Single-Voxel MR Spectroscopy of Gliomas with s-LASER at 7T
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. MR Acquisitions
2.3. Structural Imaging (Used for Placement of MRS Voxels)
2.4. 1H-MRS
2.5. Spectral Fitting and Quantification
2.6. Analyses
3. Results
3.1. Spectra Quality Assessment
3.2. Metabolite Variations in Healthy Controls
3.3. Comparison of Metabolites between Tumour and Control Regions
3.4. 2-Hydroxyglutarate
4. Discussion
4.1. Main Findings
4.2. Findings at 1.5T and 3T
4.3. Findings at 7T
4.4. Perspective for the Future—3T and 7T MRS in the Clinical Setting
4.5. s-LASER or MEGA s-LASER
4.6. Limitations
4.7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-HG | 2-hydroxyglutarate |
Cho | Choline |
CRLB | Cramer-Rao Lower Bounds |
CV | Coefficient of Variation |
FWHM | Full Width at Half Maximum |
GABA | Gamma-Aminobutyric acid |
Gln | Glutamine |
Glu | Glutamate |
Glx | Glutamate + Glutamine |
GSH | Glutathione |
IDH1/2 | Isocitrate-dehydrogenase 1/2 |
LGG | Low-Grade Glioma |
mIns | Myo-inositol |
MRS | Magnetic resonance spectroscopy |
NAA | N-acetylaspartate |
NAAG | N-acetylaspartyl glutamate |
sLASER | Semi-localization by adiabatic-selective refocusing |
SNR | Signal-to-Noise Ratio |
TCA | Tricarboxylic Acid Cycle |
tCr | Total Creatine |
TE | Echo time |
TI | Inversion time |
TR | Repetition time |
VAPOR | Variable power RF Pulses with Optimized Relaxation delays |
VESPA | Versatile Simulation, Pulses and Analysis |
References
- Duffau, H.; Taillandier, L. New concepts in the management of diffuse low-grade glioma: Proposal of a multistage and individualized therapeutic approach. Neuro-Oncology 2015, 17, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Olar, A.; Wani, K.M.; Alfaro-Munoz, K.D.; Heathcock, L.E.; van Thuijl, H.F.; Gilbert, M.R.; Armstrong, T.S.; Sulman, E.P.; Cahill, D.P.; Vera-Bolanos, E.; et al. IDH mutation status and role of WHO grade and mitotic index in overall survival in grade II–III diffuse gliomas. Acta Neuropathol. 2015, 129, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Law, M.; Yang, S.; Wang, H.; Babb, J.S.; Johnson, G.; Cha, S.; Knopp, E.A.; Zagzag, D. Glioma Grading: Sensitivity, Specificity, and Predictive Values of Perfusion MR Imaging and Proton MR Spectroscopic Imaging Compared with Conventional MR Imaging. Am. J. Neuroradiol. 2003, 24, 1989–1998. [Google Scholar]
- Zhu, H.; Barker, P.B. MR Spectroscopy and Spectroscopic Imaging of the Brain. Magn. Reson. Neuroimaging 2010, 711, 203–226. [Google Scholar]
- Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 2011, 11, 835–848. [Google Scholar] [CrossRef]
- Chaumeil, M.; Lupo, J.M.; Ronen, S.M. Magnetic Resonance (MR) Metabolic Imaging in Glioma. Brain Pathol. 2015, 25, 769–780. [Google Scholar] [CrossRef]
- Galanaud, D.; Nicoli, F.; Confort-Gouny, S.; Le Fur, Y.; Dormont, D.; Girard, N.; Ranjeva, J.P.; Cozzone, P.J. Spectroscopie par résonance magnétique cérébrale. J. Radiol. 2007, 88, 486–496. [Google Scholar] [CrossRef]
- Caivano, R.; Lotumolo, A.; Rabasco, P.; Zandolino, A.; D’Antuono, F.; Villonio, A.; Lancellotti, M.I.; Macarini, L.; Cammarota, A. 3 Tesla magnetic resonance spectroscopy: Cerebral gliomas vs. metastatic brain tumors. Our experience and review of the literature. Int. J. Neurosci. 2013, 123, 537–543. [Google Scholar] [CrossRef]
- Vaishnavi, S.N.; Vlassenko, A.G.; Rundle, M.M.; Snyder, A.Z.; Mintun, M.A.; Raichle, M.E. Regional aerobic glycolysis in the human brain. Proc. Natl. Acad. Sci. USA 2010, 107, 17757–17762. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.; Richter-Landsberg, C.; Leibfritz, D. Multinuclear NMR Studies on the Energy Metabolism of Glial and Neuronal Cells. Dev. Neurosci. 1993, 15, 289–298. [Google Scholar] [CrossRef]
- Trattnig, S.; Springer, E.; Bogner, W.; Hangel, G.; Strasser, B.; Dymerska, B.; Cardoso, P.L.; Robinson, S.D. Key clinical benefits of neuroimaging at 7 T. Neuroimage 2018, 168, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Danbolt, N.C. Glutamate as a neurotransmitter in the healthy brain. J. Neural Transm. 2014, 121, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.K.; Venneti, S. Glutamine Metabolism in Brain Tumors. Cancers 2019, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Schafer, X.L.; Ambeskovic, A.; Spencer, C.M.; Land, H.; Munger, J. Addiction to Coupling of the Warburg Effect with Glutamine Catabolism in Cancer Cells. Cell Rep. 2016, 17, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; White, D.W.; Gross, S.; Bennett, B.D.; Bittinger, M.A.; Driggers, E.M.; Fantin, V.R.; Jang, H.G.; Jin, S.; Keenan, M.C.; et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462, 739–744. [Google Scholar] [CrossRef]
- Reitman, Z.J.; Jin, G.; Karoly, E.D.; Spasojevic, I.; Yang, J.; Kinzler, K.W.; He, Y.; Bigner, D.D.; Vogelstein, B.; Yan, H. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc. Natl. Acad. Sci. USA 2011, 108, 3270–3275. [Google Scholar] [CrossRef] [PubMed]
- Emir, U.E.; Larkin, S.J.; De Pennington, N.; Voets, N.; Plaha, P.; Stacey, R.; Al-Qahtani, K.; Mccullagh, J.; Schofield, C.J.; Clare, S.; et al. Noninvasive Quantification of 2-Hydroxyglutarate in Human Gliomas with IDH1 and IDH2 Mutations. Cancer Res. 2016, 76, 43–49. [Google Scholar] [CrossRef]
- Choi, C.; Ganji, S.K.; DeBerardinis, R.J.; Hatanpaa, K.J.; Rakheja, D.; Kovacs, Z.; Yang, X.-L.; Mashimo, T.; Raisanen, J.M.; Marin-Valencia, I.; et al. 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat. Med. 2012, 18, 624–629. [Google Scholar] [CrossRef]
- Andronesi, O.C.; Kim, G.S.; Gerstner, E.; Batchelor, T.; Tzika, A.A.; Fantin, V.R.; Heiden, M.G.V.; Sorensen, A.G. Detection of 2-Hydroxyglutarate in IDH -Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy. Sci. Transl. Med. 2012, 4, 116ra4. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, H.; Zhang, J.; Wu, C.; Zhu, W.; Li, F.; Chen, X.; Xu, B. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: A systematic review and meta-analysis. Eur. Radiol. 2015, 26, 2670–2684. [Google Scholar] [CrossRef] [PubMed]
- van der Kolk, A.G.; Hendrikse, J.; Zwanenburg, J.J.; Visser, F.; Luijten, P.R. Clinical applications of 7T MRI in the brain. Eur. J. Radiol. 2013, 82, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Larson, P.; Chen, A.P.; Lupo, J.M.; Ozhinsky, E.; Kelley, D.; Chang, S.M.; Nelson, S.J. Short-echo three-dimensional H-1 MR spectroscopic imaging of patients with glioma at 7 tesla for characterization of differences in metabolite levels. J. Magn. Reson. Imaging 2015, 41, 1332–1341. [Google Scholar] [CrossRef]
- Hangel, G.; Jain, S.; Springer, E.; Hečková, E.; Strasser, B.; Považan, M.; Gruber, S.; Widhalm, G.; Kiesel, B.; Furtner, J.; et al. High-resolution metabolic mapping of gliomas via patch-based super-resolution magnetic resonance spectroscopic imaging at 7T. Neuroimage 2019, 191, 587–595. [Google Scholar] [CrossRef]
- Opheim, G.; Boer, V.O.; Petersen, E.T.; Prener, M.; Paulson, O.B.; Pedersen, J.O. Stabilization of bias field on 3D MPRAGEat 7T with dielectric pads and 3D-based B1+ scaling. In Proceedings of the 2021 ISMRM & SMRT Virtual Conference & Exhibition, Online, 15–20 May 2021. [Google Scholar]
- Andersen, M.; Björkman-Burtscher, I.; Marsman, A.; Petersen, E.T.; Boer, V. Improvement in diagnostic quality of structural and angiographic MRI of the brain using motion correction with interleaved, volumetric navigators. PLoS ONE 2019, 14, e0217145. [Google Scholar] [CrossRef]
- Boer, V.; van Lier, A.; Hoogduin, J.; Wijnen, J.; Luijten, P.; Klomp, D. 7-T 1H MRS with adiabatic refocusing at short TE using radiofrequency focusing with a dual-channel volume transmit coil. NMR Biomed. 2011, 24, 1038–1046. [Google Scholar] [CrossRef]
- Shams, Z.; van der Kemp, W.J.M.; Emir, U.; Dankbaar, J.W.; Snijders, T.J.; de Vos, F.Y.F.; Klomp, D.W.J.; Wijnen, J.P.; Wiegers, E.C. Comparison of 2-Hydroxyglutarate Detection With sLASER and MEGA-sLASER at 7T. Front. Neurol. 2021, 12, 718423. [Google Scholar] [CrossRef]
- Gruetter, R. Automatic, localizedin Vivo adjustment of all first-and second-order shim coils. Magn. Reson. Med. 1993, 29, 804–811. [Google Scholar] [CrossRef]
- Tkáć, I.; Gruetter, R. Methodology of1H NMR spectroscopy of the human brain at very high magnetic fields. Appl. Magn. Reson. 2005, 29, 139–157. [Google Scholar] [CrossRef]
- Provencher, S.W. LCModel & LCMgui. User’s Manual. Available online: http://s-provencher.com/pub/LCModel/manual/manual.pdf (accessed on 13 March 2023).
- Provencher, S.W. Automatic quantitation of localizedin vivo1H spectra with LCModel. NMR Biomed. 2001, 14, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Soher, B.J.; Semanchuk, P.; Todd, D.; Steinberg, J.; Young, K. VeSPA: Integrated applications for RF pulse design, spectral simulation and MRS data analysis. In Proceedings of the 19th Meeting of ISMRM, Montreal, QC, Canada, 7–13 May 2011. [Google Scholar]
- Cudalbu, C.; Behar, K.L.; Bhattacharyya, P.K.; Bogner, W.; Borbath, T.; de Graaf, R.A.; Gruetter, R.; Henning, A.; Juchem, C.; Kreis, R.; et al. Contribution of macromolecules to brain 1 H MR spectra: Experts’ consensus recommendations. NMR Biomed. 2021, 34, e4393. [Google Scholar] [CrossRef] [PubMed]
- Stender, J.; Kupers, R.; Rodell, A.; Thibaut, A.; Chatelle, C.; Bruno, M.-A.; Gejl, M.; Bernard, C.; Hustinx, R.; Laureys, S.; et al. Quantitative Rates of Brain Glucose Metabolism Distinguish Minimally Conscious from Vegetative State Patients. J. Cereb. Blood Flow Metab. 2015, 35, 58–65. [Google Scholar] [CrossRef]
- Neal, A.; Moffat, B.A.; Stein, J.M.; Nanga, R.P.R.; Desmond, P.; Shinohara, R.T.; Hariharan, H.; Glarin, R.; Drummond, K.; Morokoff, A.; et al. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NeuroImage Clin. 2019, 22, 101694. [Google Scholar] [CrossRef]
- Juchem, C.; Cudalbu, C.; de Graaf, R.A.; Gruetter, R.; Henning, A.; Hetherington, H.P.; Boer, V.O. B0 shimming for in vivo magnetic resonance spectroscopy: Experts’ consensus recommendations. NMR Biomed. 2021, 34, e4350. [Google Scholar] [CrossRef] [PubMed]
- Van Der Graaf, M.; Julià-Sapé, M.; Howe, F.A.; Ziegler, A.; Majós, C.; Moreno-Torres, A.; Rijpkema, M.; Acosta, D.; Opstad, K.S.; Van Der Meulen, Y.M.; et al. MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR Biomed. 2008, 21, 148–158. [Google Scholar] [CrossRef]
- Horská, A.; Barker, P.B. Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging. Neuroimaging Clin. N. Am. 2010, 20, 293–310. [Google Scholar] [CrossRef]
- Wright, A.J.; Arús, C.; Wijnen, J.P.; Moreno-Torres, A.; Griffiths, J.R.; Celda, B.; Howe, F.A. Automated quality control protocol for MR spectra of brain tumors. Magn. Reson. Med. 2008, 59, 1274–1281. [Google Scholar] [CrossRef]
- Galanaud, D.; Chinot, O.; Nicoli, F.; Confort-Gouny, S.; Le Fur, Y.; Barrié-Attarian, M.; Ranjeva, J.-P.; Fuentès, S.; Viout, P.; Figarella-Branger, D.; et al. Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J. Neurosurg. 2003, 98, 269–276. [Google Scholar] [CrossRef]
- Tong, Z.; Yamaki, T.; Harada, K.; Houkin, K. In vivo quantification of the metabolites in normal brain and brain tumors by proton MR spectroscopy using water as an internal standard. Magn. Reson. Imaging 2004, 22, 1017–1024. [Google Scholar] [CrossRef]
- Bulik, M.; Jancalek, R.; Vanicek, J.; Skoch, A.; Mechl, M. Potential of MR spectroscopy for assessment of glioma grading. Clin. Neurol. Neurosurg. 2013, 115, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Öz, G.; Alger, J.R.; Barker, P.B.; Bartha, R.; Bizzi, A.; Boesch, C.; Patrick, J.; Bolan, P.J.; Brindle, K.M.; Cudalbu, C.; et al. Clinical Proton MR Spectroscopy in Central Nervous System Disorders. Radiology 2014, 270, 658–679. [Google Scholar] [CrossRef] [PubMed]
- de la Fuente, M.I.; Young, R.J.; Rubel, J.; Rosenblum, M.; Tisnado, J.; Briggs, S.; Arevalo-Perez, J.; Cross, J.R.; Campos, C.; Straley, K.; et al. Integration of 2-hydroxyglutarate-proton magnetic resonance spectroscopy into clinical practice for disease monitoring in isocitrate dehydrogenase-mutant glioma. Neuro-Oncology 2016, 18, 283–290. [Google Scholar] [CrossRef]
- Berrington, A.; Voets, N.L.; Larkin, S.J.; De Pennington, N.; Mccullagh, J.; Stacey, R.; Schofield, C.J.; Jezzard, P.; Clare, S.; Cadoux-Hudson, T.; et al. A comparison of 2-hydroxyglutarate detection at 3 and 7 T with long-TE semi-LASER. NMR Biomed. 2018, 31, e3886. [Google Scholar] [CrossRef]
- Andreychenko, A.; Boer, V.O.; Arteaga de Castro, C.S.; Luijten, P.R.; Klomp, D.W.J. Efficient spectral editing at 7T: GABA detection with MEGA-sLASER. Magn. Reason. Med. 2012, 68, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Rankouhi, S.R.; Thielen, J.-W.; Van Asten, J.J.A.; Norris, D.G. A comparison of sLASER and MEGA-sLASER using simultaneous interleaved acquisition for measuring GABA in the human brain at 7T. PLoS ONE 2019, 14, e0223702. [Google Scholar] [CrossRef]
- Li, Y.; Lafontaine, M.; Chang, S.; Nelson, S.J. Comparison between Short and Long Echo Time Magnetic Resonance Spectroscopic Imaging at 3T and 7T for Evaluating Brain Metabolites in Patients with Glioma. ACS Chem. Neurosci. 2018, 9, 130–137. [Google Scholar] [CrossRef]
Pt. No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Sex | M | F | M | M | M | F | M |
Age | 29 | 34 | 44 | 58 | 41 | 27 | 36 |
WHO Grade | II | III | II | II | III | II * | II |
Type of glioma | Astrocytoma | Astrocytoma | Oligodendroglioma | Astrocytoma | Oligoastrocytoma | Unknown | Astrocytoma |
IDH—mutation | IDH-1 | IDH-1 | IDH-1 | IDH-1 | IDH-1 | Unknown | IDH-1 |
2-HG (mM) | 0.206 | 0.144 | 1.03 | 0.833 | |||
CRLB 2-HG | 40% | 199% | 19% | 17% | |||
FWHM (Hz) | 7.748 | 6.854 | 5.96 | 5.96 | |||
S/N-ratio | 17 | 10 | 29 | 30 | |||
MGMT | Methylated | Methylated | Methylated | Methylated | Methylated | Unknown | Methylated |
Tumour location | L. Occipital | L. Temporal | R. Frontoparietal | L. Parietal | L. Insula | L. Frontal | L. Frontal |
Clinical presentation | Migraine auras | Visual symptoms after head trauma | Visual symptoms; suspicion of TIA | Left occipital infarction | Epileptic seizure | Focal neurological deficit | Tinnitus |
Distance to Praecuneus | 0.9 cm | 9 cm | 0 cm, situated laterally to the praecuneus | Parietally overlapping the praecuneus | 4.3 cm | 0 cm | 3 cm |
Tumour (Median, Mean + SD) (Mean + SD) | Praecuneus, Tumour Patient (Median, Mean + SD) (Mean + SD) | Praecuneus, Healthy Control (Median, Mean + SD) (Mean + SD) | Tumour vs. Praecuneus in Patients (p-Values) | Tumour vs. Praecuneus in Controls (p-Values) | Praecuneus in Patients vs. Controls (p-Values) | Coefficient of Variation in Controls | |
---|---|---|---|---|---|---|---|
tCr CRLB | 3.30, 3.55 ± 1.21 3.57 ± 2.56 | 5.98, 5.71 ± 0.44 2.14 ± 0.35 | 5.89, 5.90 ± 0.48 2.14 ± 0.35 | p = 2.3·× 10−3 | * p = 1.2·× 10−3 | p = 0.46 | 8% |
Cho CRLB | 1.44, 1.38 ± 0.38 5.43 ± 4.63 | 0.92, 0.84 ± 0.27 10.1 ± 12.2 | 0.94, 0.87 ± 0.23 13.6 ± 10.8 | p = 0.05 | p = 0.05 | p = 1.00 | 26% |
NAA CRLB | 1.53, 2.08 ± 1.08 5.71 ± 2.76 | 8.34, 7.99 ± 0.87 2.29 ± 2.55 | 8.17, 8.05 ± 0.77 2.14 ± 0.35 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 1.00 | 10% |
mIns CRLB | 4.61, 4.05 ± 1.23 5.14 ± 2.36 | 3.91, 3.91 ± 0.51 5.71 ± 2.05 | 3.89, 3.76 ± 0.59 5.71 ± 2.25 | p = 0.46 | p = 0.38 | p = 0.71 | 16% |
Lactate CRLB | 1.12, 1.65 ± 1.16 17.9 ± 12.7 | 0.43, 0.38 ± 0.29 339 ± 418 | 0.39, 0.36 ± 0.21 214 ± 324 | p = 0.01 | p = 4.1·× 10−3 | p = 0.90 | 59% |
GABA CRLB | 0.54, 0.56 ± 0.21 38.7 ± 8.33 | 1.55, 1.70 ± 0.45 19.4 ± 5.29 | 1.33, 1.48 ± 0.36 19.6 ± 4.10 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.46 | 24% |
Gln CRLB | 1.69, 1.74 ± 0.64 14.6 ± 5.68 | 2.22, 2.16 ± 0.35 13.4 ± 4.72 | 1.95, 2.00 ± 0.31 12.9 ± 1.46 | p = 0.26 | p = 0.21 | p = 0.32 | 16% |
Glu CRLB | 1.42, 1.51 ± 1.07 25.6 ± 22.4 | 6.87, 6.75 ± 0.74 3.43 ± 0.50 | 6.95, 7.02 ± 0.43 3.14 ± 0.35 | p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.62 | 6% |
Cho/tCr | 0.39, 0.41 ± 0.09 | 0.16, 0.15 ± 0.05 | 0.15, 0.15 ± 0.05 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.38 | 30% |
Cho/NAA | 0.84, 0.79 ± 0.34 | 0.11, 0.10 ± 0.04 | 0.11, 0.11 ± 0.04 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.90 | 33% |
NAA/tCr | 0.58, 0.58 ± 0.17 | 1.41, 1.40 ± 0.09 | 1.34, 1.37 ± 0.09 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.46 | 7% |
mIns/tCr | 1.10, 1.18 ± 0.30 | 0.70, 0.68 ± 0.06 | 0.64, 0.63 ± 0.06 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.13 | 10% |
Lactate/tCr | 0.47, 0.52 ± 0.36 | 0.08, 0.07 ± 0.06 | 0.06, 0.06 ± 0.04 | p = 2.3·× 10−3 | p = 2.3·× 10−3 | p = 0.90 | 57% |
GABA/tCr | 0.13, 0.17 ± 0.07 | 0.26, 0.30 ± 0.08 | 0.25, 0.25 ± 0.06 | p = 0.04 | p = 0.07 | p = 0.38 | 23% |
Gln/tCr | 0.43, 0.52 ± 0.19 | 0.36, 0.38 ± 0.07 | 0.34, 0.34 ± 0.07 | p = 0.32 | p = 0.038 | p = 0.46 | 21% |
Glu/tCr | 0.51, 0.43 ± 0.24 | 1.16, 1.18 ± 0.10 | 1.20, 1.20 ± 0.14 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.71 | 11% |
Glu/Gln | 0.63, 0.89 ± 0.61 | 2.95, 3.24 ± 0.80 | 3.37, 3.60 ± 0.63 | * p = 5.8·× 10−4 | * p = 5.8·× 10−4 | p = 0.26 | 17% |
Lipid (0.9 ppm) CRLB | 0.39, 0.42 ± 0.43 312 ± 469 | 0.66, 0.87 ± 0.75 35.3 ± 6.92 | 0.43, 0.46 ± 0.16 43.3 ± 8.2 | p = 0.25 | p = 0.64 | p = 0.44 | |
Lipid (1.3 ppm) CRLB | 1.44, 1.28 ± 1.36 443 ± 520 | 1,01, 1.48 ± 1.99 327 ± 461 | 0.73, 0.87 ± 0.59 193 ± 356 | p = 0.9 | p = 1.0 | p = 1.0 | |
Lipid (2.0 ppm) CRLB | 0.21, 0.33 ± 0.41 351 ± 456 | 0.32, 0.32 ± 0.29 216 ± 352 | 0.13, 0.22 ± 0.17 103 ± 73 | p = 0.9 | p = 1.0 | p = 0.54 | |
FWHM (Hz) | 10.13 ± 7.15 | 8.64 ± 1.49 | 7.75 ± 0.89 | p = 0.622 | p = 0.434 | p = 0.236 | |
SNR | 24.43 ± 13.61 | 38.29 ± 9.94 | 46.86 ± 5.46 | p = 0.07 | p = 0.004 | p = 0.093 |
Spectral Quality | Voxel Placement | FWHM (Hz) | SNR |
---|---|---|---|
Patient 1 | Tumour | 9.834 | 26 |
Praecuneus | 9.834 | 49 | |
Patient 2 | Tumour | 27.416 | 6 |
Praecuneus | 7.748 | 47 | |
Patient 3 | Tumour | 7.748 | 28 |
Praecuneus | 9.834 | 48 | |
Patient 4 | Tumour | 5.96 | 20 |
Praecuneus | 9.834 | 28 | |
Patient 5 | Tumour | 7.748 | 7 |
Praecuneus | 9.834 | 42 | |
Patient 6 | Tumour | 5.96 | 42 |
Praecuneus | 7.748 | 23 | |
Patient 7 | Tumour | 5.96 | 42 |
Praecuneus | 5.96 | 31 | |
Healthy control 1 | Praecuneus | 7.748 | 46 |
Healthy control 2 | Praecuneus | 5.96 | 50 |
Healthy control 3 | Praecuneus | 9.834 | 42 |
Healthy control 4 | Praecuneus | 7.748 | 41 |
Healthy control 5 | Praecuneus | 7.748 | 58 |
Healthy control 6 | Praecuneus | 7.748 | 43 |
Healthy control 7 | Praecuneus | 7.748 | 48 |
tCr | NAA | Cho | mIns | Lac | Gln | Glu | Cho/ NAA | Cho/ tCr | NAA/ tCr | mIns/ tCr | Gln/ tCr | Glu/ tCr | GABA/ tCr | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Galanaud (1.5T) § | − | ↓ | ↑ | ↑ | ||||||||||
Tong (1.5T) | ↓ | ↓ | (↓) | ↑ | ↓ | |||||||||
Bulik (1.5 and 3T) # | ↓ | ↓ | ↑ | ↑ † | ↑ ‡ | ↑ | ↑ | |||||||
Caivano (3T) | ↑ | ↑ | ↓ | |||||||||||
Hangel (7T) | (↓) | ↓ | ↑ | (↑) | ↑ | ↓ | ||||||||
Li (7T) | ↑† | ↑† | ↓ | ↑ | ↑ | ↓ | − | |||||||
Our 7T Study | ↓ * | ↓ | (↑) | − | (↑) | − | ↓ | ↑ | ↑ | ↓ | ↑ | − | ↓ | (↓) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prener, M.; Opheim, G.; Shams, Z.; Søndergaard, C.B.; Lindberg, U.; Larsson, H.B.W.; Ziebell, M.; Larsen, V.A.; Vestergaard, M.B.; Paulson, O.B. Single-Voxel MR Spectroscopy of Gliomas with s-LASER at 7T. Diagnostics 2023, 13, 1805. https://doi.org/10.3390/diagnostics13101805
Prener M, Opheim G, Shams Z, Søndergaard CB, Lindberg U, Larsson HBW, Ziebell M, Larsen VA, Vestergaard MB, Paulson OB. Single-Voxel MR Spectroscopy of Gliomas with s-LASER at 7T. Diagnostics. 2023; 13(10):1805. https://doi.org/10.3390/diagnostics13101805
Chicago/Turabian StylePrener, Martin, Giske Opheim, Zahra Shams, Christian Baastrup Søndergaard, Ulrich Lindberg, Henrik B. W. Larsson, Morten Ziebell, Vibeke Andrée Larsen, Mark Bitsch Vestergaard, and Olaf B. Paulson. 2023. "Single-Voxel MR Spectroscopy of Gliomas with s-LASER at 7T" Diagnostics 13, no. 10: 1805. https://doi.org/10.3390/diagnostics13101805
APA StylePrener, M., Opheim, G., Shams, Z., Søndergaard, C. B., Lindberg, U., Larsson, H. B. W., Ziebell, M., Larsen, V. A., Vestergaard, M. B., & Paulson, O. B. (2023). Single-Voxel MR Spectroscopy of Gliomas with s-LASER at 7T. Diagnostics, 13(10), 1805. https://doi.org/10.3390/diagnostics13101805