Comprehensive In Silico Characterization of the Coding and Non-Coding SNPs in Human Dectin-1 Gene with the Potential of High-Risk Pathogenicity Associated with Fungal Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Dectin-1 nsSNPs
2.2. Prediction of Functional Effects of Pathogenicity of nsSNPs
2.3. Determining nsSNPs on the Domains of Dectin-1
2.4. Analyzing Protein Evolutionary Conservation
2.5. Analyzing the Effect of the nsSNPs on Protein Stability
2.6. Prediction of the Structural Effect of High-Risk nsSNPs on Human Dectin-1 Protein
2.7. Prediction of the Post-Translational Site’s Modification
2.8. Analysis of 5′ and 3′ UTR Non-Coding SNPs
2.9. Determining CLEC7A Protein-Protein Interaction (PPI) Network Analysis
2.10. Functional and Pathway Enrichment Analysis Using STRING
3. Results
3.1. Retrieving nsSNPs of Dectin-1
3.2. Prediction of Pathogenicity of nsSNPs
3.3. Identification of the Domains of Dectin-1
3.4. Structural Analysis
3.4.1. Determination of Protein Structural Stability (I-Mutant 2.0 Analysis)
3.4.2. Evolutionary Conservation Analysis
3.4.3. Project HOPE Results for Comparing Wild-Type and Mutant Amino Acid Properties
3.4.4. Missense 3D Results
3.5. Analysis of 5′ and 3′ UTR Non-Coding SNPs
3.6. PolymiRTS Analysis
3.7. Protein-Protein Interactions Analysis and Functional Enrichments Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalia, N.; Singh, J.; Kaur, M. The role of dectin-1 in health and disease. Immunobiology 2021, 226, 152071. [Google Scholar] [CrossRef] [PubMed]
- Pyz, E.; Marshall, A.S.J.; Gordon, S.; Brown, G.D. C-type lectin-like receptors on myeloid cells. Ann. Med. 2006, 38, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Willment, J.A.; Whitehead, L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 2018, 18, 374–389. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.R.; Brown, G.D.; Reid, D.M.; Willment, J.A.; Martinez-Pomares, L.; Gordon, S.; Wong, S.Y.C. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 2002, 169, 3876–3882. [Google Scholar] [CrossRef]
- Mata-Martínez, P.; Bergón-Gutiérrez, M.; Del Fresno, C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front. Immunol. 2022, 13, 812148. [Google Scholar] [CrossRef]
- Bode, K.; Bujupi, F.; Link, C.; Hein, T.; Zimmermann, S.; Peiris, D.; Jaquet, V.; Lepenies, B.; Weyd, H.; Krammer, P.H. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep. 2019, 29, 4435–4446.e9. [Google Scholar] [CrossRef]
- Willment, J.A.; Gordon, S.; Brown, G.D. Characterization of the human beta-glucan receptor and its alternatively spliced isoforms. J. Biol. Chem. 2001, 276, 43818–43823. [Google Scholar] [CrossRef]
- Grünebach, F.; Weck, M.M.; Reichert, J.; Brossart, P. Molecular and functional characterization of human Dectin-1. Exp. Hematol. 2002, 30, 1309–1315. [Google Scholar] [CrossRef]
- Xu, S.; Huo, J.; Lee, K.-G.; Kurosaki, T.; Lam, K.-P. Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2+ flux and cytokine production in dendritic cells. J. Biol. Chem. 2009, 284, 7038–7046. [Google Scholar] [CrossRef]
- Adams, E.L.; Rice, P.J.; Graves, B.; Ensley, H.E.; Yu, H.; Brown, G.D.; Gordon, S.; Monteiro, M.A.; Papp-Szabo, E.; Lowman, D.W.; et al. Differential High-Affinity Interaction of Dectin-1 with Natural or Synthetic Glucans Is Dependent upon Primary Structure and Is Influenced by Polymer Chain Length and Side-Chain Branching. J. Pharmacol. Exp. Ther. 2008, 325, 115–123. [Google Scholar] [CrossRef]
- Palma, A.S.; Feizi, T.; Zhang, Y.; Stoll, M.S.; Lawson, A.M.; Díaz-Rodríguez, E.; Campanero-Rhodes, M.A.; Costa, J.; Gordon, S.; Brown, G.D.; et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 2006, 281, 5771–5779. [Google Scholar] [CrossRef] [PubMed]
- Hanashima, S.; Ikeda, A.; Tanaka, H.; Adachi, Y.; Ohno, N.; Takahashi, T.; Yamaguchi, Y. NMR study of short β(1-3)-glucans provides insights into the structure and interaction with Dectin-1. Glycoconj. J. 2014, 31, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.; Di Ianni, M.; Bozza, S.; Giovannini, G.; Zagarella, S.; Zelante, T.; D’Angelo, C.; Pierini, A.; Pitzurra, L.; Falzetti, F.; et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 2010, 116, 5394–5402. [Google Scholar] [CrossRef] [PubMed]
- del Pilar Jiménez-A, M.; Viriyakosol, S.; Walls, L.; Datta, S.K.; Kirkland, T.; Heinsbroek, S.E.M.; Brown, G.; Fierer, J. Susceptibility to Coccidioides species in C57BL/6 mice is associated with expression of a truncated splice variant of Dectin-1 (Clec7a). Genes Immun. 2008, 9, 338–348. [Google Scholar] [CrossRef]
- Kumar, A.; Purohit, R. Computational screening and molecular dynamics simulation of disease associated nsSNPs in CENP-E. Mutat. Res. 2012, 738–739, 28–37. [Google Scholar] [CrossRef]
- Bendl, J.; Stourac, J.; Salanda, O.; Pavelka, A.; Wieben, E.D.; Zendulka, J.; Brezovsky, J.; Damborsky, J. PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations. PLoS Comput. Biol. 2014, 10, e1003440. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Jones, P.; Mitchell, A.; Apweiler, R.; Attwood, T.K.; Bateman, A.; Bernard, T.; Binns, D.; Bork, P.; Burge, S.; et al. InterPro in 2011: New developments in the family and domain prediction database. Nucleic Acids Res. 2012, 40, D306–D312. [Google Scholar] [CrossRef]
- Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Birney, E.; Biswas, M.; Bucher, P.; Cerutti, L.; Corpet, F.; Croning, M.D.; et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 2001, 29, 37–40. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Erez, E.; Martz, E.; Pupko, T.; Ben-Tal, N. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010, 38, W529–W533. [Google Scholar] [CrossRef]
- Berezin, C.; Glaser, F.; Rosenberg, J.; Paz, I.; Pupko, T.; Fariselli, P.; Casadio, R.; Ben-Tal, N. ConSeq: The identification of functionally and structurally important residues in protein sequences. Bioinformatics 2004, 20, 1322–1324. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, E.; Fariselli, P.; Casadio, R. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005, 33, W306–W310. [Google Scholar] [CrossRef] [PubMed]
- Venselaar, H.; te Beek, T.A.H.; Kuipers, R.K.P.; Hekkelman, M.L.; Vriend, G. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform. 2010, 11, 548. [Google Scholar] [CrossRef] [PubMed]
- Ittisoponpisan, S.; Islam, S.A.; Khanna, T.; Alhuzimi, E.; David, A.; Sternberg, M.J.E. Can Predicted Protein 3D Structures Provide Reliable Insights into whether Missense Variants Are Disease Associated? J. Mol. Biol. 2019, 431, 2197–2212. [Google Scholar] [CrossRef]
- Wang, D.; Liu, D.; Yuchi, J.; He, F.; Jiang, Y.; Cai, S.; Li, J.; Xu, D. MusiteDeep: A deep-learning based webserver for protein post-translational modification site prediction and visualization. Nucleic Acids Res. 2020, 48, W140–W146. [Google Scholar] [CrossRef]
- Hunt, S.E.; McLaren, W.; Gil, L.; Thormann, A.; Schuilenburg, H.; Sheppard, D.; Parton, A.; Armean, I.M.; Trevanion, S.J.; Flicek, P.; et al. Ensembl variation resources. Database 2018, 2018, bay119. [Google Scholar] [CrossRef]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ziebarth, J.D.; Cui, Y. PolymiRTS Database 3.0: Linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res. 2014, 42, D86–D91. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Thakur, R.; Shankar, J. Comprehensive in-silico Analysis of High-risk Non-synonymous SNPs in Dectin-1 Gene of Human and their Impact on Protein Structure. Curr. Pharm. Person. Med. 2017, 15, 144–155. [Google Scholar] [CrossRef]
- Karplus, M.; Kuriyan, J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 2005, 102, 6679–6685. [Google Scholar] [CrossRef] [PubMed]
- Deller, M.C.; Kong, L.; Rupp, B. Protein stability: A crystallographer’s perspective. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2016, 72, 72–95. [Google Scholar] [CrossRef]
- Witham, S.; Takano, K.; Schwartz, C.; Alexov, E. A missense mutation in CLIC2 associated with intellectual disability is predicted by in silico modeling to affect protein stability and dynamics. Proteins Struct. Funct. Bioinform. 2011, 79, 2444–2454. [Google Scholar] [CrossRef]
- Moszynska, A.; Gebert, M.; Collawn, J.F.; Bartoszewski, R. Snps in microrna target sites and their potential role in human disease. Open Biol. 2017, 7, 170019. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.d.O.; Leão-Cordeiro, J.A.B.; de Paula, H.d.S.C.; Ataides, F.S.; Saddi, V.A.; Vilanova-Costa, C.A.S.T.; Silva, A.M.T.C. Association between polymorphisms in the genes encoding toll-like receptors and dectin-1 and susceptibility to invasive aspergillosis: A systematic review. Rev. Soc. Bras. Med. Trop. 2018, 51, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Pana, Z.-D.; Farmaki, E.; Roilides, E. Host genetics and opportunistic fungal infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 1254–1264. [Google Scholar] [CrossRef]
SNP Id | AA Change | PredictSNP, MAPP, PhD-SNP, SIFT, SNAP | Polyphen1, Polyphen2 |
---|---|---|---|
rs756166982 | D13Y | Deleterious | Damaging |
rs759032825 | S22F | Deleterious | Damaging |
rs775715931 | C54R | Deleterious | Damaging |
rs781427660 | L64P | Deleterious | Damaging |
rs112345533 | S117F | Deleterious | Damaging |
rs1013923644 | C120G | Deleterious | Damaging |
rs1156591610 | C120S | Deleterious | Damaging |
rs1422790966 | S135C | Deleterious | Damaging |
rs761503556 | W141R | Deleterious | Damaging |
rs369482852 | W141S | Deleterious | Damaging |
rs746386372 | C148G | Deleterious | Damaging |
rs1256594278 | L155P | Deleterious | Damaging |
rs747442135 | L155V | Deleterious | Damaging |
rs1346068120 | I158M | Deleterious | Damaging |
rs138005591 | I158T | Deleterious | Damaging |
rs758623997 | D159G | Deleterious | Damaging |
rs1302972586 | D159R | Deleterious | Damaging |
rs1262393046 | I167T | Deleterious | Damaging |
rs1221428821 | W180R | Deleterious | Damaging |
rs140318683 | L183F | Deleterious | Damaging |
rs1307651895 | W192R | Deleterious | Damaging |
rs1255198388 | G197E | Deleterious | Damaging |
rs1255198388 | G197V | Deleterious | Damaging |
rs1267664350 | C220S | Deleterious | Damaging |
rs141153031 | C233Y | Deleterious | Damaging |
rs1219119993 | I240T | Deleterious | Damaging |
rs1458236572 | E242G | Deleterious | Damaging |
SNP Id | AA Change | Protein Domains | Position | I-Mutant | RI | DDG-Free Energy Change Value (kcal/mol) |
---|---|---|---|---|---|---|
rs562749381 | Y3D | non-cytoplasmic domain | 3 | Decrease | 6 | −1.08 |
rs756166982 | D13Y | 13 | Increase | 5 | 0.07 | |
rs759032825 | S22F | 22 | Increase | 4 | 0.27 | |
rs775715931 | C54R | TMhelixs domain/transmembrane domain | 54 | Decrease | 2 | −0.21 |
rs781427660 | L64P | 64 | Decrease | 7 | −1.52 | |
rs112345533 | S117F | cytoplasmic domain | 117 | Increase | 2 | 0.1 |
rs1013923644 | C120G | 120 | Decrease | 8 | −1.38 | |
rs1156591610 | C120S | 120 | Decrease | 7 | −0.87 | |
rs1422790966 | S135C | 135 | Decrease | 6 | −0.82 | |
rs761503556 | W141R | 141 | Decrease | 8 | −1.02 | |
rs369482852 | W141S | 141 | Decrease | 9 | −1.56 | |
rs746386372 | C148G | 148 | Decrease | 7 | −1.02 | |
rs1256594278 | L155P | 155 | Decrease | 1 | −1.34 | |
rs747442135 | L155V | 155 | Decrease | 6 | −1.31 | |
rs1346068120 | I158M | 158 | Decrease | 6 | −1.48 | |
rs138005591 | I158T | 158 | Decrease | 7 | −2.15 | |
rs758623997 | D159G | 159 | Decrease | 7 | −1.5 | |
rs1302972586 | D159R | 159 | Decrease | 4 | −0.59 | |
rs1262393046 | I167T | 167 | Decrease | 9 | −2.4 | |
rs1221428821 | W180R | 180 | Decrease | 8 | −1.15 | |
rs140318683 | L183F | 183 | Decrease | 5 | −1.03 | |
rs1307651895 | W192R | 192 | Decrease | 7 | −1 | |
rs1255198388 | G197E | 197 | Decrease | 3 | −0.42 | |
rs1255198388 | G197V | 197 | Decrease | 5 | −0.35 | |
rs1267664350 | C220S | 220 | Decrease | 8 | −0.93 | |
rs141153031 | C233Y | 233 | Decrease | 3 | −0.43 | |
rs1219119993 | I240T | 240 | Decrease | 9 | −2.06 | |
rs1458236572 | E242G | 242 | Decrease | 7 | −1.21 |
Uniprot Position | PDB/Model Position | Residue Wild-Type | Residue Mutant | Missense3D Prediction | Structural Damage Predicted |
---|---|---|---|---|---|
120 | 120 | CYS | SER | Damaging | Disulphide breakage |
133 | 133 | LEU | PRO | Damaging | Secondary structure altered; Disallowed phi/psi |
141 | 141 | TRP | SER | Damaging | Buried H-bond breakage |
141 | 141 | TRP | ARG | Damaging | Buried hydrophilic introduced; Buried charge introduced |
148 | 148 | CYS | GLY | Damaging | Disulphide breakage |
155 | 155 | LEU | PRO | Damaging | Buried Pro introduced; Buried H-bond breakage |
157 | 157 | LYS | ARG | Damaging | Buried/exposed switch |
163 | 163 | GLU | LYS | Damaging | Buried/exposed switch |
180 | 180 | TRP | ARG | Damaging | Buried hydrophilic introduced; Buried charge introduced |
184 | 184 | SER | PHE | Damaging | Buried H-bond breakage |
185 | 185 | ARG | GLN | Damaging | Buried charge replaced; Buried salt bridge breakage |
185 | 185 | ARG | CYS | Damaging | Buried charge replaced; Buried salt bridge breakage |
185 | 185 | ARG | HIS | Damaging | Buried H-bond breakage; Buried salt bridge breakage |
188 | 188 | THR | PRO | Damaging | Disallowed phi/psi |
191 | 191 | PRO | SER | Damaging | Secondary structure altered |
191 | 191 | PRO | LEU | Damaging | Secondary structure altered |
216 | 216 | PRO | THR | Damaging | Secondary structure altered |
220 | 220 | CYS | SER | Damaging | Disulphide breakage |
233 | 233 | CYS | TYR | Damaging | Disulphide breakage |
238 | 238 | TYR | HIS | Damaging | Buried/exposed switch |
239 | 239 | SER | ASN | Damaging | Buried H-bond breakage |
Dectin-1 | Chromosome Location | dbSNP IDs | Rank | Score |
---|---|---|---|---|
3UTR | chr12:10269383..10269384 | rs568706240 | 6 | 0.16346 |
chr12:10269395..10269396 | rs531257836 | 6 | 0.1131 | |
chr12:10269470..10269471 | rs553392700 | 6 | 0 | |
chr12:10269472..10269473 | rs566870430 | 7 | 0.18412 | |
chr12:10269515..10269516 | rs182562001 | 7 | 0.18412 | |
chr12:10269552..10269553 | rs555302379 | 6 | 0.29006 | |
chr12:10269556..10269557 | rs575479504 | 6 | 0.08083 | |
chr12:10269718..10269719 | rs185282370 | 7 | 0.18412 | |
chr12:10269727..10269728 | rs577169427 | 6 | 0.4855 | |
chr12:10269916..10269917 | rs542384129 | 5 | 0.39056 | |
chr12:10269919..10269920 | rs562187863 | 5 | 0 | |
chr12:10270059..10270060 | rs143144453, rs535611004 | 6 | 0.182 | |
chr12:10270088..10270089 | rs557589771 | 7 | 0.18412 | |
chr12:10270148..10270149 | rs187544967 | 6 | 0.16346 | |
chr12:10270339..10270340 | rs573661932 | 7 | 0.18412 | |
chr12:10270414..10270415 | rs562608492 | 7 | 0.18412 | |
chr12:10270458..10270459 | rs193279976 | 7 | 0.18412 | |
chr12:10270704..10270705 | rs560325803 | 5 | 0.13454 | |
chr12:10270713..10270714 | rs529384924 | 5 | 0 | |
chr12:10270739..10270740 | rs569018735 | 6 | 0.80633 | |
chr12:10270770..10270771 | rs537612920 | 6 | 0.41186 | |
chr12:10270969..10270970 | rs576227282 | 6 | 0.17931 | |
chr12:10270980..10270981 | rs564703740 | 6 | 0.40391 | |
chr12:10271102..10271103 | rs141153031 | 5 | 0.13454 | |
5UTR | chr12:10282801..10282802 | rs536465890 | 2b | 0.64862 |
chr12:10282827..10282828 | rs527258220 | 2b | 0.67017 | |
chr12:10282834..10282835 | rs143367407 | 4 | 0.60906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-nakhle, H.H.; Khateb, A.M. Comprehensive In Silico Characterization of the Coding and Non-Coding SNPs in Human Dectin-1 Gene with the Potential of High-Risk Pathogenicity Associated with Fungal Infections. Diagnostics 2023, 13, 1785. https://doi.org/10.3390/diagnostics13101785
Al-nakhle HH, Khateb AM. Comprehensive In Silico Characterization of the Coding and Non-Coding SNPs in Human Dectin-1 Gene with the Potential of High-Risk Pathogenicity Associated with Fungal Infections. Diagnostics. 2023; 13(10):1785. https://doi.org/10.3390/diagnostics13101785
Chicago/Turabian StyleAl-nakhle, Hakeemah H., and Aiah M. Khateb. 2023. "Comprehensive In Silico Characterization of the Coding and Non-Coding SNPs in Human Dectin-1 Gene with the Potential of High-Risk Pathogenicity Associated with Fungal Infections" Diagnostics 13, no. 10: 1785. https://doi.org/10.3390/diagnostics13101785
APA StyleAl-nakhle, H. H., & Khateb, A. M. (2023). Comprehensive In Silico Characterization of the Coding and Non-Coding SNPs in Human Dectin-1 Gene with the Potential of High-Risk Pathogenicity Associated with Fungal Infections. Diagnostics, 13(10), 1785. https://doi.org/10.3390/diagnostics13101785