Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Sampling
2.2. Tissue Sampling
2.3. RNA Extraction and Real-Time Quantitative Polymerase Chain Reaction
2.4. DNA Extraction and Genotyping
2.5. Determination of Serum β-Catenin Levels
2.6. Statistical Analysis
3. Results
3.1. Demographic Data and Clinical Findings of the Study Population
- This study recruited a total of 124 participants, including 62 BC female patients and 62 healthy controls. Most variable distributions, including age and menopausal status, were comparable between BC cases and cancer-free controls (p value > 0.05). Regarding clinical findings, 71% of patients had positive LN metastasis, 64.5% were stage II + III, and 71.0% were grade II + III (Table 1).
3.2. The Relationship between the Circ-ICTH Expression and Clinico-Pathological Parameters of BC Patients
3.3. β-catenin Level (pg/mL) in Control and BC Patients and Its Correlation with Circ-ITCH mRNA Expression
3.4. Distribution of Genotype and Allelic Frequencies of Circ-ITCH Polymorphisms
3.5. Association of rs10485505 Genotype and rs4911154 Genotype of Circ-ITCH Polymorphisms and Clinico-Pathological Features of BC Patients
3.6. Association of rs10485505 Genotype and rs4911154 Genotype of Circ-ITCH Polymorphisms, Circ-ITCH mRNA Expression and β Catenin Level in BC
3.7. The Evaluation of Circ-ITCH RNA Expression as a Prognosis Survival Biomarker in BC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F. Cancer and the Chemokine Network. Nat. Rev. Cancer 2004, 4, 540–550. [Google Scholar] [CrossRef]
- Manjili, M.H.; Najarian, K.; Wang, X.-Y. Signatures of Tumor-Immune Interactions as Biomarkers for Breast Cancer Prognosis. Future Oncol. 2012, 8, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fejerman, L.; Ahmadiyeh, N.; Hu, D.; Huntsman, S.; Beckman, K.B.; Caswell, J.L.; Tsung, K.; John, E.M.; Torres-Mejia, G.; Carvajal-Carmona, L.; et al. Genome-Wide Association Study of Breast Cancer in Latinas Identifies Novel Protective Variants on 6q25. Nat. Commun. 2014, 5, 5260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.-L.; Yang, L. Regulation of CircRNA Biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef]
- Han, B.; Chao, J.; Yao, H. Circular RNA and Its Mechanisms in Disease: From the Bench to the Clinic. Pharmacol. Ther. 2018, 187, 31–44. [Google Scholar] [CrossRef]
- Huang, G.; Zhu, H.; Shi, Y.; Wu, W.; Cai, H.; Chen, X. Cir-ITCH Plays an Inhibitory Role in Colorectal Cancer by Regulating the Wnt/β-Catenin Pathway. PLoS ONE 2015, 10, e0131225. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Zhang, L.; Fan, K.; Cheng, Z.-X.; Sun, Q.-C.; Wang, J.-J. Circular RNA-ITCH Suppresses Lung Cancer Proliferation via Inhibiting the Wnt/β-Catenin Pathway. BioMed Res. Int. 2016, 2016, 1579490. [Google Scholar] [CrossRef] [Green Version]
- Su, K.; Yi, Q.; Dai, X.; Liu, O. Circular RNA ITCH: An Emerging Multifunctional Regulator. Biomolecules 2022, 12, 359. [Google Scholar] [CrossRef]
- Geyer, F.C.; Lacroix-Triki, M.; Savage, K.; Arnedos, M.; Lambros, M.B.; MacKay, A.; Natrajan, R.; Reis-Filho, J.S. β-Catenin Pathway Activation in Breast Cancer Is Associated with Triple-Negative Phenotype but Not with CTNNB1 Mutation. Mod. Pathol. 2011, 24, 209–231. [Google Scholar] [CrossRef] [Green Version]
- Prasad, C.P.; Gupta, S.D.; Rath, G.; Ralhan, R. Wnt Signaling Pathway in Invasive Ductal Carcinoma of the Breast: Relationship between Beta-Catenin, Dishevelled and Cyclin D1 Expression. Oncology 2007, 73, 112–117. [Google Scholar] [CrossRef]
- Khramtsov, A.I.; Khramtsova, G.F.; Tretiakova, M.; Huo, D.; Olopade, O.I.; Goss, K.H. Wnt/Beta-Catenin Pathway Activation Is Enriched in Basal-like Breast Cancers and Predicts Poor Outcome. Am. J. Pathol. 2010, 176, 2911–2920. [Google Scholar] [CrossRef]
- Lu, W.; Lin, C.; King, T.D.; Chen, H.; Reynolds, R.C.; Li, Y. Silibinin Inhibits Wnt/β-Catenin Signaling by Suppressing Wnt Co-Receptor LRP6 Expression in Human Prostate and Breast Cancer Cells. Cell. Signal. 2012, 24, 2291–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamo, A.; Fiore, D.; De Martino, F.; Roscigno, G.; Affinito, A.; Donnarumma, E.; Puoti, I.; Ricci Vitiani, L.; Pallini, R.; Quintavalle, C.; et al. RYK Promotes the Stemness of Glioblastoma Cells via the WNT/β-Catenin Pathway. Oncotarget 2017, 8, 13476–13487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zhang, L.; Li, W.; Deng, J.; Zheng, J.; An, M.; Lu, J.; Zhou, Y. Circular RNA ITCH Has Inhibitory Effect on ESCC by Suppressing the Wnt/β-Catenin Pathway. Oncotarget 2015, 6, 6001–6013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Li, M.; Wang, J.; Nie, F.; Li, L. The E3 Ubiquitin Ligase ITCH Negatively Regulates Canonical Wnt Signaling by Targeting Dishevelled Protein. Mol. Cell. Biol. 2012, 32, 3903–3912. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Huang, T.; Shang, M.; Han, G. CircRNA ITCH: Insight Into Its Role and Clinical Application Prospect in Tumor and Non-Tumor Diseases. Front. Genet. 2022, 13, 927541. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, S.T.; Liu, L.B.; Li, X.M.; Wang, Y.F.; Xie, P.J.; Li, Q.; Wang, R.; Wei, Q.; Kang, Y.H.; Meng, R.; et al. Circ-ITCH Regulates Triple-Negative Breast Cancer Progression through the Wnt/β-Catenin Pathway. Neoplasma 2019, 66, 232–239. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, J.; Zhang, D.; Cao, S.; Li, G.; Zhang, S.; Wang, Z.; Wen, P.; Yang, H.; Shi, X.; et al. Polymorphisms and Expression Pattern of Circular RNA Circ-ITCH Contributes to the Carcinogenesis of Hepatocellular Carcinoma. Oncotarget 2017, 8, 48169–48177. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, R.; Wu, Z.; Bai, P. Circular RNA ITCH Suppressed Prostate Cancer Progression by Increasing HOXB13 Expression via Spongy MiR-17-5p. Cancer Cell Int. 2019, 19, 328. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wang, H.H. Cir-ITCH Inhibits Gastric Cancer Migration, Invasion and Proliferation by Regulating the Wnt/β-Catenin Pathway. Sci. Rep. 2020, 10, 17443. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Yuan, W.; Yang, X.; Li, P.; Wang, J.; Han, J.; Tao, J.; Li, P.; Yang, H.; Lv, Q.; et al. Circular RNA Circ-ITCH Inhibits Bladder Cancer Progression by Sponging MiR-17/MiR-224 and Regulating P21, PTEN Expression. Mol. Cancer 2018, 17, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serman, L.; Nikuseva Martic, T.; Serman, A.; Vranic, S. Epigenetic Alterations of the Wnt Signaling Pathway in Cancer: A Mini Review. Bosn. J. Basic Med. Sci. 2014, 14, 191–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/Beta-Catenin Signaling: Components, Mechanisms, and Diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebeid, S.A.; Abd El Moneim, N.A.; El-Benhawy, S.A.; Ramadan, R.; Ismail, S.E. Znhit1 and HIF-2α Are Correlated with Cancer Stem Cell Markers in Breast Cancer Patients. Sci. Rep. 2022, 12, 13918. [Google Scholar] [CrossRef] [PubMed]
- Zekri, A.-R.N.; Bahnassy, A.A.; Alam El-Din, H.M.; Morsy, H.M.; Shaarawy, S.; Moharram, N.Z.; Daoud, S.S. Serum Levels of β-Catenin as a Potential Marker for Genotype 4/Hepatitis C-Associated Hepatocellular Carcinoma. Oncol. Rep. 2011, 26, 825–831. [Google Scholar] [CrossRef]
- Li, S.; Huang, M.; Liu, Q.; Wang, D.; Wu, R.; Zhang, X.; Chen, W.; Duan, L. Serum Expression of β-Catenin Is a Potential Detection Marker in Patients with Colorectal Cancer. Dis. Markers 2019, 2019, 5070524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Corcoran, R.B.; Welsh, J.W.; Pennica, D.; Levine, A.J. WISP-1 Is a Wnt-1- and Beta-Catenin-Responsive Oncogene. Genes Dev. 2000, 14, 585–595. [Google Scholar] [CrossRef]
- Michaelson, J.S.; Leder, P. Beta-Catenin Is a Downstream Effector of Wnt-Mediated Tumorigenesis in the Mammary Gland. Oncogene 2001, 20, 5093–5099. [Google Scholar] [CrossRef] [Green Version]
- Gurbuz, I.; Chiquet-Ehrismann, R. CCN4/WISP1 (WNT1 Inducible Signaling Pathway Protein 1): A Focus on Its Role in Cancer. Int. J. Biochem. Cell Biol. 2015, 62, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Chiang, K.-C.; Yeh, C.-N.; Chung, L.-C.; Feng, T.-H.; Sun, C.-C.; Chen, M.-F.; Jan, Y.-Y.; Yeh, T.-S.; Chen, S.-C.; Juang, H.-H. WNT-1 Inducible Signaling Pathway Protein-1 Enhances Growth and Tumorigenesis in Human Breast Cancer. Sci. Rep. 2015, 5, 8686. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S.; Kim, T.H.; Kong, I.D. Exercise Intervention Lowers Aberrant Serum WISP-1 Levels with Insulin Resistance in Breast Cancer Survivors: A Randomized Controlled Trial. Sci. Rep. 2020, 10, 10898. [Google Scholar] [CrossRef]
- Benna, C.; Helfrich-Förster, C.; Rajendran, S.; Monticelli, H.; Pilati, P.; Nitti, D.; Mocellin, S. Genetic Variation of Clock Genes and Cancer Risk: A Field Synopsis and Meta-Analysis. Oncotarget 2017, 8, 23978–23995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.-P.; Wu, Y.-H.; Yu, X.-F.; Tang, Q.; Chen, L.; Chen, K.-P. The Emerging Role of Circular RNAs in Hepatocellular Carcinoma. J. Cancer 2018, 9, 1548–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Zheng, H.; Yin, J.; Wang, H. Rs4911154 of Circ-ITCH Aggravated Tumor Malignancy of Thyroid Nodules via the Circ-ITCH/MiR-22-3p/CBL Axis. Sci. Rep. 2021, 11, 18491. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, B.; Ru, Z.; Cong, L. CircRNA Circ-ITCH Suppresses Papillary Thyroid Cancer Progression through MiR-22-3p/CBL/β-Catenin Pathway. Biochem. Biophys. Res. Commun. 2018, 504, 283–288. [Google Scholar] [CrossRef]
Cases | Control | p Value | |||
---|---|---|---|---|---|
N = 62 | % | N = 62 | % | ||
Age (years) | |||||
≤40 | 6 | 9.7 | 8 | 12.9 | 0.57 |
>40 | 56 | 90.3 | 54 | 87.1 | |
Menopause | |||||
No | 20 | 32.3 | 26 | 41.9 | 0.26 |
Yes | 42 | 67.7 | 36 | 58.1 | |
Tumour size (cm) | |||||
≤2 | 31 | 50.0 | |||
>2 | 31 | 50.0 | |||
LN metastasis | |||||
−ve | 18 | 29.0 | |||
+ve | 44 | 71.0 | |||
TNM stage | |||||
I | 22 | 35.5 | |||
II + III | 40 | 64.5 | |||
Histological grade | |||||
I | 18 | 29 | |||
II + III | 44 | 71.0 |
Low Expression | High Expression | p Value | OR (95% CI) | |||
---|---|---|---|---|---|---|
N | % | N | % | |||
Age (years) | ||||||
≤40 | 4 | 12.5 | 2 | 6.7 | 0.36 | 2.0 (0.28–17.3) |
>40 | 28 | 87.5 | 28 | 93.3 | ||
Menopause | ||||||
No | 16 | 50.0 | 10 | 33.3 | 0.18 | 0.5 (0.16–1.57) |
Yes | 16 | 50.0 | 20 | 66.7 | ||
Tumour size (cm) | ||||||
≤2 | 12 | 37.5 | 19 | 63.3 | 0.04 * | 0.35 (0.11–1.1) |
>2 | 20 | 62.5 | 11 | 36.7 | ||
LN metastasis | ||||||
−ve | 4 | 12.5 | 14 | 46.7 | 0.003 * | 0.16 (0.04–0.66) |
+ve | 28 | 87.5 | 16 | 53.3 | ||
TNM stage | ||||||
I | 6 | 12.5 | 16 | 53.3 | 0.004 * | 0.2 (0.05–0.72) |
II + III | 26 | 81.2 | 14 | 46.7 | ||
Histological grade | ||||||
I | 4 | 12.5 | 14 | 46.7 | 0.003 * | 0.16 (0.04–0.66) |
II + III | 28 | 87.5 | 16 | 53.3 |
Cases | Control | OR (95% CI) | p-Value | |||
---|---|---|---|---|---|---|
N = 62 | % | N = 62 | % | |||
rs10485505 | ||||||
Genotype | ||||||
CC | 34 | 54.8 | 48 | 77.4 | 1.0 | |
CT | 20 | 32.3 | 12 | 19.4 | 2.32 (1.0–5.94) | 0.04 * |
TT | 8 | 12.9 | 2 | 3.2 | 5.65 (1.01–41.9) | 0.02 * |
Alleles | ||||||
C | 88 | 71.0 | 108 | 87.1 | 1.0 | |
T | 36 | 29.0 | 16 | 12.9 | 2.76 (1.38–5.59) | <0.001 ** |
rs4911154 | ||||||
Genotype | ||||||
GG | 30 | 48.4 | 44 | 71.0 | 1.0 | |
GA | 24 | 30.7 | 16 | 25.8 | 2.2 (1.0–5.21) | 0.04 * |
AA | 8 | 12.9 | 2 | 3.2 | 5.87 (1.04–43.2) | 0.01 * |
Alleles | ||||||
G | 84 | 67.7 | 104 | 83.9 | 1.0 | |
A | 40 | 32.3 | 20 | 16.1 | 2.4 (1.29–4.77) | 0.003 * |
rs10485505 Genotype | rs4911154 Genotype | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | CT | TT | p-Value | GG | GA | AA | p-Value | |||||||
N = 34 | % | N = 20 | % | N = 8 | % | N = 30 | % | N = 24 | % | N = 8 | % | |||
Age (years) | ||||||||||||||
≤40 | 4 | 11.8 | 2 | 10.0 | 0 | 0.0 | 4 | 13.3 | 2 | 8.3 | 0 | 0.0 | ||
>40 | 30 | 88.2 | 18 | 90.0 | 8 | 100.0 | 0.59 | 26 | 86.7 | 22 | 91.7 | 8 | 100.0 | 0.5 |
Menopause | ||||||||||||||
No | 12 | 35.3 | 10 | 50.0 | 4 | 50.0 | 0.5 | 10 | 33.3 | 13 | 54.2 | 3 | 37.5 | 0.29 |
Yes | 22 | 64.7 | 10 | 50.0 | 4 | 50.0 | 20 | 66.7 | 11 | 45.8 | 5 | 62.5 | ||
Tumour size (cm) | ||||||||||||||
≤2 | 27 | 79.4 | 3 | 15 | 1 | 12.5 | <0.001 ** | 25 | 83.3 | 6 | 25.0 | 0 | 0.0 | <0.001 ** |
>2 | 7 | 20.6 | 17 | 85 | 7 | 87.5 | 5 | 16.7 | 18 | 75.0 | 8 | 100.0 | ||
LN metastasis | ||||||||||||||
−ve | 17 | 50.0 | 1 | 5.0 | 0 | 0.0 | <0.001 ** | 15 | 50 | 3 | 12.5 | 0 | 0.0 | |
+ve | 17 | 50.0 | 19 | 95.0 | 8 | 100.0 | 15 | 50 | 21 | 87.5 | 8 | 100.0 | 0.0016 * | |
TNM stage | ||||||||||||||
I | 16 | 47.1 | 1 | 5.0 | 1 | 12.5 | 20 | 66.7 | 2 | 8.3 | 0 | 0.0 | ||
II + III | 18 | 52.9 | 19 | 95.0 | 7 | 87.5 | <0.001 * | 10 | 33.3 | 22 | 91.7 | 8 | 100.0 | <0.001 ** |
Histological grade | ||||||||||||||
I | 16 | 47.1 | 1 | 5.0 | 1 | 12.5 | 17 | 56.7 | 1 | 4.2 | 0 | 0.0 | ||
II + III | 18 | 52.9 | 19 | 95.0 | 7 | 87.5 | <0.001 * | 13 | 43.3 | 23 | 95.8 | 8 | 100.0 | <0.001 ** |
Univariate Analysis: OR (95% CI) | Multivariate Analysis: OR (95% CI) | |
---|---|---|
Age > 40 years | 1.1 (0.2–3.2) | ------------------- |
Menopause | 0.5 (0.17–1.3) | -------------------- |
Tumour size > II | 1.59 (0.63–4.05) | -------------------- |
LN metastasis | 2.54 (1.06–6.16) * | 1.71 (0.85–2.46) |
TNM stage II–III | 1.89 (0.88–4.09) | -------------------- |
Histological grade II–III | 1.42 (0.64–3.15) | -------------------- |
circ-ITCH rs 10485505 (T allele) | 2.2 (1.04–4.75) * | 2.15 (1.09–4.3) * |
circ-ITCH rs 4911154 (A allele) | 2.43 (1.15–5.17) * | 2.34 (1.19–4.6) * |
low circ-ITCH RNA expression | 2.67 (1.27–5.65) * | 2.56 (1.3–4.07) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadawy, S.F.; Raafat, N.; Samy, W.M.; Raafat, A.; Talaat, A. Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis. Diagnostics 2023, 13, 2033. https://doi.org/10.3390/diagnostics13122033
Saadawy SF, Raafat N, Samy WM, Raafat A, Talaat A. Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis. Diagnostics. 2023; 13(12):2033. https://doi.org/10.3390/diagnostics13122033
Chicago/Turabian StyleSaadawy, Sara F., Nermin Raafat, Walaa M. Samy, Ahmed Raafat, and Aliaa Talaat. 2023. "Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis" Diagnostics 13, no. 12: 2033. https://doi.org/10.3390/diagnostics13122033
APA StyleSaadawy, S. F., Raafat, N., Samy, W. M., Raafat, A., & Talaat, A. (2023). Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis. Diagnostics, 13(12), 2033. https://doi.org/10.3390/diagnostics13122033