Shifting from Left Ventricular Ejection Fraction to Strain Imaging in Aortic Stenosis
Abstract
:1. Introduction
2. Echocardiography for Left Ventricular Function
2.1. Prognostic Value of Left Ventricular Ejection Fraction
2.2. Prognostic Value of Left Ventricular Global Longitudinal Strain
2.3. Prognostic Role of Non-Invasively Assessed Left Ventricular Myocardial Work
- (i)
- LV global work index, representing the total work within the LV pressure-strain loops;
- (ii)
- LV global constructive work, defined as the work performed during myocardial shortening in systole and the work during myocardial lengthening in isovolumic relaxation;
- (iii)
- LV global wasted work, representing the work contributing to the lengthening of the cardiac myocytes during systole and the shortening during isovolumic relaxation; and
- (iv)
- LV global work efficiency, defined as the percentage of effectively spent work by the LV myocytes, and obtained by the following formula:
3. Multi-Detector Row Computed Tomography for Left Ventricular Function
4. Cardiac Magnetic Resonance for Left Ventricular Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | aortic stenosis |
AVR | aortic valve replacement |
CMR | cardiac magnetic resonance |
GLS | global longitudinal strain |
LFLG | low flow, low gradient |
LV | left ventricle |
LVEF | left ventricular ejection fraction |
MDCT | multi-detector row computed tomography |
TAVR | transcatheter aortic valve replacement |
References
- Dahl, J.S.; Magne, J.; Pellikka, P.A.; Donal, E.; Marwick, T.H. Assessment of Subclinical Left Ventricular Dysfunction in Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 163–171. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Treibel, T.A.; Lopez, B.; Gonzalez, A.; Menacho, K.; Schofield, R.S.; Ravassa, S.; Fontana, M.; White, S.K.; DiSalvo, C.; Roberts, N.; et al. Reappraising myocardial fibrosis in severe aortic stenosis: An invasive and non-invasive study in 133 patients. Eur. Heart J. 2018, 39, 699–709. [Google Scholar] [CrossRef]
- Hein, S.; Arnon, E.; Kostin, S.; Schonburg, M.; Elsasser, A.; Polyakova, V.; Bauer, E.P.; Klovekorn, W.P.; Schaper, J. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: Structural deterioration and compensatory mechanisms. Circulation 2003, 107, 984–991. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Dahl, J.S.; Eleid, M.F.; Michelena, H.I.; Scott, C.G.; Suri, R.M.; Schaff, H.V.; Pellikka, P.A. Effect of left ventricular ejection fraction on postoperative outcome in patients with severe aortic stenosis undergoing aortic valve replacement. Circ. Cardiovasc. Imaging 2015, 8, e002917. [Google Scholar] [CrossRef]
- Taniguchi, T.; Morimoto, T.; Shiomi, H.; Ando, K.; Kanamori, N.; Murata, K.; Kitai, T.; Kadota, K.; Izumi, C.; Nakatsuma, K.; et al. Prognostic Impact of Left Ventricular Ejection Fraction in Patients with Severe Aortic Stenosis. JACC Cardiovasc. Interv. 2018, 11, 145–157. [Google Scholar] [CrossRef]
- Baron, S.J.; Arnold, S.V.; Herrmann, H.C.; Holmes, D.R., Jr.; Szeto, W.Y.; Allen, K.B.; Chhatriwalla, A.K.; Vemulapali, S.; O’Brien, S.; Dai, D.; et al. Impact of Ejection Fraction and Aortic Valve Gradient on Outcomes of Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2016, 67, 2349–2358. [Google Scholar] [CrossRef]
- Capoulade, R.; Le Ven, F.; Clavel, M.A.; Dumesnil, J.G.; Dahou, A.; Thebault, C.; Arsenault, M.; O’Connor, K.; Bedard, E.; Beaudoin, J.; et al. Echocardiographic predictors of outcomes in adults with aortic stenosis. Heart 2016, 102, 934–942. [Google Scholar] [CrossRef]
- Bohbot, Y.; de Meester de Ravenstein, C.; Chadha, G.; Rusinaru, D.; Belkhir, K.; Trouillet, C.; Pasquet, A.; Marechaux, S.; Vanoverschelde, J.L.; Tribouilloy, C. Relationship Between Left Ventricular Ejection Fraction and Mortality in Asymptomatic and Minimally Symptomatic Patients with Severe Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 38–48. [Google Scholar] [CrossRef]
- Lancellotti, P.; Magne, J.; Dulgheru, R.; Clavel, M.A.; Donal, E.; Vannan, M.A.; Chambers, J.; Rosenhek, R.; Habib, G.; Lloyd, G.; et al. Outcomes of Patients with Asymptomatic Aortic Stenosis Followed Up in Heart Valve Clinics. JAMA Cardiol. 2018, 3, 1060–1068. [Google Scholar] [CrossRef]
- Ito, S.; Miranda, W.R.; Nkomo, V.T.; Connolly, H.M.; Pislaru, S.V.; Greason, K.L.; Pellikka, P.A.; Lewis, B.R.; Oh, J.K. Reduced Left Ventricular Ejection Fraction in Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 1313–1321. [Google Scholar] [CrossRef]
- Henkel, D.M.; Malouf, J.F.; Connolly, H.M.; Michelena, H.I.; Sarano, M.E.; Schaff, H.V.; Scott, C.G.; Pellikka, P.A. Asymptomatic left ventricular systolic dysfunction in patients with severe aortic stenosis: Characteristics and outcomes. J. Am. Coll. Cardiol. 2012, 60, 2325–2329. [Google Scholar] [CrossRef]
- Dumesnil, J.G.; Shoucri, R.M. Effect of the geometry of the left ventricle on the calculation of ejection fraction. Circulation 1982, 65, 91–98. [Google Scholar] [CrossRef]
- Konstam, M.A.; Abboud, F.M. Ejection Fraction: Misunderstood and Overrated (Changing the Paradigm in Categorizing Heart Failure). Circulation 2017, 135, 717–719. [Google Scholar] [CrossRef]
- Mihaljevic, T.; Nowicki, E.R.; Rajeswaran, J.; Blackstone, E.H.; Lagazzi, L.; Thomas, J.; Lytle, B.W.; Cosgrove, D.M. Survival after valve replacement for aortic stenosis: Implications for decision making. J. Thorac. Cardiovasc. Surg. 2008, 135, 1270–1278; discussion 1278–1279. [Google Scholar] [CrossRef]
- Halkos, M.E.; Chen, E.P.; Sarin, E.L.; Kilgo, P.; Thourani, V.H.; Lattouf, O.M.; Vega, J.D.; Morris, C.D.; Vassiliades, T.; Cooper, W.A.; et al. Aortic valve replacement for aortic stenosis in patients with left ventricular dysfunction. Ann. Thorac. Surg. 2009, 88, 746–751. [Google Scholar] [CrossRef]
- Goldberg, J.B.; DeSimone, J.P.; Kramer, R.S.; Discipio, A.W.; Russo, L.; Dacey, L.J.; Leavitt, B.J.; Helm, R.E.; Baribeau, Y.R.; Sardella, G.; et al. Impact of preoperative left ventricular ejection fraction on long-term survival after aortic valve replacement for aortic stenosis. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 35–41. [Google Scholar] [CrossRef]
- Kovacs, A.; Olah, A.; Lux, A.; Matyas, C.; Nemeth, B.T.; Kellermayer, D.; Ruppert, M.; Torok, M.; Szabo, L.; Meltzer, A.; et al. Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete’s heart. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H743–H748. [Google Scholar] [CrossRef]
- Blessberger, H.; Binder, T. NON-invasive imaging: Two dimensional speckle tracking echocardiography: Basic principles. Heart 2010, 96, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Blessberger, H.; Binder, T. Two dimensional speckle tracking echocardiography: Clinical applications. Heart 2010, 96, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Malm, S.; Frigstad, S.; Sagberg, E.; Larsson, H.; Skjaerpe, T. Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: A comparison with magnetic resonance imaging. J. Am. Coll. Cardiol. 2004, 44, 1030–1035. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Daraban, A.M.; Unlu, S.; Thomas, J.D.; Badano, L.P.; Voigt, J.U. Head-to-Head Comparison of Global Longitudinal Strain Measurements among Nine Different Vendors: The EACVI/ASE Inter-Vendor Comparison Study. J. Am. Soc. Echocardiogr. 2015, 28, 1171–1181.e2. [Google Scholar] [CrossRef]
- Vollema, E.M.; Sugimoto, T.; Shen, M.; Tastet, L.; Ng, A.C.T.; Abou, R.; Marsan, N.A.; Mertens, B.; Dulgheru, R.; Lancellotti, P.; et al. Association of Left Ventricular Global Longitudinal Strain with Asymptomatic Severe Aortic Stenosis: Natural Course and Prognostic Value. JAMA Cardiol. 2018, 3, 839–847. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Gibby, C.; Rodriguez, L.L.; Grimm, R.A.; Marwick, T.H. Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ. Cardiovasc. Imaging 2012, 5, 719–725. [Google Scholar] [CrossRef]
- Kusunose, K.; Goodman, A.; Parikh, R.; Barr, T.; Agarwal, S.; Popovic, Z.B.; Grimm, R.A.; Griffin, B.P.; Desai, M.Y. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circ. Cardiovasc. Imaging 2014, 7, 938–945. [Google Scholar] [CrossRef]
- Carstensen, H.G.; Larsen, L.H.; Hassager, C.; Kofoed, K.F.; Jensen, J.S.; Mogelvang, R. Basal longitudinal strain predicts future aortic valve replacement in asymptomatic patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 283–292. [Google Scholar] [CrossRef]
- Park, S.J.; Cho, S.W.; Kim, S.M.; Ahn, J.; Carriere, K.; Jeong, D.S.; Lee, S.C.; Park, S.W.; Choe, Y.H.; Park, P.W.; et al. Assessment of Myocardial Fibrosis Using Multimodality Imaging in Severe Aortic Stenosis: Comparison with Histologic Fibrosis. JACC Cardiovasc. Imaging 2019, 12, 109–119. [Google Scholar] [CrossRef]
- Magne, J.; Cosyns, B.; Popescu, B.A.; Carstensen, H.G.; Dahl, J.; Desai, M.Y.; Kearney, L.; Lancellotti, P.; Marwick, T.H.; Sato, K.; et al. Distribution and Prognostic Significance of Left Ventricular Global Longitudinal Strain in Asymptomatic Significant Aortic Stenosis: An Individual Participant Data Meta-Analysis. JACC Cardiovasc. Imaging 2019, 12, 84–92. [Google Scholar] [CrossRef]
- Kamperidis, V.; van Rosendael, P.J.; Ng, A.C.; Katsanos, S.; van der Kley, F.; Debonnaire, P.; Joyce, E.; Sianos, G.; Marsan, N.A.; Bax, J.J.; et al. Impact of flow and left ventricular strain on outcome of patients with preserved left ventricular ejection fraction and low gradient severe aortic stenosis undergoing aortic valve replacement. Am. J. Cardiol. 2014, 114, 1875–1881. [Google Scholar] [CrossRef]
- Sato, K.; Seo, Y.; Ishizu, T.; Takeuchi, M.; Izumo, M.; Suzuki, K.; Yamashita, E.; Oshima, S.; Akashi, Y.J.; Otsuji, Y.; et al. Prognostic value of global longitudinal strain in paradoxical low-flow, low-gradient severe aortic stenosis with preserved ejection fraction. Circ. J. 2014, 78, 2750–2759. [Google Scholar] [CrossRef]
- Ng, A.C.T.; Delgado, V.; Bax, J.J. Application of left ventricular strain in patients with aortic and mitral valve disease. Curr. Opin. Cardiol. 2018, 33, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Dahou, A.; Bartko, P.E.; Capoulade, R.; Clavel, M.A.; Mundigler, G.; Grondin, S.L.; Bergler-Klein, J.; Burwash, I.; Dumesnil, J.G.; Senechal, M.; et al. Usefulness of global left ventricular longitudinal strain for risk stratification in low ejection fraction, low-gradient aortic stenosis: Results from the multicenter True or Pseudo-Severe Aortic Stenosis study. Circ. Cardiovasc. Imaging 2015, 8, e002117. [Google Scholar] [CrossRef] [PubMed]
- Delgado, V.; Tops, L.F.; van Bommel, R.J.; van der Kley, F.; Marsan, N.A.; Klautz, R.J.; Versteegh, M.I.; Holman, E.R.; Schalij, M.J.; Bax, J.J. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur. Heart J. 2009, 30, 3037–3047. [Google Scholar] [CrossRef]
- Kempny, A.; Diller, G.P.; Kaleschke, G.; Orwat, S.; Funke, A.; Radke, R.; Schmidt, R.; Kerckhoff, G.; Ghezelbash, F.; Rukosujew, A.; et al. Longitudinal left ventricular 2D strain is superior to ejection fraction in predicting myocardial recovery and symptomatic improvement after aortic valve implantation. Int. J. Cardiol. 2013, 167, 2239–2243. [Google Scholar] [CrossRef]
- Logstrup, B.B.; Andersen, H.R.; Thuesen, L.; Christiansen, E.H.; Terp, K.; Klaaborg, K.E.; Poulsen, S.H. Left ventricular global systolic longitudinal deformation and prognosis 1 year after femoral and apical transcatheter aortic valve implantation. J. Am. Soc. Echocardiogr. 2013, 26, 246–254. [Google Scholar] [CrossRef]
- Kamperidis, V.; Joyce, E.; Debonnaire, P.; Katsanos, S.; van Rosendael, P.J.; van der Kley, F.; Sianos, G.; Bax, J.J.; Ajmone Marsan, N.; Delgado, V. Left ventricular functional recovery and remodeling in low-flow low-gradient severe aortic stenosis after transcatheter aortic valve implantation. J. Am. Soc. Echocardiogr. 2014, 27, 817–825. [Google Scholar] [CrossRef]
- D’Andrea, A.; Carbone, A.; Agricola, E.; Riegler, L.; Sperlongano, S.; Tocci, G.; Scarafile, R.; Formisano, T.; Capogrosso, C.; CappelliBigazzi, M.; et al. Predictive Value of Left Ventricular Myocardial Deformation for Left Ventricular Remodeling in Patients with Classical Low-Flow, Low-Gradient Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement. J. Am. Soc. Echocardiogr. 2019, 32, 730–736. [Google Scholar] [CrossRef]
- Lancellotti, P.; Donal, E.; Magne, J.; Moonen, M.; O’Connor, K.; Daubert, J.C.; Pierard, L.A. Risk stratification in asymptomatic moderate to severe aortic stenosis: The importance of the valvular, arterial and ventricular interplay. Heart 2010, 96, 1364–1371. [Google Scholar] [CrossRef]
- Zito, C.; Salvia, J.; Cusma-Piccione, M.; Antonini-Canterin, F.; Lentini, S.; Oreto, G.; Di Bella, G.; Montericcio, V.; Carerj, S. Prognostic significance of valvuloarterial impedance and left ventricular longitudinal function in asymptomatic severe aortic stenosis involving three-cuspid valves. Am. J. Cardiol. 2011, 108, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.S.; Videbaek, L.; Poulsen, M.K.; Rudbaek, T.R.; Pellikka, P.A.; Moller, J.E. Global strain in severe aortic valve stenosis: Relation to clinical outcome after aortic valve replacement. Circ. Cardiovasc. Imaging 2012, 5, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Kearney, L.G.; Lu, K.; Ord, M.; Patel, S.K.; Profitis, K.; Matalanis, G.; Burrell, L.M.; Srivastava, P.M. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 827–833. [Google Scholar] [CrossRef]
- Nagata, Y.; Takeuchi, M.; Wu, V.C.; Izumo, M.; Suzuki, K.; Sato, K.; Seo, Y.; Akashi, Y.J.; Aonuma, K.; Otsuji, Y. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. JACC Cardiovasc. Imaging 2015, 8, 235–245. [Google Scholar] [CrossRef]
- Suzuki-Eguchi, N.; Murata, M.; Itabashi, Y.; Shirakawa, K.; Fukuda, M.; Endo, J.; Tsuruta, H.; Arai, T.; Hayashida, K.; Shimizu, H.; et al. Prognostic value of pre-procedural left ventricular strain for clinical events after transcatheter aortic valve implantation. PLoS ONE 2018, 13, e0205190. [Google Scholar] [CrossRef]
- Povlsen, J.A.; Rasmussen, V.G.; Vase, H.; Jensen, K.T.; Terkelsen, C.J.; Christiansen, E.H.; Tang, M.; Pedersen, A.L.D.; Poulsen, S.H. Distribution and prognostic value of left ventricular global longitudinal strain in elderly patients with symptomatic severe aortic stenosis undergoing transcatheter aortic valve replacement. BMC Cardiovasc. Disord. 2020, 20, 506. [Google Scholar] [CrossRef]
- Fukui, M.; Thoma, F.; Sultan, I.; Mulukutla, S.; Elzomor, H.; Lee, J.S.; Schindler, J.T.; Gleason, T.G.; Cavalcante, J.L. Baseline Global Longitudinal Strain Is Associated with All-Cause Mortality After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Imaging 2020, 13, 1092–1094. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, J.K.; Lee, S.A.; Kang, D.Y.; Lee, S.; Kim, H.J.; Ahn, J.M.; Kim, J.B.; Park, D.W.; Song, J.M.; et al. Incremental Prognostic Value of Left Ventricular Global Longitudinal Strain in Patients with Preserved Ejection Fraction Undergoing Transcatheter Aortic Valve Implantation. J. Am. Soc. Echocardiogr. 2022, 35, 947–955.e7. [Google Scholar] [CrossRef]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Gjesdal, O.; Edvardsen, T.; Smiseth, O.A. Assessment of wasted myocardial work: A novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H996–H1003. [Google Scholar] [CrossRef]
- Fortuni, F.; Butcher, S.C.; van der Kley, F.; Lustosa, R.P.; Karalis, I.; de Weger, A.; Priori, S.G.; van der Bijl, P.; Bax, J.J.; Delgado, V.; et al. Left Ventricular Myocardial Work in Patients with Severe Aortic Stenosis. J. Am. Soc. Echocardiogr. 2021, 34, 257–266. [Google Scholar] [CrossRef]
- Jain, R.; Bajwa, T.; Roemer, S.; Huisheree, H.; Allaqaband, S.Q.; Kroboth, S.; Perez Moreno, A.C.; Tajik, A.J.; Khandheria, B.K. Myocardial work assessment in severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, K.; vanRosendael, P.J.; Fortuni, F.; Singh, G.K.; Kuneman, J.H.; Vollema, E.M.; Ajmone Marsan, N.; Knuuti, J.; Bax, J.J.; Delgado, V. Prognostic implications of cardiac damage classification based on computed tomography in severe aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 578–585. [Google Scholar] [CrossRef]
- Genereux, P.; Pibarot, P.; Redfors, B.; Mack, M.J.; Makkar, R.R.; Jaber, W.A.; Svensson, L.G.; Kapadia, S.; Tuzcu, E.M.; Thourani, V.H.; et al. Staging classification of aortic stenosis based on the extent of cardiac damage. Eur. Heart J. 2017, 38, 3351–3358. [Google Scholar] [CrossRef]
- Gegenava, T.; van der Bijl, P.; Hirasawa, K.; Vollema, E.M.; van Rosendael, A.; van der Kley, F.; de Weger, A.; Hautemann, D.J.; Reiber, J.H.C.; Ajmone Marsan, N.; et al. Feature tracking computed tomography-derived left ventricular global longitudinal strain in patients with aortic stenosis: A comparative analysis with echocardiographic measurements. J. Cardiovasc. Comput. Tomogr. 2020, 14, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Xu, J.; Thoma, F.; Sultan, I.; Mulukutla, S.; Elzomor, H.; Lee, J.S.; Gleason, T.G.; Cavalcante, J.L. Baseline global longitudinal strain by computed tomography is associated with post transcatheter aortic valve replacement outcomes. J. Cardiovasc. Comput. Tomogr. 2020, 14, 233–239. [Google Scholar] [CrossRef]
- Gegenava, T.; van der Bijl, P.; Vollema, E.M.; van der Kley, F.; de Weger, A.; Hautemann, D.; Reiber, J.H.C.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. Prognostic Influence of Feature Tracking Multidetector Row Computed Tomography-Derived Left Ventricular Global Longitudinal Strain in Patients with Aortic Stenosis Treated with Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2020, 125, 948–955. [Google Scholar] [CrossRef]
- Fukui, M.; Hashimoto, G.; Lopes, B.B.C.; Stanberry, L.I.; Garcia, S.; Gössl, M.; Enriquez-Sarano, M.; Bapat, V.N.; Sorajja, P.; Lesser, J.R.; et al. Association of baseline and change in global longitudinal strain by computed tomography with post-transcatheter aortic valve replacement outcomes. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 476–484. [Google Scholar] [CrossRef]
- Kim, M.Y.; Park, E.A.; Lee, W.; Lee, S.P. Cardiac Magnetic Resonance Feature Tracking in Aortic Stenosis: Exploration of Strain Parameters and Prognostic Value in Asymptomatic Patients with Preserved Ejection Fraction. Korean J. Radiol. 2020, 21, 268–279. [Google Scholar] [CrossRef]
- Fukui, M.; Annabi, M.S.; Rosa, V.E.E.; Ribeiro, H.B.; Stanberry, L.I.; Clavel, M.A.; Rodés-Cabau, J.; Tarasoutchi, F.; Schelbert, E.B.; Bergler-Klein, J.; et al. Comprehensive myocardial characterization using cardiac magnetic resonance associates with outcomes in low gradient severe aortic stenosis. Eur. Heart J. Cardiovasc. Imaging 2022, 24, 46–58. [Google Scholar] [CrossRef]
- Weidemann, F.; Herrmann, S.; Stork, S.; Niemann, M.; Frantz, S.; Lange, V.; Beer, M.; Gattenlohner, S.; Voelker, W.; Ertl, G.; et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009, 120, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Dweck, M.R.; Joshi, S.; Murigu, T.; Alpendurada, F.; Jabbour, A.; Melina, G.; Banya, W.; Gulati, A.; Roussin, I.; Raza, S.; et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J. Am. Coll. Cardiol. 2011, 58, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Barone-Rochette, G.; Pierard, S.; De Meester de Ravenstein, C.; Seldrum, S.; Melchior, J.; Maes, F.; Pouleur, A.C.; Vancraeynest, D.; Pasquet, A.; Vanoverschelde, J.L.; et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J. Am. Coll. Cardiol. 2014, 64, 144–154. [Google Scholar] [CrossRef]
- Musa, T.A.; Treibel, T.A.; Vassiliou, V.S.; Captur, G.; Singh, A.; Chin, C.; Dobson, L.E.; Pica, S.; Loudon, M.; Malley, T.; et al. Myocardial Scar and Mortality in Severe Aortic Stenosis. Circulation 2018, 138, 1935–1947. [Google Scholar] [CrossRef]
- Everett, R.J.; Tastet, L.; Clavel, M.A.; Chin, C.W.L.; Capoulade, R.; Vassiliou, V.S.; Kwiecinski, J.; Gomez, M.; van Beek, E.J.R.; White, A.C.; et al. Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis: A Multicenter Cardiac Magnetic Resonance Study. Circ. Cardiovasc. Imaging 2018, 11, e007451. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, J.B.; Yoon, Y.E.; Park, E.A.; Kim, H.K.; Lee, W.; Kim, Y.J.; Cho, G.Y.; Sohn, D.W.; Greiser, A.; et al. Noncontrast Myocardial T1 Mapping by Cardiac Magnetic Resonance Predicts Outcome in Patients with Aortic Stenosis. JACC Cardiovasc. Imaging 2018, 11, 974–983. [Google Scholar] [CrossRef]
- Everett, R.J.; Treibel, T.A.; Fukui, M.; Lee, H.; Rigolli, M.; Singh, A.; Bijsterveld, P.; Tastet, L.; Musa, T.A.; Dobson, L.; et al. Extracellular Myocardial Volume in Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2020, 75, 304–316. [Google Scholar] [CrossRef]
- Chin, C.W.L.; Everett, R.J.; Kwiecinski, J.; Vesey, A.T.; Yeung, E.; Esson, G.; Jenkins, W.; Koo, M.; Mirsadraee, S.; White, A.C.; et al. Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis. JACC Cardiovasc. Imaging 2017, 10, 1320–1333. [Google Scholar] [CrossRef]
- Schuster, A.; Hor, K.N.; Kowallick, J.T.; Beerbaum, P.; Kutty, S. Cardiovascular Magnetic Resonance Myocardial Feature Tracking: Concepts and Clinical Applications. Circ. Cardiovasc. Imaging 2016, 9, e004077. [Google Scholar] [CrossRef]
- Al Musa, T.; Uddin, A.; Swoboda, P.P.; Garg, P.; Fairbairn, T.A.; Dobson, L.E.; Steadman, C.D.; Singh, A.; Erhayiem, B.; Plein, S.; et al. Myocardial strain and symptom severity in severe aortic stenosis: Insights from cardiovascular magnetic resonance. Quant. Imaging Med. Surg. 2017, 7, 38–47. [Google Scholar] [CrossRef]
- Buckert, D.; Tibi, R.; Cieslik, M.; Radermacher, M.; Qu, Y.Y.; Rasche, V.; Bernhardt, P.; Hombach, V.; Rottbauer, W.; Wöhrle, J. Myocardial strain characteristics and outcomes after transcatheter aortic valve replacement. Cardiol. J. 2018, 25, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.W.; Kim, S.M.; Park, S.J.; Cho, E.J.; Kim, E.K.; Chang, S.A.; Lee, S.C.; Choe, Y.H.; Park, S.W. Assessment of reverse remodeling predicted by myocardial deformation on tissue tracking in patients with severe aortic stenosis: A cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson. 2017, 19, 80. [Google Scholar] [CrossRef] [PubMed]
- Buckert, D.; Cieslik, M.; Tibi, R.; Radermacher, M.; Rasche, V.; Bernhardt, P.; Hombach, V.; Rottbauer, W.; Wöhrle, J. Longitudinal strain assessed by cardiac magnetic resonance correlates to hemodynamic findings in patients with severe aortic stenosis and predicts positive remodeling after transcatheter aortic valve replacement. Clin. Res. Cardiol. 2018, 107, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Musa, T.A.; Uddin, A.; Swoboda, P.P.; Fairbairn, T.A.; Dobson, L.E.; Singh, A.; Garg, P.; Steadman, C.D.; Erhayiem, B.; Kidambi, A.; et al. Cardiovascular magnetic resonance evaluation of symptomatic severe aortic stenosis: Association of circumferential myocardial strain and mortality. J. Cardiovasc. Magn. Reson. 2017, 19, 13. [Google Scholar] [CrossRef]
1st Author | Year | Patients n | AS Population | Intervention | Cut-Off LVEF (%) | Outcomes |
---|---|---|---|---|---|---|
Mihaljevic et al. [17] | 2008 | 3049 | Severe AS | SAVR | 40% | Worst long-term survival (5.1 ± 3.2 years follow up) |
Halkos et al. [18] | 2008 | 779 | Undergoing SAVR | SAVR | 40% | Worst unadjusted 1-, 3-, and 5-year survival rates |
Goldberg et al. [19] | 2013 | 5277 | Severe AS | SAVR | 50% | Worst survival at 6 months and 8 years |
Dahl et al. [7] | 2015 | 2017 | Symptomatic and asymptomatic severe AS | SAVR | 50% | Worst 5-year all-cause mortality (HR, 0.41; 95% CI, 0.35–0.47) |
Baron et al. [9] | 2016 | 11,292 | Undergoing TAVR | TAVR | 30% | Higher 1-year mortality rates compared to 50–50% and >50% |
Capoulade et al. [10] | 2016 | 1065 | At least mild AS | SAVR | 55% | Best cut-off value to predict all-cause mortality |
Ito et al. [13] | 2018 | 928 | Severe AS with available echo before diagnosis | Not specified | 50% | Worse survival compared to LVEF 50–60% and >60% |
Taniguchi et al. [8] | 2018 | 3794 | Severe AS | SAVR or TAVR | 50% | Highest 5-year incidence of composite death or HF hospitalization |
Lancellotti et al. [12] | 2018 | 1375 | At least moderate asymptomatic AS | SAVR or TAVR | 60% | Independent predictor of all-cause mortality [HR: 5.01, (95% CI):(2.93–8.57)] |
Bohbot et al. [11] | 2019 | 1678 | Asymptomatic or mildly symptomatic severe AS | SAVR | 55% | 2-fold increase in all-cause mortality |
1st Author | Year | n | AS Population | Cut-Off LV GLS (-%) | Association with Outcomes |
---|---|---|---|---|---|
Lancellottiet et al. [40] | 2010 | 163 | Moderate and severe AS | 15.9 | Significant predictive power for MACE |
Zito et al. [41] | 2011 | 52 | Asymptomatic severe AS | 18 | Significant predictive power for MACE |
Dahl et al. [42] | 2012 | 125 | Symptomatic severe AS with LVEF > 40% | 10.3 | Increased overall mortality, cardiac mortality, and MACEs |
Kearney et al. [43] | 2012 | 146 | Mild, moderate, and severe AS | 15 | One-year MACE-free survival was only 25% |
Yingchoncharoen et al. [26] | 2012 | 79 | Asymptomatic severe AS with LVEF > 50% | 15 | 16% survival rate at 40 months follow up |
Kempny et al. [36] | 2013 | 101 | Severe AS undergoing TAVR | 13.3 | Predictor of lack of longitudinal strain recovery post TAVR |
Logstrup et al. [37] | 2013 | 100 | Severe AS undergoing TAVR | 11.95 | Pre-TAVR cut-off did not impact on prognosis. LV GLS improvement post TAVR predicted outcomes. |
Kamperidis et al. [31] | 2014 | 134 | Symptomatic paradoxical low-flow, low-gradient AS with AVAi ≤ 0.6 cm2/m2 | 15 | Mortality rate of 22.4% 3 years after AVR |
Kusunose et al. [27] | 2014 | 395 | Moderate and severe AS with LVEF > 50% | 12.1 | 43% death during 4.4 ± 1.4 years of follow up |
Sato et al. [32] | 2014 | 98 | Paradoxical low-flow, low-gradient AS with AVAi ≤ 0.6 cm2/m2 | 17 | MACE-free survival rate at 2-year follow-up was 57.5% |
Nagata et al. [44] | 2015 | 104 | Asymptomatic severe AS with LVEF > 50% | 17 | Significant predictive power for MACE |
Dahou et al. [34] | 2015 | 126 | Low-flow, low-gradient AS with LVEF ≤ 40% and AVAi ≤ 0.6 cm2/m2 | 9 | 49% 3-year survival |
Suzuki Eguchi et al. [45] | 2018 | 128 | Severe AS undergoing TAVR | 10.6 | Freedom from events for patients with GLS ≤ −10.6% occurred more often compared to GLS > −10.6 |
Vollema et al. [25] | 2018 | 220 | Asymptomatic severe AS | 18.2 | Higher risk for symptoms development or requiring aortic valve intervention |
D’Andrea A et al. [39] | 2019 | 75 | Classical low-flow, low-gradient severe AS undergoing TAVR | 12 | Identified patients with lack of reverse remodeling after TAVR |
Povlsen et al. [46] | 2020 | 411 | Severe AS undergoing TAVR | 14 | Independent predictor of all-cause mortality |
Fukui et al. [47] | 2020 | 510 | Symtomatic severe AS | 16 | Patients with normal LVEFs but reduced GLS had worst survival that those with normal LVEFs and reduced GLS |
Lee et al. [48] | 2022 | 412 | Severe AS undergoing TAVR | 16 | Independent predictor of all-cause death and the composite outcome |
1st Author | Year | n | AS Population | Cut-Off LV GLS (-%) | Association with Outcomes |
---|---|---|---|---|---|
Multi-detector row computed tomography | |||||
Fukui et al. [56] | 2020 | 223 | Severe AS undergoing TAVR | 20.5 | Independent association with all-cause mortality and composite outcome |
Gegenava et al. [57] | 2020 | 214 | Severe AS undergoing TAVR | 14 | After 48 months of follow-up, rate of all-cause mortality for GLS ≤ −14% was 15%, versus 28% for GLS > −14% |
Fukui et al. [58] | 2022 | 431 | Severe AS undergoing TAVR | 18.2 | GLS > −18.2% had a higher risk of the composite outcome than GLS ≤ −18.2% (HR, 1.77; 95% CI, 1.18–2.66; p = 0.006) |
Cardiac magnetic resonance | |||||
Kim et al. [59] | 2020 | 123 | Asymptomatic moderate to severe AS with preserved LVEF | 17.9 | GLS > −17.9% had worse event-free survival than GLS < −17.9% |
Fukui et el. [60] | 2022 | 147 | Low-gradient moderate to severe AS | 12.4 | GLS < −12.4% was associated with a higher risk for all-cause mortality and composite outcome |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, V.; Daios, S.; Bazmpani, M.-A.; Moysidis, D.V.; Zegkos, T.; Karamitsos, T.; Ziakas, A.; Kamperidis, V. Shifting from Left Ventricular Ejection Fraction to Strain Imaging in Aortic Stenosis. Diagnostics 2023, 13, 1756. https://doi.org/10.3390/diagnostics13101756
Anastasiou V, Daios S, Bazmpani M-A, Moysidis DV, Zegkos T, Karamitsos T, Ziakas A, Kamperidis V. Shifting from Left Ventricular Ejection Fraction to Strain Imaging in Aortic Stenosis. Diagnostics. 2023; 13(10):1756. https://doi.org/10.3390/diagnostics13101756
Chicago/Turabian StyleAnastasiou, Vasileios, Stylianos Daios, Maria-Anna Bazmpani, Dimitrios V. Moysidis, Thomas Zegkos, Theodoros Karamitsos, Antonios Ziakas, and Vasileios Kamperidis. 2023. "Shifting from Left Ventricular Ejection Fraction to Strain Imaging in Aortic Stenosis" Diagnostics 13, no. 10: 1756. https://doi.org/10.3390/diagnostics13101756
APA StyleAnastasiou, V., Daios, S., Bazmpani, M. -A., Moysidis, D. V., Zegkos, T., Karamitsos, T., Ziakas, A., & Kamperidis, V. (2023). Shifting from Left Ventricular Ejection Fraction to Strain Imaging in Aortic Stenosis. Diagnostics, 13(10), 1756. https://doi.org/10.3390/diagnostics13101756