Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information and Symptoms of Patients
2.2. Reconstructed Arterial and Aneurysmal Models
2.3. Numerical Modeling
2.3.1. Geometry and Mesh
2.3.2. Mathematical Equations
2.3.3. Initial and Boundary Conditions
2.3.4. Numerical Setups
3. Results
3.1. Comparisons in Dimensions and Configurations
3.2. Hemodynamics in Twin A-RB
3.3. Hemodynamic Comparisons: Twin A-LB vs. Twin B-LB
4. Discussion
4.1. Similarities of Morpholgies and Hemodyanmics
4.2. Hemodynamic Effects on CA Pathophysilogy
4.3. Limitations and Future Plans
5. Conclusions
- Although the twins share identical DNA, identical appearances, and heights, the cerebral arterial morphological configuration and dimensions are different due to non-genetic factors.
- The neck regions of the ruptured aneurysmal sac in twin A-RB present higher TAWSS, and some local luminal surfaces on the sac may have a higher probability to enlarge/rupture given the appearance of a relatively high OSI and low TAWSS. Such a distribution was also observed in the small bleb in twin B-LB.
- Differences in morphologies, although sharing the same DNA information, further lead to varied hemodynamic characteristics in arteries, leading to varying symptoms of CA pathophysiology.
- This preliminary study opens new horizons for the future statistical evaluation of the role of homodynamic parameters on CA pathophysiology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Rooij, N.K.; Linn, F.H.H.; van der Plas, J.A.; Algra, A.; Rinkel, G.J.E. Incidence of subarachnoid haemorrhage: A systematic review with emphasis on region, age, gender and time trends. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Sadasivan, C.; Fiorella, D.J.; Woo, H.H.; Lieber, B.B. Physical Factors Effecting Cerebral Aneurysm Pathophysiology. Ann. Biomed. Eng. 2013, 41, 1347–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, H.; Johnson, M.; Bramlage, L.; Yang, Z.; Ludwig, B. Hemodynamic investigations in intracranial aneurysms: A commentary. Biomed. Eng. Commun. 2023, 2, 1–6. [Google Scholar] [CrossRef]
- Sforza, D.M.; Putman, C.M.; Cebral, J.R. Hemodynamics of Cerebral Aneurysms. Annu. Rev. Fluid Mech. 2009, 41, 91–107. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.K.; Ruigrok, Y.M. Genetics of Intracranial Aneurysms. Stroke 2021, 52, 3004–3012. [Google Scholar] [CrossRef]
- Gholampour, S.; Mehrjoo, S. Effect of bifurcation in the hemodynamic changes and rupture risk of small intracranial aneurysm. Neurosurg. Rev. 2021, 44, 1703–1712. [Google Scholar] [CrossRef]
- Yu, H.; Huang, G.P.; Yang, Z.; Ludwig, B.R. Numerical studies of hemodynamic alterations in pre- and post-stenting cerebral aneurysms using a multiscale modeling. Int. J. Numer. Method Biomed. Eng. 2019, 35, e3256. [Google Scholar] [CrossRef]
- Yi, H.; Johnson, M.; Bramlage, L.C.; Ludwig, B.; Yang, Z. Effects of Pulsatile Flow Rate and Shunt Ratio in Bifurcated Distal Arteries on Hemodynamic Characteristics Involved in Two Patient-Specific Internal Carotid Artery Sidewall Aneurysms: A Numerical Study. Bioengineering 2022, 9, 326. [Google Scholar] [CrossRef]
- Hajirayat, K.; Gholampour, S.; Sharifi, I.; Bizari, D. Biomechanical Simulation to Compare the Blood Hemodynamics and Cerebral Aneurysm Rupture Risk in Patients with Different Aneurysm Necks. J. Appl. Mech. Tech. Phys. 2017, 58, 968–974. [Google Scholar] [CrossRef]
- Meng, H.; Wang, Z.; Hoi, Y.; Gao, L.; Metaxa, E.; Swartz, D.D.; Kolega, J. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 2007, 38, 1924–1931. [Google Scholar] [CrossRef]
- Nerem, R.M. Hemodynamics and the Vascular Endothelium. J. Biomech. Eng. 1993, 115, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Lehoux, S.; Tedgui, A. Cellular mechanics and gene expression in blood vessels. J. Biomech. 2003, 36, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Forgó, B.; Tárnoki, Á.D.; Tárnoki, D.L.; Littvay, L.; Fagnani, C.; Stazi, M.A.; Meneghetti, G.; Medda, E.; Farina, F.; Baracchini, C. Investigation of circle of Willis variants and hemodynamic parameters in twins using transcranial color-coded Doppler sonography. Int. J. Cardiovasc. Imaging 2018, 34, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.Y.; Wright, M.J.; Thompson, P.M.; McMahon, K.L.; Blokland, G.G.; de Zubicaray, G.I.; Martin, N.G.; Vinkhuyzen, A.A.; Reutens, D.C. Modeling of the hemodynamic responses in block design fMRI studies. J. Cereb. Blood Flow Metab. 2014, 34, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Thomas, H.J.; Rana, U.; Marsh, C.E.; Caddy, H.T.; Kelsey, L.J.; Smith, K.J.; Green, D.J.; Doyle, B.J. Assessment of cerebrovascular responses to physiological stimuli in identical twins using multimodal imaging and computational fluid dynamics. J. Appl. Physiol. 2020, 129, 1024–1032. [Google Scholar] [CrossRef]
- Zhou, S.; Dion, P.A.; Rouleau, G.A. Genetics of Intracranial Aneurysms. Stroke 2018, 49, 780–787. [Google Scholar] [CrossRef]
- Leung, H.K.; Lam, Y.; Cheng, K.M.; Chan, C.M.; Cheung, Y.L. Intracranial aneurysms in twins: Case report and review of the literature. Hong Kong Med. J. 2011, 17, 151–154. [Google Scholar]
- ter Laan, M.; Kerstjens-Frederikse, W.S.; Metzemaekers, J.D.; van Dijk, J.M.; Groen, R.J. Concordant symptomatic intracranial aneurysm in a monozygotic twin: A case report and review of the literature. Twin Res. Hum. Genet. 2009, 12, 295–300. [Google Scholar] [CrossRef]
- Ohno, S.; Ikeda, Y.; Onitsuka, T.; Nakajima, S.; Uchino, H.; Haraoka, J.; Yamagata, Z. Cerebral aneurysms in identical twins. No Shinkei Geka Neurol. Surg. 2004, 32, 875–879. [Google Scholar] [CrossRef]
- Sharma, P.; Brown, M.J. Neurovascular lessons from a pair of identical twins with cerebral aneurysms. Postgrad. Med. J 2001, 77, 197–198. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.A.J. An intracranial aneurysm in one identical twin, but no aneurysm in the other. Br. J. Neurosurg. 2001, 15, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Hagen, T.; Neidl, K.; Piepgras, U. Multiple cerebral aneurysms in identical twins. Am. J. Neuroradiol. 1997, 18, 973–976. [Google Scholar]
- Mackey, J.; Brown, R.D.; Sauerbeck, L.; Hornung, R.; Moomaw, C.J.; Koller, D.L.; Foroud, T.; Deka, R.; Woo, D.; Kleindorfer, D.; et al. Affected Twins in the Familial Intracranial Aneurysm Study. Cerebrovasc. Dis. 2015, 39, 82–86. [Google Scholar] [CrossRef] [Green Version]
- van Kammen, M.S.; Bourcier, R.; Moomaw, C.J.; Broderick, J.P.; Woo, D.; Papagiannaki, C.; Levrier, O.; Lindgren, A.E.; Koivisto, T.; Jääskeläinen, J.E.; et al. Heritability of territory of ruptured and unruptured intracranial aneurysms in families. PLoS ONE 2020, 15, e0236714. [Google Scholar] [CrossRef]
- Yi, H.; Yang, Z.; Johnson, M.; Bramlage, L.; Ludwig, B. Hemodynamic characteristics in a cerebral aneurysm model using non-Newtonian blood analogues. Phys. Fluids 2022, 34, 103101, Erratum in Phys. Fluids 2023, 35, 019903. [Google Scholar] [CrossRef] [PubMed]
- Schöning, M.; Walter, J.; Scheel, P. Estimation of cerebral blood flow through color duplex sonography of the carotid and vertebral arteries in healthy adults. Stroke 1994, 25, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, D.C. Simulation of Transition with a Two-Equation Turbulence Model. AIAA J. 1994, 32, 247–255. [Google Scholar] [CrossRef]
- Yu, H.; Huang, G.P.; Yang, Z.; Ludwig, B.R. A multiscale computational modeling for cerebral blood flow with aneurysms and/or stenoses. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3127. [Google Scholar] [CrossRef] [PubMed]
- Likittanasombut, P.; Reynolds, P.; Meads, D.; Tegeler, C. Volume flow rate of common carotid artery measured by Doppler method and Color Velocity Imaging Quantification (CVI-Q). J. Neuroimaging 2006, 16, 34–38. [Google Scholar] [CrossRef]
- Metaxa, E.; Tremmel, M.; Natarajan, S.K.; Xiang, J.; Paluch, R.A.; Mandelbaum, M.; Siddiqui, A.H.; Kolega, J.; Mocco, J.; Meng, H. Characterization of Critical Hemodynamics Contributing to Aneurysmal Remodeling at the Basilar Terminus in a Rabbit Model. Stroke 2010, 41, 1774–1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Tutino, V.M.; Xiang, J.; Siddiqui, A. High WSS or Low WSS? Complex Interactions of Hemodynamics with Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis. Am. J. Neuroradiol. 2014, 35, 1254–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, I.L.; Cardiff, P.; Baccin, C.E.; Gasche, J.L. A numerical investigation of the mechanics of intracranial aneurysms walls: Assessing the influence of tissue hyperelastic laws and heterogeneous properties on the stress and stretch fields. J. Mech. Behav. Biomed. Mater. 2022, 136, 105498. [Google Scholar] [CrossRef] [PubMed]
- Jodko, D.; Jeckowski, M.; Tyfa, Z. Fluid structure interaction versus rigid-wall approach in the study of the symptomatic stenosed carotid artery: Importance of wall compliance and resilience of loose connective tissue. Int. J. Numer. Methods Biomed. Eng. 2022, 38, e3630. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-J.; Yang, H.; Kim, Y.B.; Oh, J.H.; Cho, K.-C. The quantitative comparison between high wall shear stress and high strain in the formation of paraclinoid aneurysms. Sci. Rep. 2021, 11, 7947. [Google Scholar] [CrossRef]
- Cho, K.-C.; Yang, H.; Kim, J.-J.; Oh, J.H.; Kim, Y.B. Prediction of rupture risk in cerebral aneurysms by comparing clinical cases with fluid–structure interaction analyses. Sci. Rep. 2020, 10, 18237. [Google Scholar] [CrossRef] [PubMed]
Models | Mesh Name | Min. Size (mm) | Max. Size (mm) | Volume Elements | Volumetric Max. Skewness | Prism Layers | Peel Layers | Size Growth Rate |
---|---|---|---|---|---|---|---|---|
Twin A-RB | Mesh 01 | 0.1 | 1.2 | 670,515 | 0.74 | 10 | 3 | 1.05 |
Mesh 02 (Final) | 0.05 | 0.8 | 2,372,078 | 0.76 | 10 | 3 | ||
Mesh 03 | 0.03 | 0.5 | 6,308,487 | 0.72 | 10 | 3 | ||
Twin A-LB | Mesh 04 | 0.1 | 1.2 | 634,282 | 0.37 | 10 | 3 | |
Mesh 05 (Final) | 0.05 | 0.8 | 1,783,417 | 0.76 | 10 | 3 | ||
Mesh 06 | 0.03 | 0.6 | 4,000,928 | 0.65 | 10 | 3 | ||
Twin B-LB | Mesh 07 | 0.1 | 1.2 | 716,592 | 0.81 | 5 | 1 | |
Mesh 08 (Final) | 0.05 | 0.8 | 2,606,817 | 0.8 | 10 | 3 | ||
Mesh 09 | 0.03 | 0.6 | 7,526,671 | 0.79 | 10 | 3 |
Locations | a | b | c | d | e | f | g | h | |
---|---|---|---|---|---|---|---|---|---|
Dimensions (mm) | Twin A | 5.28 | 5.37 | 4.65 | 4.09 | 4.30 | 4.33 | 4.31 | 3.62 |
Twin B | 5.88 | 5.49 | 5.11 | 4.92 | 5.15 | 5.45 | 3.96 | 4.33 | |
Relative Difference (%) | 11.36 | 2.23 | 9.89 | 20.29 | 19.77 | 25.86 | −8.12 | 19.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, H.; Yang, Z.; Bramlage, L.C.; Ludwig, B.R. Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins. Diagnostics 2023, 13, 2004. https://doi.org/10.3390/diagnostics13122004
Yi H, Yang Z, Bramlage LC, Ludwig BR. Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins. Diagnostics. 2023; 13(12):2004. https://doi.org/10.3390/diagnostics13122004
Chicago/Turabian StyleYi, Hang, Zifeng Yang, Luke C. Bramlage, and Bryan R. Ludwig. 2023. "Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins" Diagnostics 13, no. 12: 2004. https://doi.org/10.3390/diagnostics13122004
APA StyleYi, H., Yang, Z., Bramlage, L. C., & Ludwig, B. R. (2023). Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins. Diagnostics, 13(12), 2004. https://doi.org/10.3390/diagnostics13122004