Association between Vitamin D Status and Secondary Infections in Patients with Severe COVID-19 Admitted in the Intensive Care Unit of a Tertiary-Level Hospital in Turkey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Laboratory Tests
2.4. Treatments and Follow-Up
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J. Infect. Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Dantas Damascena, A.D.; Galvão Azevedo, L.M.G.; de Almeida Oliveira, T.D.A.; da Mota Santana, J.D.M. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Yisak, H.; Ewunetei, A.; Kefale, B.; Mamuye, M.; Teshome, F.; Ambaw, B.; Yitbarek, G.Y. Effects of Vitamin D on COVID-19 Infection and Prognosis: A Systematic Review. Risk Manag. Healthc. Policy 2021, 14, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, M.M.; Delanghe, J.R. Association between low vitamin D and COVID-19: Don’t forget the vitamin D binding protein. Aging Clin. Exp. Res. 2020, 32, 1207–1208. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, A.; Leopold, K.; Jackson, S.; Christensen, S.; Nayfeh, T.; Mohammed, K.; Creo, A.; Tebben, P.; Kumar, S. Association of vitamin D deficiency with COVID-19 infection severity: Systematic review and meta-analysis. Clin. Endocrinol. 2021, 96, 281–287. [Google Scholar] [CrossRef]
- Maha, Q.; Talal, M. Can Vitamin D Deficiency Increase the Susceptibility to COVID-19? Front. Physiol. 2021, 12, 630956. [Google Scholar] [CrossRef]
- Faul, J.; Kerley, C.P.; Love, B.; O’Neill, E.; Cody, C.; Tormey, W.; Hutchinson, K.; Cormican, L.J.; Burke, C.M. Vitamin D deficiency and ARDS after SARS-CoV-2 infection. Ir. Med. J. 2020, 113, 84. [Google Scholar]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.-H.; Cai, L.; Cheng, Z.-S.; Cheng, H.; Deng, T.; Fan, Y.-P.; Fang, C.; Huang, D.; Huang, L.-Q.; Huang, Q.; et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res. 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Marazuela, M.; Giustina, A.; Puig-Domingo, M. Endocrine and metabolic aspects of the COVID-19 pandemic. Rev. Endocr. Metab. Disord. 2020, 21, 495–507. [Google Scholar] [CrossRef]
- Naja, F.; Hamadeh, R. Nutrition amid the COVID-19 pandemic: A multi-level framework for action. Eur. J. Clin. Nutr. 2020, 74, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Alipio, M. Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-2019). SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Szeto, B.; Zucker, J.E.; LaSota, E.D.; Rubin, M.R.; Walker, M.D.; Yin, M.T.; Cohen, A. Vitamin D Status and COVID-19 Clinical Outcomes in Hospitalized Patients. Endocr. Res. 2020, 46, 66–73. [Google Scholar] [CrossRef]
- Lin, L.-Y.; Mulick, A.; Mathur, R.; Smeeth, L.; Warren-Gash, C.; Langan, S.M. The association between vitamin D status and COVID-19 in England: A cohort study using UK Biobank. PLoS ONE 2022, 17, e0269064. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 29 July 2022).
- Batur, L.K.; Özaydın, A.; Maviş, M.E.; Gürsu, G.G.; Harbige, L.; Hekim, N. Vitamin-D Binding Protein Gene Polymorphisms and Serum 25-Hydroxyvitamin-D in a Turkish Population. Metabolites 2021, 11, 696. [Google Scholar] [CrossRef]
- Liu, N.; Sun, J.; Wang, X.; Zhang, T.; Zhao, M.; Li, H. Low vitamin D status is associated with coronavirus disease 2019 outcomes: A systematic review and meta-analysis. Int. J. Infect. Dis. 2021, 104, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients 2020, 12, 3361. [Google Scholar] [CrossRef]
- Carlberg, C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front. Immunol. 2019, 10, 2211. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, D.; Yin, K. Vitamin D and inflammatory diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Panfili, F.M.; Roversi, M.; D’Argenio, P.; Rossi, P.; Cappa, M.; Fintini, D. Possible role of vitamin D in COVID-19 infection in pediatric population. J. Endocrinol. Investig. 2020, 44, 27–35. [Google Scholar] [CrossRef]
- Dimitrov, V.; White, J.H. Species-specific regulation of innate immunity by vitamin D signaling. J. Steroid Biochem. Mol. Biol. 2016, 164, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Martineau, A.R.; Jolliffe, D.A.; Demaret, J. Vitamin D and Tuberculosis. Vitam. D 2018, 2, 915–935. [Google Scholar]
- Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006, 134, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Kara, M.; Ekiz, T.; Ricci, V.; Kara, Ö.; Chang, K.-V.; Özçakar, L. ‘Scientific Strabismus’ or two related pandemics: Coronavirus disease and vitamin D deficiency. Br. J. Nutr. 2020, 124, 736–741. [Google Scholar] [CrossRef]
- Bavishi, C.; Maddox, T.M.; Messerli, F.H. Coronavirus Disease 2019 (COVID-19) Infection and Renin Angiotensin System Blockers. JAMA Cardiol. 2020, 5, 745. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yang, J.; Chen, J.; Luo, Q.; Zhang, Q.; Zhang, H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep. 2017, 16, 7432–7438. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, A.M. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19. Rev. Med. Virol. 2020, 30, e2119. [Google Scholar] [CrossRef]
- Caricchio, R.; Gallucci, M.; Dass, C.; Zhang, X.; Gallucci, S.; Fleece, D.; Bromberg, M.; Criner, G.J. Preliminary predictive criteria for COVID-19 cytokine storm. Ann. Rheum. Dis. 2021, 80, 88–95. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; Macary, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Quesada-Gomez, J.M.; Castillo, M.E.; Bouillon, R. Vitamin d receptor stimulation to reduce acute respiratory distress syndrome (ards) in patients with Coronavirus SARS-CoV-2 infections: Revised ms sbmb 2020_166. J. Steroid Biochem. Mol. Biol. 2020, 202, 105719. [Google Scholar] [CrossRef]
- Wittebole, X.; Montiel, V.; Mesland, J.-B. Is there a role for immune-enhancing therapies for acutely ill patients with coronavirus disease 2019? Curr. Opin. Crit. Care 2021, 27, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Klapholz, M.; Pentakota, S.R.; Zertuche, J.P.; McKenna, M.; Roque, W.; Forsberg, M.; Packer, J.; Lal, D.S.; Dever, L. Matched Cohort Study of Convalescent COVID-19 Plasma Treatment in severely or life threateningly ill COVID-19 patients. Open Forum. Infect. Dis. 2021, 8, ofab001. [Google Scholar] [CrossRef] [PubMed]
- Simonovich, V.A.; Pratx, L.D.B.; Scibona, P.; Beruto, M.V.; Vallone, M.G.; Vázquez, C.; Savoy, N.; Giunta, D.H.; Pérez, L.G.; Sánchez, M.D.L.; et al. A Randomized Trial of Convalescent Plasma in COVID-19 Severe Pneumonia. N. Engl. J. Med. 2021, 384, 619–629. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): A randomised controlled, open-label, platform trial. Lancet 2021, 397, 2049–2059. [Google Scholar] [CrossRef]
- Sullivan, D.J.; Gebo, K.A.; Shoham, S.; Bloch, E.M.; Lau, B.; Shenoy, A.G.; Mosnaim, G.S.; Gniadek, T.J.; Fukuta, Y.; Patel, B.; et al. Early Outpatient Treatment for COVID-19 with Convalescent Plasma. N. Engl. J. Med. 2022, 386, 1700–1711. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ferrey, A.; Rhee, C.M.; Sam, R.; Pearce, D.; Kalantar-Zadeh, K.; Don, B.R. Building a hemodiafiltration system from readily available components for continuous renal replacement therapy under disasters and pandemics: Preparing for an acute kidney injury surge during COVID-19. Curr. Opin. Nephrol. Hypertens. 2020, 30, 93–96. [Google Scholar] [CrossRef]
- Masmouei, B.; Harorani, M.; Bazrafshan, M.-R.; Karimi, Z. COVID-19: Hyperinflammatory Syndrome and Hemoadsorption with CytoSorb. Blood Purif. 2021, 50, 976–978. [Google Scholar] [CrossRef]
Overall (N = 194) | Total 25(OH)D <20 ng/mL (n = 118) | Total 25(OH)D ≥20 ng/mL (n = 76) | p Value | |
---|---|---|---|---|
Age (years), Mean ± SD | 64.93 ± 14.63 | 67.02 ± 14.47 | 61.70 ± 14.38 | 0.013 * |
Sex, N (%) Male Female | 106 (54.6) 88 (45.4) | 70 (59.3) 48 (40.7) | 36 (47.4) 40 (52.6) | 0.103 |
Comorbidities, N (%) Hypertension Diabetes Mellitus CAD Others | 102 (52.6) 65 (33.5) 45 (23.2) 99 (52.1) | 60 (50.8) 40 (33.9) 29 (24.6) 60 (52.6) | 42 (55.3) 25 (32.9) 16 (21.1) 39 (51.3) | 0.548 0.885 0.694 0.859 |
Overall (N = 194) | Total 25(OH)D <20 ng/mL (n = 118) | Total 25(OH)D ≥20 ng/mL (n = 76) | p Value | |
---|---|---|---|---|
SAP (mmHg) | 117.56 ± 23.57 (120.5) | 114.28 ± 25.66 (120) | 122.64 ± 18.96 (125) | 0.004 * |
DAP (mmHg) | 63.99 ± 12.14 (66.5) | 62.63 ± 12.14 (64) | 66.11 ± 11.9 (69) | 0.002 * |
Pulse (min) | 90.86 ± 15.56 (90) | 92.48 ± 17.23 (91) | 88.34 ± 12.22 (87) | 0.071 |
Temperature (°C) | 36.77 ± 0.43 (36.7) | 36.77 ± 0.5 (36.6) | 36.77 ± 0.31 (36.7) | 0.975 |
Respiratory rate (min) | 15.52 ± 2.09 (16) | 15.49 ± 2.16 (15) | 15.57 ± 1.99 (16) | 0.556 |
Respiratory status, N (%) Spontaneous Intubation | 132 (68.0) 62 (32.0) | 69 (58.5) 49 (41.5) | 63 (82.9) 13 (17.1) | 0.001 * |
Intubation duration (day) | 3.04 ± 3.41 (2) | 3.14 ± 3.88 (1) | 2.80 ± 1.95 (2) | 0.208 |
GCS | 13.72 ± 4.09 (15) | 12.54 ± 4.35 (15) | 15.14 ± 3.26 (15) | 0.001 * |
APACHE score | 26.79 ± 13.92 (29) | 30.57 ± 13.71 (31) | 20.73 ± 12.05 (19) | 0.001 * |
SOFA score | 13.13 ± 4.88 (14) | 13.06 ± 4.85 (14) | 13.26 ± 5.03 (14) | 0.957 |
Overall (N = 194) | Total 25(OH)D <20 ng/mL (n = 118) | Total 25(OH)D ≥20 ng/mL (n = 76) | p Value | |
---|---|---|---|---|
WBC (×103) | 15.62 ± 14.02 (12.5) | 14.4 ± 12.65 (11.3) | 17.5 ± 15.82 (13.3) | 0.072 |
HGB (g/dL) | 10.85 ± 2.93 (11.2) | 11 ± 2.73 (11.3) | 10.6 ± 3.87 (11.1) | 0.655 |
PLT (×103) | 266,360.82 ± 105,520.69 (267,000) | 246,500 ± 111,589.43 (252,000) | 297,197.37 ± 87,426.92 (270,000) | 0.002 * |
Neutrophil (%) | 13.14 ± 13.79 (9.7) | 13.86 ± 16.14 (9.7) | 12.03 ± 9 (9.7) | 0.371 |
NLR | 19.22 ± 16.8 (13.8) | 20.97 ± 17.32 (16) | 16.5 ± 15.7 (11.4) | 0.015 * |
PLR | 50.88 ± 53.5 (35.7) | 47.75 ± 49.24 (35.7) | 55.74 ± 59.53 (34.7) | 0.536 |
CRP (mg/L) | 124.66 ± 87.96 (120.5) | 122.49 ± 87.31 (113.7) | 127.99 ± 89.44 (130.2) | 0.687 |
PCT (ng/mL) | 4.22 ± 11.34 (0.4) | 4.52 ± 11.9 (0.5) | 3.75 ± 10.46 (0.2) | 0.020 * |
Troponin (pg/mL) | 818.34 ± 4015.79 (26.3) | 689.52 ± 2967.82 (26.8) | 1017.58 ± 5258.5 (22.6) | 0.147 |
D-Dimer (ng/mL) | 3139.58 ± 4770.11 (1461) | 3468.01 ± 5437.86 (1623) | 2635.99 ± 3483.64 (1214) | 0.099 |
pH | 7.4 ± 0.13 (7.4) | 7.38 ± 0.15 (7.4) | 7.43 ± 0.1 (7.5) | 0.019 * |
Lactate (mg/dL) | 2.41 ± 2.59 (1.8) | 2.71 ± 2.85 (1.9) | 1.95 ± 2.05 (1.6) | 0.019 * |
AST (U/L) | 105.6 ± 238.34 (41) | 101.78 ± 207.24 (42) | 111.53 ± 281.28 (39) | 0.191 |
ALT (U/L) | 69.92 ± 119.71 (35.5) | 67.29 ± 93.76 (39) | 74 ± 152.11 (31) | 0.103 |
Urea (mg/dL) | 67.45 ± 46.3 (55) | 72.91 ± 47.18 (63) | 58.99 ± 43.88 (43.5) | 0.007 * |
Creatinine (mg/dL) | 1.32 ± 0.92 (1) | 1.47 ± 1.02 (1.2) | 1.09 ± 0.68 (0.8) | 0.001 * |
LDH (mg/dL) | 592.97 ± 374.13 (498.5) | 614.84 ± 338.46 (540.5) | 559.01 ± 423.76 (455.5) | 0.021 * |
Ferritin (ng/mL) | 779.71 ± 674.65 (522.3) | 809.7 ± 649.05 (610.3) | 732.33 ± 715.51 (474.9) | 0.161 |
Fibrinogen | 276.87 ± 132.16 (312.7) | 310.73 ± 119.62 (322.4) | 241.79 ± 137.4 (256.7) | 0.224 |
Treatment Method | Overall (N = 194) | Total 25(OH)D <20 ng/mL (n = 118) | Total 25(OH)D ≥20 ng/mL (n = 76) | p Value |
---|---|---|---|---|
CP | 25 (12.9) | 13 (11) | 12 (15.8) | 0.454 |
Hemodiafiltration | 39 (20.3) | 35 (30.2) | 4 (5.3) | 0.000 * |
Hemoperfusion | 45 (23.4) | 34 (29.3) | 11 (14.5) | 0.028 * |
Methylprednisolone | 76 (39.2) | 45 (38.1) | 31 (40.8) | 0.712 |
Actemra | 61 (31.4) | 39 (33.1) | 22 (28.9) | 0.548 |
Favipravir | 184 (94.8) | 111 (94.1) | 73 (96.1) | 0.743 |
Plaquenil | 48 (24.7) | 28 (23.7) | 20 (26.3) | 0.813 |
Overall (N = 194) | Total 25(OH)D <20 ng/mL (n = 118) | Total 25(OH)D ≥20 ng/mL (n = 76) | p Value | |
---|---|---|---|---|
Weaning Duration (day) Mean ± SD (Median) | 8.16 ± 6.28 (7) | 8.29 ± 6.04 (8) | 7.90 ± 6.84 (6) | 0.612 |
Hospitalization in ICU (day) Mean ± SD (Median) | 10.53 ± 7.59 (9) | 10.73 ± 7.41 (10) | 10.21 ± 7.92 (8) | 0.308 |
Mortality, N (%) | 111 (57.2) | 94 (79.7) | 17 (22.4) | 0.000 * |
Overall (N = 194) | Total 25(OH)D <20 ng/mL (n = 118) | Total 25(OH)D ≥20 ng/mL (n = 76) | p Value | ||
---|---|---|---|---|---|
Growth in culture, N (%) | 121 (62.4) | 81 (68.6) | 40 (52.6) | 0.025 * | |
Microorganismal proliferation N (%) | Sensitive | 61 (50.4) | 41 (50.6) | 20 (50) | 0.035 * |
Moderately sensitive | 7 (5.8) | 1 (1.2) | 6 (15) | ||
Resistance | 28 (23.1) | 21 (25.9) | 7 (17.5) | ||
Sensitive/Resistance | 15 (12.4) | 10 (12.3) | 5 (12.5) | ||
Moderately Sensitive/Resistance | 10 (8.3) | 8 (9.9) | 2 (5) | ||
Proliferation duration Mean ± SD (Median) | 7.43 ± 4.54 (7) | 7.64 ± 4.60 (8) | 7.0 ± 4.43 (5.5) | 0.441 |
Overall (N = 121) | Total 25(OH)D <20 ng/mL (n = 81) | Total 25(OH)D ≥20 ng/mL (n = 40) | p Value | |
---|---|---|---|---|
Hospitalization in ICU (day) Mean ± SD (Median) | 12.14 ± 8.45 (11) | 12.21 ± 8.11 (7) | 12.0 ± 9.21 (10) | 0.368 |
Mortality, N (%) | 89 (73.6) | 74 (91.4) | 15 (37.5) | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batur, L.K.; Koç, S. Association between Vitamin D Status and Secondary Infections in Patients with Severe COVID-19 Admitted in the Intensive Care Unit of a Tertiary-Level Hospital in Turkey. Diagnostics 2023, 13, 59. https://doi.org/10.3390/diagnostics13010059
Batur LK, Koç S. Association between Vitamin D Status and Secondary Infections in Patients with Severe COVID-19 Admitted in the Intensive Care Unit of a Tertiary-Level Hospital in Turkey. Diagnostics. 2023; 13(1):59. https://doi.org/10.3390/diagnostics13010059
Chicago/Turabian StyleBatur, Lutfiye Karcioglu, and Suna Koç. 2023. "Association between Vitamin D Status and Secondary Infections in Patients with Severe COVID-19 Admitted in the Intensive Care Unit of a Tertiary-Level Hospital in Turkey" Diagnostics 13, no. 1: 59. https://doi.org/10.3390/diagnostics13010059
APA StyleBatur, L. K., & Koç, S. (2023). Association between Vitamin D Status and Secondary Infections in Patients with Severe COVID-19 Admitted in the Intensive Care Unit of a Tertiary-Level Hospital in Turkey. Diagnostics, 13(1), 59. https://doi.org/10.3390/diagnostics13010059