Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection and Processing
2.2. Ethics Statement
2.3. Library Preparation and Whole-Genome Sequencing
2.4. Bioinformatics Processing of Whole-Genome Sequencing Data
2.5. Phylogeny Construction
2.6. Resistance Genetic Variants
3. Results
3.1. Diagnosis and Demographic Data of Patients
3.2. Features of Genome Sequencing
3.3. Phenotypic Resistance Patterns
3.4. Antimicrobial Resistance and Drug Resistance-Associated Mutations
3.5. Antibiotic Resistance Detected by: TB-Profiler, Mykrobe, CASTB, and ResFinder
3.6. Comparison of Phenotypic and Genomic Drug Susceptibility Testing Results
3.7. SNP Clustering and Distribution in the M. tuberculosis Genomes
3.8. Phylogenetic Analysis of M. tuberculosis Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Health Organization. Guidelines for Surveillance of Drug Resistance in Tuberculosis: Third Edition; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Van Soolingen, D.; Hermans, P.W.; de Haas, P.E.; Soll, D.R.; van Embden, J.D. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: Evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol. 1991, 29, 2578–2586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Phelan, J.E.; O’Sullivan, D.M.; Machado, D.; Ramos, J.; Oppong, Y.E.A.; Campino, S.; O’Grady, J.; McNerney, R.; Hibberd, M.L.; Viveiros, M.; et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Hunt, M.; Bradley, P.; Lapierre, S.G.; Heys, S.; Thomsit, M.; Hall, M.B.; Malone, K.M.; Wintringer, P.; Walker, T.M.; Cirillo, D.M.; et al. Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Res. 2019, 4, 191. [Google Scholar] [CrossRef] [Green Version]
- Iwai, H.; Kato-Miyazawa, M.; Kirikae, T.; Miyoshi-Akiyama, T. CASTB (the comprehensive analysis server for the Mycobacterium tuberculosis complex): A publicly accessible web server for epidemiological analyses, drug-resistance prediction and phylogenetic comparison of clinical isolates. Tuberculosis 2015, 95, 843–844. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 2022, 8, 000748. [Google Scholar] [CrossRef]
- Homolka, S.; Projahn, M.; Feuerriegel, S.; Ubben, T.; Diel, R.; Nübel, U.; Niemann, S. High resolution discrimination of clinical Mycobacterium tuberculosis complex strains based on single nucleotide polymorphisms. PLoS ONE 2012, 7, e39855. [Google Scholar] [CrossRef] [Green Version]
- Shitikov, E.; Vyazovaya, A.; Malakhova, M.; Guliaev, A.; Bespyatykh, J.; Proshina, E.; Pasechnik, O.; Mokrousov, I. Simple Assay for Detection of the Central Asia Outbreak Clade of the Mycobacterium tuberculosis Beijing Genotype. J. Clin. Microbiol. 2019, 57. [Google Scholar] [CrossRef] [Green Version]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [Green Version]
- Ioerger, T.R.; Koo, S.; No, E.-G.; Chen, X.; Larsen, M.H.; Jacobs, W.R., Jr.; Pillay, M.; Sturm, A.W.; Sacchettini, J.C. Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE 2009, 4, e7778. [Google Scholar] [CrossRef]
- Gardy, J.L.; Johnston, J.C.; Ho Sui, S.J.; Cook, V.J.; Shah, L.; Brodkin, E.; Rempel, S.; Moore, R.; Zhao, Y.; Holt, R.; et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 2011, 364, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Ford, C.B.; Lin, P.L.; Chase, M.R.; Shah, R.R.; Iartchouk, O.; Galagan, J.; Mohaideen, N.; Ioerger, T.R.; Sacchettini, J.C.; Lipsitch, M.; et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat. Genet. 2011, 43, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Hillemann, D.; Kubica, T.; Agzamova, R.; Venera, B.; Rüsch-Gerdes, S.; Niemann, S. Rifampicin and isoniazid resistance mutations in Mycobacterium tuberculosis strains isolated from patients in Kazakhstan. Int. J. Tuberc. Lung Dis. 2005, 9, 1161–1167. [Google Scholar]
- Kozhamkulov, U.; Akhmetova, A.; Rakhimova, S.; Belova, E.; Alenova, A.; Bismilda, V.; Chingissova, L.; Ismailov, S.; Ramanculov, E.; Momynaliev, K. Molecular characterization of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Kazakhstan. Jpn. J. Infect. Dis. 2011, 64, 253–255. [Google Scholar] [CrossRef]
- Akhmetova, A.; Kozhamkulov, U.; Bismilda, V.; Chingissova, L.; Abildaev, T.; Dymova, M.; Filipenko, M.; Ramanculov, E. Mutations in the pncA and rpsA genes among 77 Mycobacterium tuberculosis isolates in Kazakhstan. Int. J. Tuberc. Lung Dis. 2015, 19, 179–184. [Google Scholar] [CrossRef]
- Kubica, T.; Agzamova, R.; Wright, A.; Aziz, M.A.; Rakishev, G.; Bismilda, V.; Richter, E.; Rüsch-Gerdes, S.; Niemann, S. The Beijing genotype is a major cause of drug-resistant tuberculosis in Kazakhstan. Int. J. Tuberc. Lung Dis. 2005, 9, 646–653. [Google Scholar]
- Ibrayeva, A.; Kozhamkulov, U.; Raiymbek, D.; Alenova, A.; Igilikova, S.; Zholdybayeva, E.; Abildaev, T.; Momynaliev, K. Molecular epidemiology of Mycobacterium tuberculosis strains circulating in the penitentiary system of Kazakhstan. Int. J. Tuberc. Lung Dis. 2014, 18, 298–301. [Google Scholar] [CrossRef]
- Klotoe, B.J.; Kacimi, S.; Costa-Conceicão, E.; Gomes, H.M.; Barcellos, R.B.; Panaiotov, S.; Haj Slimene, D.; Sikhayeva, N.; Sengstake, S.; Schuitema, A.R.; et al. Genomic characterization of MDR/XDR-TB in Kazakhstan by a combination of high-throughput methods predominantly shows the ongoing transmission of L2/Beijing 94–32 central Asian/Russian clusters. BMC Infect. Dis. 2019, 19, 553. [Google Scholar] [CrossRef] [Green Version]
- Skiba, Y.; Mokrousov, I.; Ismagulova, G.; Maltseva, E.; Yurkevich, N.; Bismilda, V.; Chingissova, L.; Abildaev, T.; Aitkhozhina, N. Molecular snapshot of Mycobacterium tuberculosis population in Kazakhstan: A country-wide study. Tuberculosis 2015, 95, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Kairov, U.; Kozhamkulov, U.; Molkenov, A.; Rakhimova, S.; Askapuli, A.; Zhabagin, M.; Akhmetova, A.; Yerezhepov, D.; Abilova, Z.; Abilmazhinova, A.; et al. Draft Genome Sequences of Two Clinical Isolates of Mycobacterium tuberculosis from Sputum of Kazakh Patients. Genome Announc. 2015, 3, e00466-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilin, A.I.; Kulmanov, M.E.; Korotetskiy, I.S.; Islamov, R.A.; Akhmetova, G.K.; Lankina, M.V.; Reva, O.N. Genomic Insight into Mechanisms of Reversion of Antibiotic Resistance in Multidrug Resistant Mycobacterium tuberculosis Induced by a Nanomolecular Iodine-Containing Complex FS-1. Front. Cell. Infect. Microbiol. 2017, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniyarov, A.; Molkenov, A.; Rakhimova, S.; Akhmetova, A.; Nurkina, Z.; Yerezhepov, D.; Chingissova, L.; Bismilda, V.; Toxanbaeva, B.; Akilzhanova, A.; et al. Whole genome sequence data of Mycobacterium tuberculosis XDR strain, isolated from patient in Kazakhstan. Data Brief 2020, 33, 106416. [Google Scholar] [CrossRef]
- Tarlykov, P.; Atavliyeva, S.; Alenova, A.; Ramankulov, Y. Draft Genome Sequence of an Extensively Drug-Resistant Mycobacterium tuberculosis Clinical Isolate, 3485_MTB, from Nur-Sultan, Kazakhstan. Microbiol. Resour. Announc. 2020, 9, e00025-20. [Google Scholar] [CrossRef] [Green Version]
- Tarlykov, P.; Atavliyeva, S.; Alenova, A.; Ramankulov, Y. Genomic analysis of Latin American-Mediterranean family of Mycobacterium tuberculosis clinical strains from Kazakhstan. Mem. Inst. Oswaldo Cruz 2020, 115, e200215. [Google Scholar] [CrossRef]
- Daniyarov, A.; Molkenov, A.; Rakhimova, S.; Akhmetova, A.; Yerezhepov, D.; Chingissova, L.; Bismilda, V.; Toksanbayeva, B.; Rakisheva, A.; Akilzhanova, A.; et al. Genomic Analysis of Multidrug-Resistant Mycobacterium tuberculosis Strains From Patients in Kazakhstan. Front. Genet. 2021, 12, 2155. [Google Scholar] [CrossRef]
- World Health Organization. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
Isolate | DST Result (Phenotypic) | Diagnosis | Gender | Age | Material | First-Line Antibiotics (RMP, INH, SM, EMB, PZA) | Second-Line Antibiotics (Lfx, Mfx, Lzd, Bdq, Cfz, Km, Cm, Am, Pro/Eto) |
---|---|---|---|---|---|---|---|
MTB-pXDR-KZ (163) | Pre-XDR-TB | Infiltrative pulmonary TB, smear positive | Female | 35 | Sputum | RMP-resistant, INH-resistant, EMB-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL), Cfz-resistant, Km-resistant, Cm-resistant, Am-resistant |
MTB-pXDR-KZ (232) | Pre-XDR-TB | Infiltrative pulmonary TB, smear negative | Male | 29 | Sputum | RMP-resistant, INH-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant, Km-resistant |
MTB-pXDR-KZ (260) | Pre-XDR-TB | Infiltrative pulmonary TB, smear negative | Female | 53 | Sputum | RMP-resistant, INH-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL), Mfx-resistant (antibiotic concentration 1.0 µg/mL) |
MTB-pXDR-KZ (304) | Pre-XDR-TB | Long-term sequelae of tuberculosis of the respiratory organs and unspecified tuberculosis, smear negative | Male | 38 | Sputum | RMP-resistant, INH-resistant, SM-resistant, PZA-resistant | Mfx-resistant, Pro/Eto-resistant |
MTB-pXDR-KZ (711) | Pre-XDR-TB | Infiltrative pulmonary TB, smear positive | Female | 27 | Sputum | RMP-resistant, INH-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL), Cm-resistant, Pro/Eto-resistant |
MTB-pXDR-KZ (1155) | Pre-XDR-TB | Fibrocystic cavernous TB, smear negative | Male | 47 | Sputum | RMP-resistant, INH-resistant, EMB-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL) |
MTB-pXDR-KZ (1483) | Pre-XDR-TB | Infiltrative pulmonary TB, smear positive | Female | 23 | Sputum | RMP-resistant, INH-resistant, EMB-resistant, PZA-resistant | Mfx-resistant (antibiotic concentration 0.25 µg/mL), Km-resistant, Cm-resistant, Pro/Eto-resistant, Am-resistant |
MTB-pXDR-KZ (1748) | Pre-XDR-TB | Infiltrative pulmonary TB, smear positive | Male | 34 | Sputum | RMP-resistant, INH-resistant, SM-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL), Pro/Eto-resistant |
MTB-pXDR-KZ (1853) | Pre-XDR-TB | Infiltrative pulmonary TB, smear positive | Male | 53 | Sputum | RMP-resistant, INH-resistant, SM-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL), Cfz-resistant |
MTB-pXDR-KZ (2325) | Pre-XDR-TB | Bone and joint TB | Female | 40 | Pus | RMP-resistant, INH-resistant, EMB-resistant, PZA-resistant | Lfx-resistant, Mfx-resistant (antibiotic concentration 0.25 µg/mL) |
Isolate | Drug-Resistance | Total Bases a | % Total Bases a | GC-Content a | Coverage Mean a | Coverage Median a | Total Bases b | % Total Bases b | GC-Content b | Coverage Mean b | Coverage Median b |
---|---|---|---|---|---|---|---|---|---|---|---|
MTB-pXDR-KZ (163) | Pre-XDR-TB | 4,371,158 | 0.99 | 65.59 | 97.18 | 97 | 4,311,226 | 0.98 | 65.45 | 98.34 | 97 |
MTB-pXDR-KZ (232) | Pre-XDR-TB | 4,355,569 | 0.99 | 65.58 | 170.18 | 173 | 4,289,943 | 0.97 | 65.41 | 172.60 | 174 |
MTB-pXDR-KZ (260) | Pre-XDR-TB | 4,367,295 | 0.99 | 65.56 | 115.97 | 117 | 4,289,832 | 0.97 | 65.37 | 117.82 | 118 |
MTB-pXDR-KZ (304) | Pre-XDR-TB | 4,371,809 | 0.99 | 65.58 | 197.59 | 199 | 4,309,013 | 0.98 | 65.40 | 200.25 | 200 |
MTB-pXDR-KZ (711) | Pre-XDR-TB | 4,376,887 | 0.99 | 65.60 | 150.03 | 149 | 4,351,585 | 0.99 | 65.51 | 150.85 | 150 |
MTB-pXDR-KZ (1155) | Pre-XDR-TB | 4,362,151 | 0.99 | 65.56 | 83.39 | 83 | 4,288,471 | 0.97 | 65.37 | 84.64 | 84 |
MTB-pXDR-KZ (1483) | Pre-XDR-TB | 4,367,543 | 0.99 | 65.57 | 86.92 | 86 | 4,307,297 | 0.98 | 65.39 | 88.01 | 87 |
MTB-pXDR-KZ (1748) | Pre-XDR-TB | 4,374,730 | 0.99 | 65.59 | 99.27 | 102 | 4,318,264 | 0.98 | 65.44 | 100.43 | 102 |
MTB-pXDR-KZ (1853) | Pre-XDR-TB | 4,366,656 | 0.99 | 65.58 | 93.31 | 95 | 4,302,788 | 0.98 | 65.41 | 94.54 | 96 |
MTB-pXDR-KZ (2325) | Pre-XDR-TB | 4,376,075 | 0.99 | 65.61 | 500.20 | 515 | 4,357,379 | 0.99 | 65.55 | 502.23 | 515 |
Drug | Gene | Amino Acid Change/Nucleotide Change (Drug Resistance-Associated Mutations) | Type | No. of Isolates | Amino Acid Change/Nucleotide Change (Non-Synonymous Mutations Which Have Not Been Associated with Drug Resistance) | Type | No. of Isolates |
---|---|---|---|---|---|---|---|
Isoniazid | katG fabG1 | p.Ser315Thr (c.944G > C) c.-8T > C | missense variant upstream gene variant | 10 1 | p.Arg463Leu (c.1388G > T) | missense variant | 10 |
Rifampicin | rpoB | p.His445Tyr (c.1333C > T) p.His445Asn (c.1333C > A) p.Ser450Leu (c.1349C > T) p.Leu430Pro (c.1289T > C) | missense variant missense variant missense variant missense variant | 1 1 8 1 | p.Ile1035Val (c.3103A > G) p.Arg552His (c.1655G > A) | missense variant missense variant | 1 1 |
rpoC | p.Ile491Thr (c.1472T > C) | missense variant | 1 | c.-339T > C p.Val483Ala (c.1448T > C) p.Glu1092Asp (c.3276A > C) p.Gln435His (c.1305G > C) p.Val483Gly (c.1448T > G) p.Ile491Val (c.1471A > G) p.Asp943Gly (c.2828A > G) | upstream gene variant missense variant missense variant missense variant missense variant missense variant missense variant | 10 2 8 1 1 1 1 | |
Ethambutol | embB | p.Met306Ile (c.918G > A) p.Met306Val (c.916A > G) p.Gly406Ala (c.1217G > C) c.-12C > T p.Asp354Ala (c.1061A > C) p.Asp1024Asn (c.3070G > A) | missense variant missense variant missense variant upstream gene variant missense variant missense variant | 1 3 1 3 2 2 | |||
embA | c.-590C > T | upstream gene variant | 10 | ||||
Streptomycin | rpsL | p.Lys43Arg (c.128A > G) | missense variant | 10 | c.-165T > C | upstream gene variant | 10 |
Pyrazinamide | pncA | p.Val7Gly (c.20T > G) c.-724_ * 14839del p.Val139Ala (c.416T > C) c.11A > G p.Ile6Thr (c.17T > C) p.Gly162Asp (c.485G > A) p.Leu182Ser (c.545T > C) p.Trp68Gly (c.202T > G) p.Thr142Met (c.425C > T) | missense variant transcript ablation missense variant missense variant missense variant missense variant missense variant missense variant | 1 1 1 1 1 1 1 1 1 | |||
Ethionamide | fabG1 | c.-8T > C p.Tyr92 * (c.276T > G) | upstream gene variant stop gained | 1 1 | |||
ethA | p.Lys37fs (c.110delA) p.Thr61Met (c.182C > T) | frameshift variant missense variant | 1 1 | p.Leu244Pro (c.731T > C) p.Gln24Pro (c.71A > C) p.Thr314Ile (c.941C > T) p.Arg292 * (c.874C > T) | missense variant missense variant missense variant stop gained | 1 1 1 1 | |
Fluoroquinolones | gyrA | p.Asp94Gly (c.281A > G) p.Ala90Val (c.269C > T) p.Asp94Asn (c.280G > A) | missense variant missense variant missense variant | 4 4 2 | p.Glu21Gln (c.61G > C) p.Ser95Thr (c.284G > C) p.Gly668Asp (c.2003G > A) | missense variant missense variant missense variant | 10 10 10 |
Amikacin | rrs | n.1401A > G | non-coding transcript exon variant | 2 | c.-187C > T | upstream gene variant | 10 |
Kanamycin | eis | c.-37G > T c.-10G > A c.-8C > A | upstream gene variant upstream gene variant upstream gene variant | 1 1 1 | |||
Para-aminosalicylic acid | folC | p.Ser150Gly (c.448A > G) | missense variant | 1 | |||
mshA | p.Ala187Val (c.560C > T) | missense variant | 10 | ||||
mmpR5 | p.Val7fs (c.19delG) p.Cys46Arg (c.136T > C) | frameshift variant missense variant | 1 1 | ||||
ald | c.-32T > C c.-89A > G c.897dupG | upstream gene variant upstream gene variant frameshift variant | 10 2 1 | ||||
gid | p.Glu92Asp (c.276A > C) | missense variant | 10 | ||||
ddn | p.Arg30Ser (c.88C > A) | missense variant | 1 | ||||
tlyA | p.Lys182Thr (c.545A > C) | missense variant | 1 | ||||
alr | p.Lys157Glu (c.469A > G) | missense variant | 1 | ||||
ddn | p.Arg30Ser (c.88C > A) | missense variant | 2 | ||||
fbiB | p.Ser54Ala (c.160T > G) | missense variant | 1 | ||||
tlyA | p.Pro253Ala (c.757C > G) | missense variant | 1 |
Drug | Gene | TB-Profiler/Mykrobe/CASTB/ResFinder | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MTB-pXDR-KZ (163) | MTB-pXDR-KZ (232) | MTB-pXDR-KZ (260) | MTB-pXDR-KZ (304) | MTB-pXDR-KZ (711) | MTB-pXDR-KZ (1155) | MTB-pXDR-KZ (1483) | MTB-pXDR-KZ (1748) | MTB-pXDR-KZ (1853) | MTB-pXDR-KZ (2325) | ||
Isoniazid | katG | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R |
Rifampicin | rpoB | R/R/R/R | R/R/R/R | R/R/R/R | R/R/-/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R |
Ethambutol | embB | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/S/-/R | R/R/R/R | R/R/R/R |
Streptomycin | rpsL | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R | R/R/R/R |
Pyrazinamide | pncA | R/R/-/R | R/S/-/S | R/R/-/R | R/R/R/R | -/S/-/S | R/R/-/S | R/R/R/R | R/R/R/R | R/R/-/R | R/S/-/R |
Ethionamide | fabG1 | -/-/-/S | R/-/-/S | -/-/-/S | R/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | R/-/-/R | -/-/-/S |
Fluoroquinolones | gyrA | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- |
Ofloxacin | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | R/R/R/- | |
Moxifloxacin | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | R/R/-/- | |
Levofloxacin | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | R/-/-/- | |
Ciprofloxacin | R/R/-/S | R/R/-/S | R/R/-/S | R/R/-/S | R/R/-/S | R/R/-/S | R/R/-/S | R/R/-/S | R/R/-/- | R/R/-/S | |
Amikacin | rrs | R/R/R/R | -/S/-/S | -/S/-/S | -/S/-/S | -/S/-/S | -/S/-/S | R/R/R/R | -/S/-/S | -/S/-/S | -/S/-/S |
Capreomycin | rrs | R/R/-/R | -/S/-/S | -/S/-/S | -/S/-/S | -/S/-/S | -/S/-/S | R/R/-/R | -/S/-/S | -/S/-/S | -/S/-/S |
Kanamycin | rrs | R/R/-/R | R/S/-/R | -/S/-/S | R/R/-/R | -/S/-/S | -/S/-/S | R/R/-/R | -/S/-/S | -/S/-/S | R/S/-/R |
Para-aminosalicylic acid | folC | R/-/-/R | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S | -/-/-/S |
Aminoglycosides | R/-/-/- |
Isolate | Lineage | Outbreak Clade |
---|---|---|
MTB-pXDR-KZ (163) | Beijing | Central Asia outbreak |
MTB-pXDR-KZ (232) | Beijing | Central Asia outbreak |
MTB-pXDR-KZ (260) | Beijing | Central Asia |
MTB-pXDR-KZ (304) | Beijing | European/Russian W148 Outbreak |
MTB-pXDR-KZ (711) | Beijing | Central Asia |
MTB-pXDR-KZ (1155) | Beijing | Central Asia outbreak |
MTB-pXDR-KZ (1483) | Beijing | Central Asia |
MTB-pXDR-KZ (1748) | Beijing | European/Russian W148 Outbreak |
MTB-pXDR-KZ (1853) | Beijing | Central Asia outbreak |
MTB-pXDR-KZ (2325) | Beijing | Central Asia outbreak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniyarov, A.; Akhmetova, A.; Rakhimova, S.; Abilova, Z.; Yerezhepov, D.; Chingissova, L.; Bismilda, V.; Takenov, N.; Akilzhanova, A.; Kairov, U.; et al. Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan. Diagnostics 2023, 13, 2005. https://doi.org/10.3390/diagnostics13122005
Daniyarov A, Akhmetova A, Rakhimova S, Abilova Z, Yerezhepov D, Chingissova L, Bismilda V, Takenov N, Akilzhanova A, Kairov U, et al. Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan. Diagnostics. 2023; 13(12):2005. https://doi.org/10.3390/diagnostics13122005
Chicago/Turabian StyleDaniyarov, Asset, Ainur Akhmetova, Saule Rakhimova, Zhannur Abilova, Dauren Yerezhepov, Lyailya Chingissova, Venera Bismilda, Nurlan Takenov, Ainur Akilzhanova, Ulykbek Kairov, and et al. 2023. "Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan" Diagnostics 13, no. 12: 2005. https://doi.org/10.3390/diagnostics13122005
APA StyleDaniyarov, A., Akhmetova, A., Rakhimova, S., Abilova, Z., Yerezhepov, D., Chingissova, L., Bismilda, V., Takenov, N., Akilzhanova, A., Kairov, U., & Kozhamkulov, U. (2023). Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan. Diagnostics, 13(12), 2005. https://doi.org/10.3390/diagnostics13122005