Pulmonary Hypertension in the Course of Interstitial Lung Diseases—A Personalised Approach Is Needed to Identify a Dominant Cause and Provide an Effective Therapy
Abstract
:1. Introduction
2. Prediction and Screening for PH in ILDs
3. RHC in Suspicion of PH Complicating ILDs
4. Different Phenotypes of PH in ILDs
5. Treatment of PH-ILD
6. Use of PAH-Directed Medications in PH-ILD
7. Combination of Anti-Fibrotic and PAH-Directed Therapies in PH-ILD
8. Future Directions in the Treatment of PH-ILD
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.; Hudzik, B.; Niedziela, J.; Rozentryt, P.; Zembala, M.; Gąsior, M. Role of Pro-Brain Natriuretic Peptide Serum Concentration in the Detection of Pulmonary Hypertension in Patients with End-Stage Lung Diseases Referred for Lung Transplantation. Transpl. Proc. 2018, 50, 2044–2047. [Google Scholar] [CrossRef]
- Behr, J.; Nathan, S.D. Pulmonary hypertension in interstitial lung disease: Screening, diagnosis and treatment. Curr. Opin. Pulm. Med. 2021, 27, 396–404. [Google Scholar] [CrossRef] [PubMed]
- King, C.S.; Shlobin, O. The Trouble with Group 3 Pulmonary Hypertension in Interstitial Lung Disease: Dilemmas in Diagnosis and the Conundrum of Treatment. Chest 2020, 158, 1651–1664. [Google Scholar] [CrossRef] [PubMed]
- Ruffenach, G.; Hong, J.; Vaillancourt, M.; Medzikovic, L.; Eghbali, M. Pulmonary hypertension secondary to pulmonary fibrosis: Clinical data, histopathology and molecular insights. Respir. Res. 2020, 21, 303. [Google Scholar] [CrossRef]
- Hambly, N.; Farooqi, M.M.; Dvorkin-Gheva, A.; Donohoe, K.; Garlick, K.; Scallan, C.; Chong, S.G.; MacIsaac, S.; Assayag, D.; Johannson, K.A.; et al. Prevalence and characteristics of progressive fibrosing interstitial lung disease in a prospective registry. Eur. Respir. J. 2022, 60, 2102571. [Google Scholar] [CrossRef]
- Nathan, S.D.; Barbera, J.A.; Gaine, S.P.; Harari, S.; Martinez, F.J.; Olschewski, H.; Olsson, E.M.; Peacock, A.J.; Pepke-Zaba, J.; Provencher, S.; et al. Pulmonary hypertension in chronic lung disease and hypoxia. Eur. Respir. J. 2019, 53, 1801916. [Google Scholar] [CrossRef] [Green Version]
- Chebib, N.; Mornex, J.-F.; Traclet, J.; Philit, F.; Khouatra, C.; Zeghmar, S.; Turquier, S.; Cottin, V. Pulmonary hypertension in chronic lung diseases: Comparison to other pulmonary hypertension groups. Pulm. Circ. 2018, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gall, H.; Felix, J.F.; Schneck, F.K.; Milger, K.; Sommer, N.; Voswinckel, R.; Franco, O.H.; Hofman, A.; Schermuly, R.T.; Weissmann, N.; et al. The Giessen Pulmonary Hypertension Registry: Survival in pulmonary hypertension subgroups. J. Heart Lung Transpl. 2017, 36, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Alhamad, E.H.; Cal, J.G.; Alrajhi, N.N.; Alharbi, W.M. Predictors of Mortality in Patients with Interstitial Lung Disease-Associated Pulmonary Hypertension. J. Clin. Med. 2020, 9, 3828. [Google Scholar] [CrossRef]
- Furukawa, T.; Kondoh, Y.; Taniguchi, H.; Yagi, M.; Matsuda, T.; Kimura, T.; Kataoka, K.; Johkoh, T.; Ando, M.; Hashimoto, N.; et al. A scoring system to predict the elevation of mean pulmonary arterial pressure in idiopathic pulmonary fibrosis. Eur. Respir. J. 2018, 51, 1701311. [Google Scholar] [CrossRef] [PubMed]
- Sobiecka, M.; Lewandowska, K.; Kober, J.; Franczuk, M.; Skoczylas, A.; Tomkowski, W.; Kuś, J.; Szturmowicz, M. Can a New Scoring System Improve Prediction of Pulmonary Hypertension in Newly Recognised Interstitial Lung Diseases? Lung 2020, 198, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Bax, S.; Jacob, J.; Ahmed, R.; Bredy, C.; Dimopoulos, K.; Kempny, A.; Kokosi, A.; Kier, G.; Renzoni, E.; Molyneaux, F.C.; et al. Right Ventricular to Left Ventricular Ratio at CT Pulmonary Angiogram Predicts Mortality in Interstitial Lung Disease. Chest 2020, 157, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagi, M.; Taniguchi, H.; Kondoh, Y.; Ando, M.; Kimura, T.; Kataoka, K.; Furukawa, T.; Suzuki, A.; Johkoh, T.; Hasegawa, Y. CT-determined pulmonary artery to aorta ratio as a predictor of elevated pulmonary artery pressure and survival in idiopathic pulmonary fibrosis. Respirology 2017, 22, 1393–1399. [Google Scholar] [CrossRef]
- Kacprzak, A.; Szturmowicz, M.; Burakowska, B.; Franczuk, M.; Kober, J.; Kurzyna, M.; Wilk, M.; Szmit, S.; Torbicki, A.; Kuś, J. Sarcoidosis-associated pulmonary hypertension treated with sildenafil. Adv. Respir. Med. 2017, 85, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Hoeper, M.M.; Behr, J.; Held, M.; Grunig, E.; Vizza, C.D.; Vonk-Noordegraaf, A.; Lange, T.J.; Claussen, M.; Grohé, C.; Klose, H.; et al. Pulmonary Hypertension in Patients with Chronic Fibrosing Idiopathic Interstitial Pneumonias. PLoS ONE 2015, 10, e0141911. [Google Scholar] [CrossRef] [Green Version]
- Brewis, M.J.; Church, A.C.; Johnson, M.K.; Peacock, A.J. Severe pulmonary hypertension in lung disease: Phenotypes and response to treatment. Eur. Respir. J. 2015, 46, 1378–1389. [Google Scholar] [CrossRef]
- Sonti, R.; Gersten, R.A.; Barnett, S.; Brown, A.W.; Nathan, S. Multimodal noninvasive prediction of pulmonary hypertension in IPF. Clin. Respir. J. 2019, 13, 567–573. [Google Scholar] [CrossRef]
- Dybowska, M.; Barańska, I.; Franczuk, M.; Skoczylas, A.; Szturmowicz, M. Echocardiographic signs of pulmonary hypertension in patients with newly recognized hypersensitivity pneumonitis, prevalence and clinical predictors. J. Thorac. Dis. 2021, 13, 3988–3997. [Google Scholar] [CrossRef]
- Rahaghi, F.F.; Kolaitis, N.A.; Adegunsoye, A.; de Andrade, J.A.; Flaherty, K.R.; Lancaster, L.H.; Lee, J.S.; Levine, D.J.; Preston, I.R.; Safdar, Z.; et al. Screening Strategies for Pulmonary Hypertension in Patients with Interstitial Lung Disease. A Multidisciplinary Delphi Study. Chest 2022, 162, 145–155. [Google Scholar] [CrossRef]
- D’Alto, M.; Maio, M.D.; Romeo, E.; Argiento, P.; Blasi, E.; Di Vilio, A.; Rea, G.; D’Andrea, A.; Golino, P.; Naeije, R. Echocardiographic probability of pulmonary hypertension: A validation study. Eur. Respir. J. 2022, 60, 2102548. [Google Scholar] [CrossRef] [PubMed]
- Abu, T.; Levi, A.; Hasdai, D.; Kramer, M.R.; Bental, T.; Bdolah-Abram, T.; Shiyovich, A.; Samara, A.; Vaknin-Assa, H.; Perl, L.; et al. Preoperative evaluation of pulmonary hypertension in lung transplant candidates: Echocardiography versus right heart catheterization. BMC Cardiovasc. Disord. 2022, 22, 53. [Google Scholar] [CrossRef]
- Keir, G.J.; Worth, S.J.; Kokosi, M.; George, P.M.; Walsh, S.L.F.; Jacob, J.; Price, L.; Bax, S.; Renzoni, E.A.; Maher, T.M.; et al. Pulmonary hypertension in interstitial lung disease: Limitations of echocardiography compared to cardiac catheterization. Respirology 2018, 23, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Bax, S.; Bredy, C.; Kempny, A.; Dimopoulos, K.; Devaraj, A.; Walsh, S.; Jacob, J.; Nair, A.; Kokosi, M.; Keir, G.; et al. A stepwise composite echocardiographic score predicts severe pulmonary hypertension in patients with interstitial lung disease. ERJ Open Res. 2018, 4, 00124–02017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galie, N.; Humbert, M.; Vachiery, J.-L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk-Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2015, 46, 879–882. [Google Scholar] [CrossRef]
- Teramachi, R.; Taniguchi, H.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Yokoyama, T.; Furukawa, T.; Yagi, M.; Sakamoto, K.; Hashimoto, N.; et al. Impact of post-capillary pulmonary hypertension on mortality in interstitial lung disease. Respir. Investig. 2021, 59, 342–349. [Google Scholar] [CrossRef]
- Olsson, K.M.; Hoeper, M.M.; Pausch, C.; Grünig, E.; Huscher, D.; Pittrow, D.; Rosenkranz, S.; Gall, H. Pulmonary vascular resistance predicts mortality in patients with pulmonary hypertension associated with interstitial lung disease: Results from the COMPERA registry. Eur. Respir. J. 2021, 58, 2101483. [Google Scholar] [CrossRef]
- Lettieri, C.J.; Nathan, S.D.; Barnett, S.D.; Ahmad, S.; Shorr, A.F. Prevalence and outcomes of pulmonary arterial hypertension in advanced idiopathic pulmonary fibrosis. Chest 2006, 129, 746–752. [Google Scholar] [CrossRef]
- Omote, N.; Taniguchi, H.; Kondoh, Y.; Watanabe, N.; Sakamoto, K.; Kimura, T.; Kataoka, K.; Johkoh, T.; Fujimoto, K.; Fukuoka, J.; et al. Lung-Dominant Connective Tissue Disease: Clinical, Radiologic and Histologic Features. Chest 2015, 148, 1438–1446. [Google Scholar] [CrossRef]
- Sobiecka, M.; Szturmowicz, M.; Lewandowska, K.; Kowalik, A.; Łyżwa, E.; Zimna, K.; Barańska, I.; Jakubowska, L.; Kuś, J.; Langfort, R.; et al. Chronic hypersensitivity pneumonitis is associated with an increased risk of venous thromboembolism: A retrospective cohort study. BMC Pulm. Med. 2021, 21, 416. [Google Scholar] [CrossRef]
- Sprunger, D.B.; Olson, A.L.; Huie, T.J.; Fernandez-Perez, E.R.; Fisher, A.; Solomon, J.J.; Brown, K.K.; Swigris, J.J. Pulmonary fibrosis is associated with an elevated risk of thromboembolic disease. Eur. Respir. J. 2012, 39, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, V.; Fogarty, A.W.; McKeever, T.; Thompson, N.; Jenkins, G.; Johnson, S.R.; Dolan, G.; Kumaran, M.; Pointon, K.; Hubbard, R.B. Presence of a prothrombotic state in people with idiopathic pulmonary fibrosis: A population-based case-control study. Thorax 2014, 69, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghigna, M.R.; Mooi, W.J.; Gruüberg, K. Pulmonary vasculopathy in parenchymal lung diseases and/or hypoxia. Number 1 in the Series “Pathology for the clinician” Edited by Peter Dorfmüller and Alberto Cavazza. Eur. Respir. Rev. 2017, 26, 170003. [Google Scholar] [CrossRef]
- Olschewski, H. The Challenge to Decide between Pulmonary Hypertension Due to Chronic Lung Disease and PAH with Chronic Lung Disease. Diagnostics 2021, 11, 311. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Kiely, D.G.; Kovacs, G.; Thompson, A.A.R.; Condliffe, R. Pulmonary hypertension phenotypes in patients with systemic sclerosis. Eur. Respir. Rev. 2021, 30, 210053. [Google Scholar] [CrossRef]
- Launay, D.; Sobanski, V.; Hachulla, E.; Humbert, M. Pulmonary hypertension in systemic sclerosis: Different phenotypes. Eur. Respire. Rev. 2017, 26, 170056. [Google Scholar] [CrossRef]
- Dong, X.; Shi, Y.; Xia, Y.; Zhang, X.; Qian, J.; Zhao, J.; Peng, J.; Wang, Q.; Weng, L.; Li, M.; et al. Diversity of hemodynamic types in connective tissue disease associated pulmonary hypertension: More than a subgroup of pulmonary arterial hypertension. BMC Puml. Med. 2022, 22, 295. [Google Scholar] [CrossRef]
- Young, A.; Vummidi, D.; Visovatti, S.; Homer, K.; Wilhalme, H.; White, E.S.; Flaherty, K.; McLaughlin, V.; Khanna, D. Prevalence, Treatment, and Outcomes of Coexistent Pulmonary Hypertension and Interstitial Lung Disease in Systemic Sclerosis. Arthritis Rheumatol. 2019, 71, 1339–1349. [Google Scholar] [CrossRef]
- Szturmowicz, M.; Franczuk, M.; Jędrych, M.E.; Wyrostkiewicz, D.; Oniszh, K.; Darocha, S.; Kasperowicz, K.; Kurzyna, M. Dominating Cause of Pulmonary Hypertension May Change Over Time—Diagnostic and Therapeutic Considerations in a Patient with Pulmonary Hypertension Due to Rheumatoid Arthritis with Lung Involvement. Diagnostics 2021, 11, 1931. [Google Scholar] [CrossRef]
- Fayed, H.; Coghlan, J.G. Pulmonary Hypertension Associated with Connective Tissue Disease. Semin. Respir. Crit. Care Med. 2019, 40, 173–183. [Google Scholar] [CrossRef]
- Adegunsoye, A.; Oldham, J.M.; Bellam, S.K.; Montner, S.; Churpek, M.M.; Noth, I.; Vij, R.; Strek, M.E.; Chung, J.H. Computed Tomography Honeycombing Identifies a Progressive Fibrotic Phenotype with Increased Mortality across Diverse Interstitial Lung Diseases. Ann. Am. Thorac. Soc. 2019, 16, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.J.; Dellaripa, P.F.; Batra, K.; Frits, M.L.; Iannaccone, C.K.; Hatabu, H.; Nishino, M.; Weinblatt, M.E.; Ascherman, D.P.; Washko, G.R.; et al. Functional impact of a spectrum of interstitial lung abnormalities in rheumatoid arthritis. Chest 2014, 146, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Morisset, J.; Johnson, C.; Rich, E.; Collard, H.R.; Lee, J.S. Management of Myositis-Related Interstitial Lung Disease. Chest 2016, 150, 1118–1128. [Google Scholar] [CrossRef]
- Morisset, J.; Johannson, K.A.; Vittinghoff, E.; Aravena, C.; Elicker, B.M.; Jones, K.D.; Fell, C.D.; Manganas, H.; Dubé, B.-P.; Wolters, P.J.; et al. Use of Mycophenolate Mofetil or Azathioprine for the Management of Chronic Hypersensitivity Pneumonitis. Chest 2017, 151, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Fiddler, C.A.; Simler, N.; Thillai, M.; Parfrey, H. Use of mycophenolate mofetil and azathioprine for the treatment of chronic hypersensitivity pneumonitis—A single-centre experience. Clin. Respir. J. 2019, 13, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, O.; Sitbon, O.; Jais, X.; Simonneau, G.; Humbert, M. Immunosuppressive therapy in connective tissue diseases–associated pulmonary arterial hypertension. Chest 2006, 130, 182–189. [Google Scholar] [CrossRef]
- Miyamichi-Yamamoto, S.; Fukumoto, Y.; Sugimura, K.; Ishii, T.; Satoh, K.; Miura, Y.; Tatebe, S.; Nochioka, K.; Aoki, T.; DoE, Z.; et al. Intensive immunosuppressive therapy improves pulmonary hemodynamics and long-term prognosis in patients with pulmonary arterial hypertension associated with connective tissue disease. Circ. J. 2011, 75, 2668–2674. [Google Scholar] [CrossRef] [Green Version]
- Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [Green Version]
- King, T.E.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef] [Green Version]
- Distler, O.; Highland, K.B.; Gahlemann, M.; Azuma, A.; Fischer, A.; Mayes, M.D.; Raghu, G.; Sauter, W.; Girard, M.; Alves, M.; et al. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N. Engl. J. Med. 2019, 380, 2518–2528. [Google Scholar] [CrossRef] [PubMed]
- Lacedonia, D.; Correale, M.; Tricarico, L.; Scioscia, G.; Stornelli, S.R.; Simone, F.; Casparrini, M.; Brunetti, N.D.; Barbaro, M.P.F. Survival of patients with idiopathic pulmonary fibrosis and pulmonary hypertension under therapy with nintedanib or pirfenidone. Intern. Emerg. Med. 2021, 17, 815–822. [Google Scholar] [CrossRef]
- Tahara, M.; Oda, K.; Yamasaki, K.; Kawaguchi, T.; Sennari, K.; Noguchi, S.; Sakamoto, N.; Kawanami, T.; Mukae, H.; Yatera, K. Temporal echocardiographic assessment of pulmonary hypertension in idiopathic pulmonary fibrosis patients treated with nintedanib with or without oxygen therapy. BMC Pulm. Med. 2019, 19, 157. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, I.; Mitsuhiro, A.; Li, Y.; Tsushima, K.; Sakao, S.; Tanabe, N.; Ikusaka, M.; Tatsumi, K. Pulmonary Hypertension Exacerbated by Nintedanib Administration for Idiopathic Pulmonary Fibrosis. Intern. Med. 2019, 58, 965–968. [Google Scholar] [CrossRef]
- Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease: A clinical trial. Ann. Intern. Med. 1980, 93, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Report of the Medical Research Council Working Party. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 1981, 1, 681–686. [Google Scholar]
- Weitzenblum, E.; Sautegeau, A.; Ehrhart, M.; Mammosser, M.; Pelletier, A. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1985, 131, 493–498. [Google Scholar] [CrossRef]
- Ulrich, S.; Saxer, S.; Hasler, E.D.; Schwarz, E.I.; Schneider, S.R.; Furian, M.; Bader, P.R.; Lichtblau, M.; Bloch, K.E. Effect of domiciliary oxygen therapy on exercise capacity and quality of life in patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension: A randomised, placebo- controlled trial. Eur. Respir. J. 2019, 54, 1900276. [Google Scholar] [CrossRef]
- Lim, R.K.; Humphreys, C.; Morisset, J.; Holland, A.E.; Johannson, K.; O2 Delphi Collaborators. Oxygen in patients with fibrotic interstitial lung disease: An international Delphi survey. Eur. Respir. J. 2019, 54, 1900421. [Google Scholar] [CrossRef]
- Idiopathic Pulmonary Fibrosis Clinical Research Network; Zisman, D.A.; Schwarz, M.; Anstrom, K.J.; Collard, H.R.; Flaherty, K.R.; Hunninghake, G.W. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N. Engl. J. Med. 2010, 363, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Nathan, S.D.; Behr, J.; Collard, H.R.; Cottin, V.; Hoeper, M.M.; Martinez, F.J.; Corte, T.J.; Keogh, A.M.; Leuchte, H.; Mogulkac, N.; et al. Riociguat for idiopathic interstitial pneumonia-associated pulmonary hypertension (RISE-IIP): A randomised, placebo-controlled phase 2b study. Lancet Respir. Med. 2019, 7, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Behr, J.; Brown, K.K.; Egan, J.J.; Kawut, S.M.; Flaherty, K.R.; Martinez, F.J.; Nathan, S.D.; Wells, A.U.; Collard, H.R.; et al. Treatment of idiopathic pulmonary fibrosis with ambrisentan: A parallel, randomized trial. Ann. Intern. Med. 2013, 158, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Corte, T.J.; Keir, G.J.; Dimopoulos, K.; Howard, L.; Corris, P.A.; Parfitt, L.; Foley, C.; Yanez-Lopez, M.; Babalis, D.; Marino, P.; et al. Bosentan in pulmonary hypertension associated with fibrotic idiopathic interstitial pneumonia. Am. J. Respir. Crit. Care Med. 2014, 190, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, S.D.; Cottin, V.; Behr, J.; Hoeper, M.M.; Martinez, F.J.; Corte, T.J.; Keogh, A.M.; Leuchte, H.; Mogulkac, N.; Ulrich, S.; et al. Impact of lung morphology on clinical outcomes with riociguat in patients with pulmonary hypertension and idiopathic interstitial pneumonia: A post hoc subgroup analysis of the RISE-IIP study. J. Heart Lung Transpl. 2021, 40, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K.; Bach, D.S.; Hagan, P.G.; Yow, E.; Flaherty, K.R.; Toews, G.B.; Anstrom, K.J.; Martinez, F.J.; IPFnet Investigators. Sildenafil preserves exercise capacity in patients with idiopathic pulmonary fibrosis and right-sided ventricular dysfunction. Chest 2013, 143, 1699–1708. [Google Scholar] [CrossRef] [Green Version]
- Nathan, S.D.; Flaherty, K.R.; Glassberg, M.K.; Raghu, G.; Swigris, J.; Alvarez, R.; Ettinger, N.; Loyd, J.; Fernandes, P.; Gillies, H.; et al. A Randomized, Double-Blind, Placebo-Controlled Study of Pulsed, Inhaled Nitric Oxide in Subjects at Risk of Pulmonary Hypertension Associated With Pulmonary Fibrosis. Chest 2020, 158, 637–645. [Google Scholar] [CrossRef]
- Waxman, A.; Restrepo-Jaramillo, R.; Thenappan, T.; Ravichandran, A.; Engel, P.; Bajwa, A.; Allen, R.; Feldman, J.; Argula, R.; Smith, P.; et al. Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N. Engl. J. Med. 2021, 384, 325–334. [Google Scholar] [CrossRef]
- Dawes, T.W.J.; McCabe, C.; Dimopoulos, K.; Stewart, I.; Bax, S.; Harries, C.; Samaranayake, C.B.; Kempny, A.; Molyneaux, P.L.; Seitler, S.; et al. Phosphodiesterase 5 inhibitor treatment and survival in interstitial lung disease pulmonary hypertension: A Bayesian retrospective observational cohort study. Respirology 2023, 28, 262–272. [Google Scholar] [CrossRef]
- Pitre, T.; Mah, J.; Helmeczi, W.; Khalid, M.F.; Cui, S.; Zhang, M.; Husnudinov, R.; Su, J.; Banfield, L.; Guy, B.; et al. Medical treatments for idiopathic pulmonary fibrosis: A systematic review and network meta-analysis. Thorax 2022, 77, 1243–1250. [Google Scholar] [CrossRef]
- Tanabe, N.; Kumamaru, H.; Tamura, Y.; Taniguchi, H.; Emoto, N.; Yamada, Y.; Nishiyama, O.; Tsujino, I.; Kuraishi, H.; Nishimura, Y.; et al. Multi-Institutional Prospective Cohort Study of Patients With Pulmonary Hypertension Associated With Respiratory Diseases. Circ. J. 2021, 85, 333–342. [Google Scholar] [CrossRef]
- Ghofrani, H.A.; Wiedemann, R.; Rose, F.; Schermuly, R.T.; Olschewski, H.; Weissmann, N.; Gunther, A.; Walmrath, D.; Seeger, W.; Grimminger, F. Sildenafil for treatment of lung fibrosis and pulmonary hypertension. Lancet 2002, 360, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Milara, J.; Escriva, J.; Ortiz, J.L.; Juan, G.; Artigues, E.; Morcillo, E.; Cortijo, J. Vascular effects of sildenafil in patients with pulmonary fibrosis and pulmonary hypertension: An ex vivo/in vitro study. Eur. Respir. J. 2016, 47, 1737–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behr, J.; Nathan, S.D.; Wuyts, W.A.; Mogulkac Bishop, N.; Bouros, D.E.; Antoniou, K.; Guiot, J.; Kramer, M.R.; Kirchgaessler, K.-U.; Bengus, M.; et al. Efficacy and safety of sildenafil added to pirfenidone in patients with advanced idiopathic pulmonary fibrosis and risk of pulmonary hypertension: A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2021, 9, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Kolb, M.; Raghu, G.; Wells, A.U.; Behr, J.; Richeldi, L.; Schinzel, B.; Quaresma, M.; Stowasser, S.; Martinez, F.J.; INSTAGE Investigators. Nintedanib plus Sildenafil in Patients with Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2018, 379, 1722–1731. [Google Scholar] [CrossRef]
- Behr, J.; Kolb, M.; Song, J.W.; Luppi, F.; Schinzel, B.; Wtowasser, S.; Quaresma, M.; Martinez, F.J. Nintedanib and Sildenafil in Patients with Idiopathic Pulmonary Fibrosis and Right Heart Dysfunction. A Prespecified Subgroup Analysis of a Double-Blind Randomized Clinical Trial (INSTAGE). Am. J. Respir. Crit. Care Med. 2019, 200, 1506–1512. [Google Scholar] [CrossRef]
- Kolb, M.; Orfanos, S.; Lambers, C.; Flaherty, K.; Masters, A.; Lancaster, L.; Silverstein, A.; Nathan, S.D. The Antifibrotic Effects of Inhaled Treprostinil: An Emerging Option for ILD. Adv. Ther. 2022, 39, 3881–3895. [Google Scholar] [CrossRef]
- Nathan, S.D.; Waxman, A.; Rajagopal, S.; Case, A.; Johri, S.; DuBrock, H.; De La Zerda, D.J.; Sahay, S.; King, C.; Melendres-Groves, L.; et al. Inhaled treprostinil and forced vital capacity in patients with interstitial lung disease and associated pulmonary hypertension: A post-hoc analysis of the INCREASE study. Lancet Respir. Med. 2021, 9, 1266–1274. [Google Scholar] [CrossRef]
- Nathan, S.D.; Tapson, V.F.; Elwing, J.; Rischard, F.; Mehta, J.; Shapiro, S.; Shen, E.; Deng, C.; Smith, P.; Waxman, A. Efficacy of Inhaled Treprostinil on Multiple Disease Progression Events in Patients with Pulmonary Hypertension due to Parenchymal Lung Disease in the INCREASE Trial. Am. J. Respir. Crit. Care Med. 2022, 205, 198–207. [Google Scholar] [CrossRef]
- Nathan, S.D.; Behr, J.; Cottin, V.; Lancaster, L.; Smith, P.; Deng, C.Q.; Pearce, N.; Bell, H.; Peterson, L.; Flaherty, K.R. Study design and rationale for the TETON phase 3, randomised, controlled clinical trials of inhaled treprostinil in the treatment of idiopathic pulmonary fibrosis. BMJ Open Respir. Res. 2022, 9, e001310. [Google Scholar] [CrossRef]
- Chamber, R.C. Preferential PDE4B Inhibition—A Step toward a New Treatment for Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2022, 386, 2235–2236. [Google Scholar] [CrossRef]
- Richeldi, L.; Azuma, A.; Cottin, V.; Hesslinger, C.; Stowasser, S.; Valenzuela, C.; Wijsenbeek, M.S.; Zaz, D.F.; Voss, F.; Maher, T.; et al. Trial of a Preferential Phosphodiesterase 4B Inhibitor for Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2022, 386, 2178–2187. [Google Scholar] [CrossRef] [PubMed]
- Lurz, P.; von Bardeleben, R.S.; Weber, M.; Sitges, M.; Sorajja, P.; Hausleiter, J.; Denti, P.; Trochu, J.N.; Nabauer, M.; Tang, G.H.L.; et al. Transcatheter Edge-to-Edge Repair for Treatment of Tricuspid Regurgitation. J. Am. Coll. Cardiol. 2021, 77, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Sorajja, P.; Whisenant, B.; Hamid, N.; Naik, H.; Makkar, R.; Tadros, P.; Price, M.J.; Singh, G.; Fam, N.; Kar, S.; et al. Transcatheter Repair for Patients with Tricuspid Regurgitation. N. Engl. J. Med. 2023, 388, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Nikkho, S.M.; Richter, M.J.; Shen, E.; Abman, S.H.; Antoniou, K.; Chung, J.; Fernandes, P.; Hassoun, P.; Lazarus, H.M.; Olschewski, H.; et al. Clinical significance of pulmonary hypertension in interstitial lung disease: A consensus statement from the Pulmonary Vascular Research Institute’s innovative drug development initiative-Group 3 pulmonary hypertension. Pulm. Circ. 2022, 12, e12127. [Google Scholar] [CrossRef]
Author | No. of Patients, Disease | Modality and Criteria Used for PH Diagnosis | Predictors | Model of Prediction |
---|---|---|---|---|
Furukawa et al. [11] | 273, IPF | RHC mPAP ≥ 21 mmHg | 1 point for each criterion: TLco < 50%, CTPA PA/Ao ≥ 0.9, PaO2 < 80 mmHg | Total scoring sensitivity for PH on RHC: 3 points–65.4%, 0 points–6.7% |
Sonti et al. [18] | 105, IPF | RHC mPAP ≥ 25 mmHg | RVSP, FVC/TLco, PA/Ao | mPAP = (−14) + 20.3 × (PA/Ao) + 2.6 × (FVC/TLco) + 0.3 × RVSP sensitivity 80%, specificity 68% |
Dybowska et al. [19] | 70, HP | TTE RVSP > 36 mmHg | TLco < 42% 6MWT desaturation > 8% | Sensitivity 62%, specificity 89%; sensitivity 58%, specificity 77% |
Sobiecka et al. [12] | 93, various ILDs | TTE PH possible or likely according to European PH guidelines [1] | 3 points for each criterion: Age > 53 years, 6MWT distance < 507.5 m 2 points for each criterion: SpO2 < 93%, TLC/TLco > 1.67 | Total scoring >6 points: sensitivity 64%, specificity 94% |
TRV Max | Additional Echo Signs of PH | Echocardiographic Probability of PH |
---|---|---|
≤2.8 m/s | absent | low |
≤2.8 m/s | present | intermediate |
2.9–3.4 m/s | absent | intermediate |
2.9–3.4 m/s | present | high |
>3.4 m/s | absent or present | high |
European PH Guidelines 2015 [25] | Expert Recommendations 2018 [7] | European PH Guidelines 2022 [1] |
---|---|---|
RHC is not recommended for suspected PH in patients with lung disease, unless therapeutic consequences are to be expected (e.g., lung transplantation, alternative diagnoses such as PAH or CTEPH, potential enrolment in a clinical trial)—class of recommendation III, level of evidence C. | RHC should be performed in patients with chronic lung disease when significant PH is suspected and the patient’s management will likely be influenced by the RHC results, including referral for transplantation, inclusion in clinical trials or registries, treatment of unmasked left heart dysfunction, or compassionate use of therapy. | In patients with lung disease and suspected PH, RHC is recommended if the results are expected to aid management decisions (assessment for surgical treatment, suspicion of PAH or CTEPH, when further information will aid phenotyping of disease and consideration of therapeutic interventions)—class of recommendation III, level of evidence C. |
European PH Guidelines 2015 [25] | 2018 Expert Recommendations [7] | European PH Guidelines 2022 [1] |
---|---|---|
mPAP > 35 mmHg or mPAP ≥ 25 mmHg in the presence of a low cardiac index (CI < 2.5 L/min, not explained by other cause) | mPAP ≥ 35 mmHg or mPAP ≥ 25 mmHg with low cardiac index < 2.0 L/min | mPAP > 20 mmHg PVR > 5 Wood units |
Criteria Favouring PAH—Group 1 | Testing | Criteria Favouring PH-ILD—Group 3 |
---|---|---|
Extent of lung disease | ||
Normal or mildly impaired FVC > 70% pred. (IPF) TLco in relation to restrictive changes | Pulmonary function testing | Moderate to severely impaired FVC < 70% pred. (IPF) TL.co corresponds to restrictive changes |
Absence or only modest parenchymal changes | HRCT | Characteristic parenchymal changes |
Haemodynamic profile | ||
Moderate to severe PH | RHC TTE | Mild to moderate PH |
Ancillary testing | ||
Present | Further PAH risk factors (HIV, CTD, BMPR2 mutation) | Absent |
Source | Year | RCT Acronym | Study Population | Drug | Duration | Primary End-Point | Result |
---|---|---|---|---|---|---|---|
Zisman et al. [60] | 2010 | STEP-IPF | IPF 180 pts | Sildenafil | 12 weeks | Change in 6MWT | N |
Han et al. [65] | 2013 | STEP-IPF substudy | IPF/with TTE data 119 pts | Sildenafil | 12 weeks | Change in 6MWT | P |
Raghu et al. [62] | 2013 | ARTEMIS-IPF | IPF 19 pts | Ambrisentan | 12 months | Combined | N |
Corte et al. [63] | 2014 | IPF/fNSIP 60 pts | Bosentan | 16 weeks | Change in PVR | N | |
Nathan et al. [61] | 2019 | RISE-IIP | IIP 147 pts | Riociguat | 12 months | Change in 6MWT | N |
Nathan et al. [66] | 2020 | PF-ILD 41 pts | Inhaled NO | 8 weeks | Change in actigraphy | P | |
Waxman et al. [67] | 2021 | INCREASE | IIP 326 pts | Inhaled treprostinil | 16 weeks | Change in 6MWT | P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kacprzak, A.; Tomkowski, W.; Szturmowicz, M. Pulmonary Hypertension in the Course of Interstitial Lung Diseases—A Personalised Approach Is Needed to Identify a Dominant Cause and Provide an Effective Therapy. Diagnostics 2023, 13, 2354. https://doi.org/10.3390/diagnostics13142354
Kacprzak A, Tomkowski W, Szturmowicz M. Pulmonary Hypertension in the Course of Interstitial Lung Diseases—A Personalised Approach Is Needed to Identify a Dominant Cause and Provide an Effective Therapy. Diagnostics. 2023; 13(14):2354. https://doi.org/10.3390/diagnostics13142354
Chicago/Turabian StyleKacprzak, Aneta, Witold Tomkowski, and Monika Szturmowicz. 2023. "Pulmonary Hypertension in the Course of Interstitial Lung Diseases—A Personalised Approach Is Needed to Identify a Dominant Cause and Provide an Effective Therapy" Diagnostics 13, no. 14: 2354. https://doi.org/10.3390/diagnostics13142354
APA StyleKacprzak, A., Tomkowski, W., & Szturmowicz, M. (2023). Pulmonary Hypertension in the Course of Interstitial Lung Diseases—A Personalised Approach Is Needed to Identify a Dominant Cause and Provide an Effective Therapy. Diagnostics, 13(14), 2354. https://doi.org/10.3390/diagnostics13142354