Google Scholar] [CrossRef]
- Chao, B.; Ju, X.; Zhang, L.; Xu, X.; Zhao, Y. A novel prognostic marker systemic inflammation response index (siri) for operable cervical cancer patients. Front. Oncol. 2020, 10, 766. [Google Scholar] [CrossRef]
- Yu, Y.; Qian, L.; Cui, J. Value of neutrophil-to-lymphocyte ratio for predicting lung cancer prognosis: A meta-analysis of 7,219 patients. Mol. Clin. Oncol. 2017, 7, 498–506. [Google Scholar] [CrossRef]
- Putzu, C.; Cortinovis, D.L.; Colonese, F.; Canova, S.; Carru, C.; Zinellu, A.; Paliogiannis, P. Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with nivolumab. Cancer Immunol. Immunother. 2018, 67, 1349–1353. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Ai, L.; Fan, F.; Qin, Y.; Sun, C.; Hu, Y. Prognostic role of neutrophil-to-lymphocyte ratio in diffuse large b cell lymphoma patients: An updated dose–response meta-analysis. Cancer Cell Int. 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, A.; Parrinello, N.L.; Vetro, C.; Chiarenza, A.; Cerchione, C.; Ippolito, M.; Palumbo, G.A.; di Raimondo, F. Prognostic meaning of neutrophil to lymphocyte ratio (nlr) and lymphocyte to monocyte ration (lmr) in newly diagnosed hodgkin lymphoma patients treated upfront with a pet-2 based strategy. Ann. Hematol. 2018, 97, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Stefaniuk, P.; Szymczyk, A.; Podhorecka, M. The neutrophil to lymphocyte and lymphocyte to monocyte ratios as new prognostic factors in hematological malignancies–a narrative review. Cancer Manag. Res. 2020, 12, 2961. [Google Scholar] [CrossRef]
- Offi, C.; Romano, R.M.; Cangiano, A.; Candela, G.; Docimo, G. Clinical significance of neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, platelet-to-lymphocyte ratio and prognostic nutritional index in low-risk differentiated thyroid carcinoma. Acta Otorhinolaryngol. Ital. 2021, 41, 31. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Coradduzza, D.; Solinas, T.; Azara, E.; Culeddu, N.; Cruciani, S.; Zinellu, A.; Medici, S.; Maioli, M.; Madonia, M.; Carru, C. Plasma polyamine biomarker panels: Agmatine in support of prostate cancer diagnosis. Biomolecules 2022, 12, 514. [Google Scholar] [CrossRef]
- DeFelice, B.C.; Fiehn, O.; Belafsky, P.; Ditterich, C.; Moore, M.; Abouyared, M.; Beliveau, A.M.; Farwell, D.G.; Bewley, A.F.; Clayton, S.M. Polyamine metabolites as biomarkers in head and neck cancer biofluids. Diagnostics 2022, 12, 797. [Google Scholar] [CrossRef]
- Casero, R.A.; Stewart, T.M.; Pegg, A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer 2018, 18, 681–695. [Google Scholar] [CrossRef]
- Pegg, A.E. Functions of polyamines in mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef]
- Liu, L.; Li, L.; Rao, J.N.; Zou, T.; Zhang, H.M.; Boneva, D.; Bernard, M.S.; Wang, J.-Y. Polyamine-modulated expression of c-myc plays a critical role in stimulation of normal intestinal epithelial cell proliferation. Am. J. Physiol.-Cell Physiol. 2005, 288, C89–C99. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Meng, Y.; Wu, X.; Sun, Y. Polyamines and related signaling pathways in cancer. Cancer Cell Int. 2020, 20, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Venäläinen, M.K.; Roine, A.N.; Häkkinen, M.R.; Vepsäläinen, J.J.; Kumpulainen, P.S.; Kiviniemi, M.S.; Lehtimäki, T.; Oksala, N.K.; Rantanen, T.K. Altered polyamine profiles in colorectal cancer. Anticancer Res. 2018, 38, 3601–3607. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A. Polyamines as clinical laboratory tools. Clin. Chim. Acta 2004, 344, 23–35. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Polyamines: Mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000, 271, 559–564. [Google Scholar]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
NHL | HL | HEALTHY | SIGNIFICANCE | |
---|---|---|---|---|
NUM | 63 | 10 | 73 | |
SEX | 31 F/32 M | 4 F/6 M | 27 F/46 M | p-value = 0.35 |
AGE | 61.71 ± 11.98 | 42.2 ± 18.85 | 53.65 ± 8.16 | p-value = 1.91 |
WBC | 10.03 ± 10.39 | 9.37 ± 6.52 | 5.99 ± 1.48 | * p-value = 0.002 |
HGB | 12.39 ± 1.86 | 12.87 ± 1.91 | 14.43 ± 1.01 | p-value = 5.41 |
RDW | 14.75 ± 2.62 | 13.92 ± 1.67 | 15.06 ± 0.76 | * p-value = 0.008 |
PLT | 235.62 ± 108.29 | 295.60± 114.16 | 217.72 ± 46.62 | * p-value = 0.043 |
NEUT | 5.66 ± 4.52 | 5.72 ± 5.06 | 3.51 ± 1.08 | * p-value = 0.005 |
LYMPH | 3.45 ± 9.03 | 2.61 ± 1.26 | 2.09 ± 0.80 | * p-value = 0.0005 |
MONO | 0.69 ± 0.86 | 0.55 ± 0.42 | 0.37 ± 0.13 | * p-value = 0.005 |
LMR | 9.42 ± 22.91 | 6.6 ± 6.05 | 5.78 ± 3.09 | * p-value = 0.0004 |
NLR | 4.52 ± 5.68 | 2.51 ± 1.84 | 1.80 ± 0.66 | * p-value = 0.00002 |
PLR | 169.34 ± 132.96 | 154.8 ± 120.97 | 112.10 ± 36.28 | * p-value = 0.019 |
SIRI | 3.77 ± 8.76 | 1.46 ± 1.67 | 0.69 ± 0.40 | * p-value = 0.00007 |
AISI | 1152.83 ± 3581.13 | 455.63 ± 498.18 | 151.20 ± 93.77 | * p-value = 0.001 |
NHL | HL | SIGNIFICANCE | |
---|---|---|---|
NUM | 63 | 10 | |
STAGE I | 0.09 ± 0.29 | 0.1 ± 0.31 | p-value = 0.96 |
STAGE II | 0.15 ± 0.36 | 0.4 ± 0.51 | p-value = 0.07 |
STAGE III | 0.25 ± 0.43 | 0.1 ± 0.31 | p-value = 0.29 |
STAGE IV | 0.49 ± 0.50 | 0.4 ± 0.51 | p-value = 0.59 |
CNS involvement | 0.26 ± 0.44 | 0.2 ± 0.42 | p-value = 0.64 |
HBV | 0.20 ± 0.40 | 0.1 ± 0.31 | p-value = 0.43 |
HCV | 0.063 ± 0.24 | 0 | p-value = 0.41 |
SYMPTOMS B | 0.34 ± 0.48 | 0.5 ± 0.52 | p-value = 0.36 |
NHL | HL | HEALTHY | SIGNIFICANCE | |
---|---|---|---|---|
POLYAMINES | 63 | 10 | 73 | |
PUTRESCINE | 13.90 ± 1.27 | 13.24 ± 1.31 | 6.69 ± 1.39 | * p-value < 0.05 ** p-value = 0.13 |
SPERMIDINE | 9.18 ± 1.83 | 5.83 ± 0.88 | 1.03 ± 0.26 | * p-value < 0.05 ** p-value = 5.95 |
SPERMINE | 6.04 ± 1.40 | 6.09 ± 1.37 | 6.48 ± 2.15 | p-value = 0.55 |
ACETYL-PUTRESCINE | 1.94 ± 0.48 | 1.85 ± 0.34 | 0.14 ± 0.05 | * p-value < 0.05 ** p-value = 0.59 |
ACETYL-SPERMIDINE | 2.97 ± 0.45 | 3.06 ± 0.36 | 0.16 ± 0.12 | * p-value < 0.05 ** p-value = 0.55 |
ACETYL-SPERMINE | 1.72 ± 0.38 | 1.38 ± 0.31 | 2.56 ± 0.59 | * p-value < 0.05 ** p-value = 0.008 |
AGMATINE | 58.98 ± 7.39 | 57.68 ± 4.25 | 70.51 ± 14.17 | p-value = 3.26 |
CADAVERINE | 2.35 ± 0.43 | 2.13 ± 0.52 | 2.29 ± 0.66 | p-value = 0.26 |
ORNITHINE | 1.93 ± 0.48 | 1.89 ± 0.42 | 0.76 ± 0.13 | * p-value < 0.05 ** p-value = 0.79 |
LYSINE | 6.11 ± 0.77 | 6.22 ± 0.84 | 7.03 ± 0.63 | p-value = 1.30 |
ARGININE | 7.26 ± 0.47 | 7.26 ± 0.44 | 6.41 ± 0.98 | p-value = 1.32 |
S-ADENOSYLMETHIONINE | 213.27 ± 35.42 | 210.26 ± 36.29 | 339.35 ± 95.88 | * p-value < 0.05 ** p-value = 0.8 |
GABA | 39.89 ± 13.43 | 46.19 ± 13.05 | 30.69 ± 2.23 | * p-value < 0.05 ** p-value = 0.17 |
LNH HCV+ | LNH HCV− | SIGNIFICANCE | |
---|---|---|---|
NUM | 4 | 59 | |
WBC | 13.62 ± 6.23 | 9.79 ± 10.61 | p-value = 0.48 |
HGB | 12.25 ± 2.34 | 12.40 ± 1.85 | p-value = 0.87 |
RDW | 14.45 ± 2.20 | 14.81 ± 2.65 | p-value = 0.78 |
PLT | 311.25 ± 108.923 | 230.49 ± 107.24 | p-value = 0.15 |
NEUT | 10.72 ± 5.15 | 5.32 ± 4.31 | * p-value = 0.01 |
LYMPH | 1.85 ± 0.90 | 3.56 ± 9.32 | p-value = 0.71 |
MONO | 0.91 ± 0.77 | 0.67 ± 0.87 | p-value = 0.59 |
LMR | 38.25 ± 14.60 | 7.47 ± 74.5 | * p-value = 0.008 |
NLR | 6.37 ± 3.79 | 4.39 ± 5.79 | p-value = 0.50 |
PLR | 191.5 ± 93.12 | 167.84 ± 135.70 | p-value = 0.73 |
SIRI | 6.24 ± 4.16 | 3.60 ± 8.98 | p-value = 0.56 |
AISI | 1814.56 ± 1418.94 | 1107.97 ± 3684.1 | p-value = 0.70 |
LNH HCV+ | LNH HCV− | SIGNIFICANCE | |
---|---|---|---|
POLIAMMINE | 4 | 59 | |
PUTRESCINE | 14.29 ± 1.24 | 13.88 ± 1.28 | p-value = 0.53 |
SPERMIDINE | 9.82 ± 1.93 | 9.14 ± 1.84 | p-value = 0.47 |
SPERMINE | 5.07 ± 1.29 | 6.11 ± 1.39 | p-value = 0.15 |
ACETYL-PUTRESCINE | 2.42 ± 0.18 | 1.91 ± 0.48 | * p-value = 0.039 |
ACETYL-SPERMIDINE | 3.11 ± 0.40 | 2.96 ± 0.46 | p-value = 0.53 |
ACETYL-SPERMINE | 1.40 ± 0.34 | 1.74 ± 0.38 | p-value = 0.08 |
AGMATINE | 58.51 ± 8.50 | 59.01 ± 7.39 | p-value = 0.89 |
CADAVERINE | 2.33 ± 0.64 | 2.35 ± 0.42 | p-value = 0.93 |
ORNITHINE | 2.11 ± 0.42 × 103 | 1.91 ± 0.49 | p-value = 0.43 |
LISINE | 5.99 ± 0.89 × 103 | 6.12 ± 0.77 | p-value = 0.75 |
ARGININE | 7.46 ± 0.19 × 103 | 7.24 ± 0.48 | p-value = 0.38 |
S-ADENOSYL METHIONINE | 202.15 ± 40.26 | 214.02 ± 35.33 | p-value = 0.52 |
GABA | 43.55 ± 18.42 | 39.64 ± 13.20 | p-value = 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coradduzza, D.; Ghironi, A.; Azara, E.; Culeddu, N.; Cruciani, S.; Zinellu, A.; Maioli, M.; De Miglio, M.R.; Medici, S.; Fozza, C.; et al. Role of Polyamines as Biomarkers in Lymphoma Patients: A Pilot Study. Diagnostics 2022, 12, 2151. https://doi.org/10.3390/diagnostics12092151
Coradduzza D, Ghironi A, Azara E, Culeddu N, Cruciani S, Zinellu A, Maioli M, De Miglio MR, Medici S, Fozza C, et al. Role of Polyamines as Biomarkers in Lymphoma Patients: A Pilot Study. Diagnostics. 2022; 12(9):2151. https://doi.org/10.3390/diagnostics12092151
Chicago/Turabian StyleCoradduzza, Donatella, Adriana Ghironi, Emanuela Azara, Nicola Culeddu, Sara Cruciani, Angelo Zinellu, Margherita Maioli, Maria Rosaria De Miglio, Serenella Medici, Claudio Fozza, and et al. 2022. "Role of Polyamines as Biomarkers in Lymphoma Patients: A Pilot Study" Diagnostics 12, no. 9: 2151. https://doi.org/10.3390/diagnostics12092151
APA StyleCoradduzza, D., Ghironi, A., Azara, E., Culeddu, N., Cruciani, S., Zinellu, A., Maioli, M., De Miglio, M. R., Medici, S., Fozza, C., & Carru, C. (2022). Role of Polyamines as Biomarkers in Lymphoma Patients: A Pilot Study. Diagnostics, 12(9), 2151. https://doi.org/10.3390/diagnostics12092151