Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Oral Swab Sample Preparation
2.3. Extraction of Genomic DNA and Next-Generation Sequencing
2.4. Real-Time PCR
2.5. Bioinformatic Analysis, Statistical Analysis, and Visualization
2.6. Data Availability
3. Results
3.1. Sequence Preprocessing
3.2. Taxonomy Comparison
3.3. Microbial DNA Standard
3.4. Alpha Diversity Depending on Primers
3.5. Simultaneous Analysis of Bacterial and Fungal Communities
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brennan, M.T.; Bahrani-Mougeot, F.; Fox, P.C.; Kennedy, T.P.; Hopkins, S.; Boucher, R.C.; Lockhart, P.B. The role of oral microbial colonization in ventilator-associated pneumonia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 98, 665–672. [Google Scholar] [CrossRef]
- Rello, J.; Diaz, E. Pneumonia in the intensive care unit. Crit. Care Med. 2003, 31, 2544–2551. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Nah, H.S.; Kim, J.B.; Kim, C.H.; Kim, M.S. Relationships Between Oral-Mucosal Pressure Ulcers, Mechanical Conditions, and Individual Susceptibility in Intubated Patients Under Intensive Care: A PCR-Based Observational Study. Biol. Res. Nurs. 2021, 23, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.W.; Yang, Y.S.; Shang, S.T.; Chen, K.H.; Yeh, K.M.; Chang, F.Y.; Lin, J.C. Candida albicans versus non-albicans bloodstream infections: The comparison of risk factors and outcome. J. Microbiol. Immunol. Infect. 2011, 44, 369–375. [Google Scholar] [CrossRef]
- Krause, R.; Halwachs, B.; Thallinger, G.G.; Klymiuk, I.; Gorkiewicz, G.; Hoenigl, M.; Prattes, J.; Valentin, T.; Heidrich, K.; Buzina, W.; et al. Characterisation of candida within the mycobiome/microbiome of the lower respiratory tract of ICU patients. PLoS ONE 2016, 11, e01550332016. [Google Scholar] [CrossRef] [PubMed]
- Mencarini, J.; Mantengoli, E.; Tofani, L.; Riccobono, E.; Fornaini, R.; Bartalesi, F.; Corti, G.; Farese, A.; Pecile, P.; Boni, L.; et al. Evaluation of candidemia and antifungal consumption in a large tertiary care Italian hospital over a 12-year period. Infection 2018, 46, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Strollo, S.; Lionakis, M.S.; Adjemian, J.; Steiner, C.A.; Prevots, D.R. Epidemiology of hospitalizations associated with invasive candidiasis, united states, 2002–2012. Emerg. Infect. Dis. 2016, 23, 7–13. [Google Scholar] [CrossRef]
- Mehta, Y.; Gupta, A.; Todi, S.; Myatra, S.N.; Samaddar, D.P.; Patil, Y.; Bhattacharya, P.K. Guidelines for prevention of hospital acquired infections. Indian J. Crit. Care Med. 2014, 18, 149–163. [Google Scholar] [PubMed]
- Sharma, V.K.; Mehta, V.; Singh, T.G. Alzheimer’s Disorder: Epigenetic Connection and Associated Risk Factors. Curr. Neuropharmacol. 2020, 18, 740–753. [Google Scholar] [CrossRef]
- Yin, Y.; Hountras, P.; Wunderink, R.G. The microbiome in mechanically ventilated patients. Curr. Opin. Infect. Dis. 2017, 30, 208–213. [Google Scholar] [CrossRef]
- Patangia, D.V.; Ryan, C.A.; Dempsey, E.; Ross, R.P.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiol. Open 2022, 11, e1260. [Google Scholar] [CrossRef]
- Tuon, F.F.; Gavrilko, O.; Almeida, S.; Sumi, E.R.; Alberto, T.; Rocha, J.L.; Rosa, E.A. Prospective, randomised, controlled study evaluating early modification of oral microbiota following admission to the intensive care unit and oral hygiene with chlorhexidine. J. Glob. Antimicrob. Resist. 2017, 8, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; et al. The NIH human microbiome project. Genome Res. 2009, 19, 2317–2323. [Google Scholar] [PubMed]
- Chakravorty, S.; Helb, D.; Burday, M.; Connell, N.; Alland, D.A. detailed analysis of 16s ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 2007, 69, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Turenne, C.Y.; Sanche, S.E.; Hoban, D.J.; Karlowsky, J.A.; Kabani, A.M. Rapid identification of fungi by using the its2 genetic region and an automated fluorescent capillary electrophoresis system. J. Clin. Microbiol. 1999, 37, 1846–1851. [Google Scholar] [CrossRef]
- The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. Available online: https://www.ema.europa.eu/en/glossary/guideline (accessed on 1 February 2023).
- Bonham, P.A. Swab cultures for diagnosing wound infections: A literature review and clinical guideline. J. Wound Ostomy Cont. Nurs. 2009, 36, 389–395. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumine sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Ihrmark, K.; Bodeker, I.T.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandstrom-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef]
- Fujita, S.I.; Senda, Y.; Nakaguchi, S.; Hashimoto, T. Multiplex pcr using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J. Clin. Microbiol. 2001, 39, 3617–3622. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Kennedy, P.; Picard, K.; Glockner, F.O.; Tedersoo, L.; et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D2642019. [Google Scholar] [CrossRef]
- Hall, M.; Beiko, R.G. 16s rrna gene analysis with qiime2. Methods Mol. Biol. 2018, 1849, 113–129. [Google Scholar] [PubMed]
- Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 2013, 69, 137–143. [Google Scholar] [CrossRef]
- Friedman, J.; Alm, E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012, 8, e10026872012. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bassis, C.M.; Erb-Downward, J.R.; Dickson, R.P.; Freeman, C.M.; Schmidt, T.M.; Young, V.B.; Beck, J.M.; Curtis, J.L.; Huffnagle, G.B. Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. mBio 2015, 6, e000372015. [Google Scholar] [CrossRef]
- Dewhirst, F.E.; Chen, T.; Izard, J.; Paster, B.J.; Tanner, A.C.; Yu, W.H.; Lakshmanan, A.; Wade, W.G. The human oral microbiome. J. Bacteriol. 2010, 192, 5002–5017. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Jurevic, R.J.; Mukherjee, P.K.; Cui, F.; Sikaroodi, M.; Naqvi, A.; Gillevet, P.M. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010, 6, e10007132010. [Google Scholar] [CrossRef]
- Correa, J.D.; Fernandes, G.R.; Calderaro, D.C.; Mendonca, S.M.S.; Silva, J.M.; Albiero, M.L.; Cunha, F.Q.; Xiao, E.; Ferreira, G.A.; Teixeira, A.L.; et al. Oral microbial dysbiosis linked to worsened periodontal condition in rheumatoid arthritis patients. Sci. Rep. 2019, 9, 8379. [Google Scholar] [CrossRef]
- Diaz, P.I.; Dongari-Bagtzoglou, A. Critically appraising the significance of the oral mycobiome. J. Dent. Res. 2021, 100, 133–140. [Google Scholar] [CrossRef]
- Baker, J.L.; Bor, B.; Agnello, M.; Shi, W.; He, X. Ecology of the oral microbiome: Beyond bacteria. Trends Microbiol. 2017, 25, 362–374. [Google Scholar] [CrossRef]
- Botterel, F.; Angebault, C.; Cabaret, O.; Stressmann, F.A.; Costa, J.-M.; Wallet, F.; Wallaert, B.; Bruce, K.; Dalhaes, L. Fungal and Bacterial Diversity of Airway Microbiota in Adults with Cystic Fibrosis: Concordance Between Conventional Methods and Ultra-Deep Sequencing, and Their Practical use in the Clinical Laboratory. Mycopathologia 2017, 183, 171–183. [Google Scholar] [CrossRef]
- Delhaes, L.; Monchy, S.; Frealle, E.; Hubans, C.; Salleron, J.; Leroy, S.; Prevotat, A.; Wallet, F.; Wallaert, B.; Dei-Cas, E.; et al. The Airway Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community—Implications for Therapeutic Management. PLoS ONE 2012, 7, e36313. [Google Scholar] [CrossRef] [PubMed]
- Omelina, E.S.; Ivankin, A.V.; Letiagina, A.E.; Pindyurin, A.V. Optimized PCR conditions minimizing the formation of chimeric DNA molecules from MPRA plasmid libraries. BMC Genom. 2019, 20, 536. [Google Scholar] [CrossRef] [PubMed]
- Vetrovsky, T.; Baldrian, P. The variability of the 16s rrna gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 2013, 8, e579232013. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.L.; Vallor, A.C.; Gelfond, J.A.; Patterson, T.F.; Wickes, B.L. Strain-dependent variation in 18s ribosomal DNA copy numbers in aspergillus fumigatus. J. Clin. Microbiol. 2009, 47, 1325–1332. [Google Scholar] [CrossRef]
- Skrzypek, M.S.; Binkley, J.; Binkley, G.; Miyasato, S.R.; Simison, M.; Sherlock, G. The candida genome database (CGD): Incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 2017, 45, D592–D596. [Google Scholar] [CrossRef]
- Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.; Gibbs, R.A.; et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome 2017, 5, 153. [Google Scholar] [CrossRef]
- Arfken, A.M.; Frey, J.F.; Summers, K.L. Temporal dynamics of the gut bacteriome and mycobiome in the weanling pig. Microorganisms 2020, 8, 868. [Google Scholar] [CrossRef]
- Keum, H.L.; Kim, H.; Kim, H.J.; Park, T.; Kim, S.; An, S.; Sul, W.J. Structures of the skin microbiome and mycobiome depending on skin sensitivity. Microorganisms 2020, 8, 1032. [Google Scholar] [CrossRef]
- Koo, H.; Bowen, W.H. Candida albicans and streptococcus mutans: A potential synergistic alliance to cause virulent tooth decay in children. Future Microbiol. 2014, 9, 1295–1297. [Google Scholar] [CrossRef]
- Ellepola, K.; Truong, T.; Liu, Y.; Lin, Q.; Lim, T.K.; Lee, Y.M.; Cao, T.; Koo, H.; Seneviratne, C.J. Multi-omics analyses reveal synergistic carbohydrate metabolism in streptococcus mutans-candida albicans mixed-species biofilms. Infect. Immun. 2019, 87, e00339–e192019. [Google Scholar] [CrossRef] [PubMed]
- Hallang, S.; Esberg, A.; Haworth, S.; Johansson, I. Healthy oral lifestyle behaviours are associated with favourable composition and function of the oral microbiota. Microorganisms 2021, 9, 1674. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.M.; Twigg, J.A.; Lewis, M.A.O.; Wise, M.P.; Marchesi, J.R.; Smith, A.; Wilson, M.J.; Williams, D.W. Microbial profiling of dental plaque from mechanically ventilated patients. J. Med. Microbiol. 2016, 65, 147–159. [Google Scholar] [CrossRef]
- Ohara-Nemoto, Y.; Haraga, H.; Kimura, S.; Nemoto, T.K. Occurrence of staphylococci in the oral cavities of healthy adults and nasal oral trafficking of the bacteria. J. Med. Microbiol. 2008, 57, 95–99. [Google Scholar] [CrossRef] [PubMed]
ITS2 Only | V12 Only | V12-ITS2 Mix | |
---|---|---|---|
Input read count | 49,053 ± 40,833 (5826–195,379) | 65,299 ± 61,068 (11,634–244,018) | 127,081 ± 58,264 (41,789–267,196) |
Filtered read count | 44,991 ± 36,425 | 54,181 ± 50,877 | 107,511 ± 50,205 |
Denoised read count | 44,881 ± 36,398 | 53,864 ± 50,718 | 107,117 ± 50,084 |
Merged read count | 44,669 ± 36,114 | 52,796 ± 49,631 | 105,891 ± 49,384 |
Nonchimeric read count | 43,640 ± 33,073 (4848–149,048) | 47,743 ± 47,743 (8696–164,939) | 98,815 ± 45,122 (31,587–195,606) |
Percentage of input nonchimeric (%) | 90.3 ± 3.7 | 73.8 ± 4.3 | 77.8 ± 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Kim, M.S.; Chung, J.; Na, H.S. Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit. Diagnostics 2023, 13, 1784. https://doi.org/10.3390/diagnostics13101784
Song Y, Kim MS, Chung J, Na HS. Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit. Diagnostics. 2023; 13(10):1784. https://doi.org/10.3390/diagnostics13101784
Chicago/Turabian StyleSong, Yuri, Myoung Soo Kim, Jin Chung, and Hee Sam Na. 2023. "Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit" Diagnostics 13, no. 10: 1784. https://doi.org/10.3390/diagnostics13101784
APA StyleSong, Y., Kim, M. S., Chung, J., & Na, H. S. (2023). Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit. Diagnostics, 13(10), 1784. https://doi.org/10.3390/diagnostics13101784