Automatic Ventriculomegaly Detection in Fetal Brain MRI: A Step-by-Step Deep Learning Model for Novel 2D-3D Linear Measurements
Abstract
:1. Introduction
2. Materials and Methods
- Dataset:
- MRI Protocol:
- Automated Workflow for Lateral Ventricular Width Measurement
2.1. Extracted the Fetal Brain from the Whole Fetal MRI
2.2. Sorted Extracted Series According to the Volume (Non-Zero Points)
2.3. The 3D Reconstruction from Multiple 2D HASTE Series (Motion Correction and Volumetric Image Reconstruction of 2D Ultra-Fast MRI)
2.4. Segmentation of Fetal Brain to Seven Tissues
2.5. Defining the Maximum of “Deep Gray Matter”, as a Clue for Finding the Best Slice for Measuring Ventricle
2.6. Automatic Linear Measurement of the Lateral Ventricle
2.6.1. Extraction of a Single Ventricle (Left Ventricle or Right Ventricle)
2.6.2. Removal of Segmentation Errors and Choroid Plexus Elimination (Using Binarization Function)
2.6.3. Rotating the Ventricle for Linear Measurement
2.7. Manual Measurement of Lateral Ventricular Width
3. Results
3.1. Normal vs. Abnormal Classification
3.2. AI Measurement in Normal Cases
3.3. Measurement in Abnormal Cases
3.4. Measurement of R2 Score in Right Ventricle
3.5. Measurement of R2 Score in Left Ventricle
3.6. Comparing t-Test for Different Measurements
- General radiologist vs. Neuroradiologist
- General radiologist vs. AI
- Neuroradiologist vs. AI
4. Discussion
- Novelty of our AI model for ventriculomegaly:
5. Limitation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GA | gestational ages |
AI | Artificial intelligence |
DL | Deep Learning |
HASTE | Half-Fourier Acquisition Single-shot Turbo spin Echo |
ROI | Region of Interest |
WM | White Matter |
GM | Gray Matter |
References
- Fox, N.S.; Monteagudo, A.; Kuller, J.A.; Craigo, S.; Norton, M.E. Mild fetal ventriculomegaly: Diagnosis, evaluation, and management. Am. J. Obstet. Gynecol. 2018, 219, B2–B9. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Reeves, M.J.; Morris, J.E.; Mason, G.; Russell, S.A.; Paley MN, J.; Whitby, E.H. A prospective study of fetuses with isolated ventriculomegaly investigated by antenatal sonography and in utero MR imaging. AJNR Am. J. Neuroradiol. 2010, 31, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasquini, L.; Masini, G.; Gaini, C.; Franchi, C.; Trotta, M.; Dani, C.; Di Tommaso, M. The utility of infection screening in isolated mild ventriculomegaly: An observational retrospective study on 141 fetuses. Prenat. Diagn. 2014, 34, 1295–1300. [Google Scholar] [CrossRef] [PubMed]
- Gholipour, A.; Akhondi-Asl, A.; Estroff, J.A.; Warfield, S.K. Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly. NeuroImage 2012, 60, 1819–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaseelan, P.; Cardwell, C.; Bell, B.; Ong, S. Prognosis of isolated mild to moderate fetal cerebral ventriculomegaly: A systematic review. J. Perinat. Med. 2010, 38, 401–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Liu, Y.; Li, Y.; Qi, K.; Gao, A.; Zheng, B.; Liang, D.; Long, X. Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs. Sensors 2023, 23, 655. [Google Scholar] [CrossRef] [PubMed]
- Khalili, N.; Lessmann, N.; Turk, E.; Claessens, N.; de Heus, R.; Kolk, T.; Viergever, M.A.; Benders, M.J.; Išgum, I. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks. Magn. Reson. Imaging 2019, 64, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Vahedifard, F.; Adepoju, J.O.; Supanich, M.; Ai, H.A.; Liu, X.; Kocak, M.; Marathu, K.K.; Byrd, S.E. Review of deep learning and artificial intelligence models in fetal brain magnetic resonance imaging. World J. Clin. Cases 2023, 11, 3725–3735. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. (Eds.) U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Yin, X.X.; Sun, L.; Fu, Y.; Lu, R.; Zhang, Y. U-Net-Based Medical Image Segmentation. J. Healthc. Eng. 2022, 2022, 4189781. [Google Scholar] [CrossRef] [PubMed]
- Walsh, J.; Othmani, A.; Jain, M.; Dev, S. Using U-Net network for efficient brain tumor segmentation in MRI images. Healthc. Anal. 2022, 2, 100098. [Google Scholar] [CrossRef]
- Long, J.S.; Ma, G.Z.; Song, E.M.; Jin, R.C. Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation. Sensors 2021, 21, 3232. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, M.J.; Li, W.; Brown, R.; Ma, N.; Kerfoot, E.; Wang, Y.; Murrey, B.; Myronenko, A.; Zhao, C.; Yang, D.; et al. MONAI: An open-source framework for deep learning in healthcare. arXiv 2022, arXiv:2211.02701. [Google Scholar]
- Ranzini, M.; Fidon, L.; Ourselin, S.; Modat, M.; Vercauteren, T. MONAIfbs: MONAI-based fetal brain MRI deep learning segmentation. arXiv 2021, arXiv:2103.13314. [Google Scholar]
- Ebner, M.; Wang, G.; Li, W.; Aertsen, M.; Patel, P.A.; Aughwane, R.; Melbourne, A.; Doel, T.; Dymarkowski, S.; De Coppi, P.; et al. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI. NeuroImage 2020, 206, 116324. [Google Scholar] [CrossRef]
- Duan, W.; Zhang, J.; Zhang, L.; Lin, Z.; Chen, Y.; Hao, X.; Wang, Y.; Zhang, H. Evaluation of an artificial intelligent hydrocephalus diagnosis model based on transfer learning. Medicine 2020, 99, e21229. [Google Scholar] [CrossRef]
- Zhou, X.; Ye, Q.; Yang, X.; Chen, J.; Ma, H.; Xia, J.; Del Ser, J.; Yang, G. AI-based medical e-diagnosis for fast and automatic ventricular volume measurement in patients with normal pressure hydrocephalus. Neural Comput. Appl. 2022. [Google Scholar] [CrossRef]
- Avisdris, N.; Ben Bashat, D.; Ben-Sira, L.; Joskowicz, L. Fetal Brain MRI Measurements Using a Deep Learning Landmark Network with Reliability Estimation; Springer International Publishing: Cham, Switzerland, 2021; pp. 210–220. [Google Scholar]
- Shi, Y.; Xue, Y.; Chen, C.; Lin, K.; Zhou, Z. Association of gestational age with MRI-based biometrics of brain development in fetuses. BMC Med. Imaging 2020, 20, 125. [Google Scholar] [CrossRef]
- Saleem, S.N. Fetal MRI: An approach to practice: A review. J. Adv. Res. 2014, 5, 507–523. [Google Scholar] [CrossRef] [Green Version]
- Hibbeln, J.F.; Shors, S.M.; Byrd, S.E. MRI: Is there a role in obstetrics? Clin. Obstet. Gynecol. 2012, 55, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Gagoski, B.; Xu, J.; Wighton, P.; Tisdall, M.D.; Frost, R.; Lo, W.C.; Golland, P.; van Der Kouwe, A.; Adalsteinsson, E.; Grant, P.E. Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T. Magn. Reson. Med. 2022, 87, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Khanal, B.; Alansary, A.; McDonagh, S.; Davidson, A.; Rutherford, M.; Hajnal, J.V.; Rueckert, D.; Glocker, B.; Kainz, B. 3-D reconstruction in canonical co-ordinate space from arbitrarily oriented 2-D images. IEEE Trans. Med. Imaging 2018, 37, 1737–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Salehi, S.S.M.; Gholipour, A. Deep predictive motion tracking in magnetic resonance imaging: Application to fetal imaging. IEEE Trans. Med. Imaging 2020, 39, 3523–3534. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yan, G.; Luo, W.; Liu, T.; Wang, Y.; Liu, R.; Zheng, W.; Zhang, Y.; Li, K.; Zhao, L.; et al. Mapping fetal brain development based on automated segmentation and 4D brain atlasing. Brain Struct. Funct. 2021, 226, 1961–1972. [Google Scholar] [CrossRef]
- Kojita, Y.; Matsuo, H.; Kanda, T.; Nishio, M.; Sofue, K.; Nogami, M.; Kono, A.K.; Hori, M.; Murakami, T. Deep learning model for predicting gestational age after the first trimester using fetal MRI. Eur. Radiol. 2021, 31, 3775–3782. [Google Scholar] [CrossRef]
- Attallah, O.; Sharkas, M.A.; Gadelkarim, H. Fetal brain abnormality classification from MRI images of different gestational age. Brain Sci. 2019, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, S.; Sturmfels, P.; Angstadt, M.; Hect, J.; Wiens, J.; van den Heuvel, M.I.; Scheinost, D.; Sripada, C.; Thomason, M. Automated brain masking of fetal functional MRI with open data. Neuroinformatics 2022, 20, 173–185. [Google Scholar] [CrossRef]
- Makropoulos, A.; Counsell, S.J.; Rueckert, D. A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage 2018, 170, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, S.S.; Erdogmus, S.D.; Gholipour, A. Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging. IEEE Trans. Med. Imaging 2016, 36, 2319–2330. [Google Scholar] [CrossRef]
- Rampun, A.; Jarvis, D.; Griffiths, P.D.; Zwiggelaar, R.; Scotney, B.W.; Armitage, P.A. Single-input multi-output U-Net for automated 2D foetal brain segmentation of MR images. J. Imaging 2021, 7, 200. [Google Scholar] [CrossRef] [PubMed]
- Tourbier, S.; Velasco-Annis, C.; Taimouri, V.; Hagmann, P.; Meuli, R.; Warfield, S.K.; Cuadra, M.B.; Gholipour, A. Automated template-based brain localization and extraction for fetal brain MRI reconstruction. NeuroImage 2017, 155, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Link, D.; Braginsky, M.B.; Joskowicz, L.; Ben Sira, L.; Harel, S.; Many, A.; Tarrasch, R.; Malinger, G.; Artzi, M.; Kapoor, C.; et al. Automatic measurement of fetal brain development from magnetic resonance imaging: New reference data. Fetal Diagn. Ther. 2018, 43, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Farzan Vahedifard, X.L.; Adepoju, J.O.; Zhao, S.; Ai, H.A.; Marathu, K.K.; Supanich, M.; Byrd, S.E.; Deng, J. Automatic Localization of the Pons and Vermis on Fetal Brain Magnetic Resonance Imaging Using a U-net Deep Learning Model. Am. J. Neuroradiol. 2023, 206, 116324. [Google Scholar]
- Vahedifard, F.; Supanich, M.; Adepoju, J.; Liu, X.; Byrd, S. Deep Learning Model for Automatic Landmark Localization in Fetal Brain MRI. In Proceedings of the Annual Medical Education Conference (AMEC), Orlando, FL, USA, 16 April 2022. [Google Scholar]
Team Name | Network | Loss Function | 2D/3D | Patch Size | Post-Processing | Convolution Kernel Size | Optimizer |
---|---|---|---|---|---|---|---|
NVAUTO | MONAI[SegResNet], OCR modules | Dice | 3D | 224 × 224 × 144 | Ensemble learning | 3 × 3 × 3 | AdamW |
RUSH | MONAI[SegResNet] | Dice | 3D | 224 × 224 × 144 | None | 3 × 3 × 3 | Adam |
Team Name | Initialization | Learning Rate | Cross-Validation | Epochs | GPU Used | # of Layers | # of Trainable Parameters |
NVAUTO | Random | 0.0002, decrease to 0 at final epoch with cosine annealing scheduler | 5-fold | 300 | 4 × vidia V100 32G | 5desc/5asc | 75,819,624 |
RUSH | RandSpatialCrop RandFlip RandScaleIntensity RandShiftIntensity | 0.0001, weight_decay = 0.00001, CosineAnnealingLR | 5-fold | 300 | Nvidia GeForce RTX 2080 Ti 12G | 5desc/5asc | 4,700,999 |
Patient’s Number | Right Ventricle (Manual-General Radiologist) | Left Ventricle (Manual-Radiologist) | Right Ventricle (Manual-Neuroradiologist) | Left Ventricle (Manual-Neuroradiologist) | Right Ventricle (AI-Predicted) | Left Ventricle (AI-Predicted) |
---|---|---|---|---|---|---|
1 (normal) | 5.1 | 7.9 | 4.7 | 6.3 | 4.5 | 7.0 |
2 (normal) | 5.6 | 8.5 | 6.5 | 8.7 | 6.5 | 7.0 |
3 (normal) | 6.7 | 5.4 | 6.3 | 4.9 | 6.5 | 6.5 |
4 (normal) | 7.0 | 9.1 | 8.0 | 8.9 | 6.5 | 10.0 |
5 (normal) | 7.0 | 8.7 | 7.5 | 8.2 | 7.5 | 9.0 |
6 (normal) | 7.4 | 5.3 | 6.9 | 5.9 | 6.5 | 6.5 |
7 (normal) | 8.1 | 5.9 | 9.4 | 6.2 | 9.0 | 6.0 |
8 (normal) | 8.6 | 8.4 | 8.9 | 8.6 | 9.5 | 7.0 |
9 (normal) | 8.6 | 8.8 | 8.9 | 9.6 | 9.0 | 9.0 |
10 (normal) | 9.0 | 8.5 | 8.9 | 8.7 | 7.5 | 8.0 |
Mean | 7.31 | 7.65 | 7.6 | 7.6 | 7.3 | 7.55 |
SD | 1.29 | 1.49 | 1.50 | 1.60 | 1.53 | 1.40 |
Patient’s Number | Right Ventricle (Manual-General Radiologist) | Left Ventricle (Manual-Radiologist) | Right Ventricle (Manual-Neuroradiologist) | Left Ventricle (Manual-Neuroradiologist) | Right Ventricle (AI-Predicted) | Left Ventricle (AI-Predicted) |
---|---|---|---|---|---|---|
11 (abnormal) | 7.2 | 12.7 | 7.3 | 13.1 | 6.5 | 9.5 |
12 (abnormal) | 10.2 | 5.3 | 11.1 | 5.8 | 11.5 | 5.0 |
13 (abnormal) | 10.3 | 9.8 | 11.1 | 10.4 | 11.0 | 9.0 |
14 (abnormal) | 10.3 | 5.6 | 9.3 | 5.1 | 9.0 | 5.0 |
15 (abnormal) | 10.6 | 12.0 | 10.1 | 12.4 | 10.5 | 11.0 |
16 (abnormal) | 11.3 | 10.5 | 11.2 | 10.5 | 10.5 | 9.5 |
17 (abnormal) | 12.0 | 13.8 | 12.4 | 13.5 | 12.0 | 13.5 |
18 (abnormal) | 12.1 | 12.1 | 12.5 | 12.5 | 15.0 | 14.5 |
19 (abnormal) | 12.3 | 14.1 | 12.5 | 15.1 | 13.0 | 13.0 |
20 (abnormal) | 14.1 | 12.8 | 14.5 | 12.3 | 14.0 | 12.0 |
21 (abnormal) | 16.9 | 15.3 | 17.5 | 15.9 | 17.5 | 17.5 |
22 (abnormal) | 22.0 | 26.6 | 22.9 | 26.3 | 22.5 | 27.5 |
Mean | 12.18 | 12.75 | 12.64 | 12.81 | 11.22 | 10.79 |
SD | 4.19 | 5.10 | 5.08 | 5.31 | 3.31 | 4.22 |
Patient’s Number | Right Ventricle (General Radiologist vs. Neuroradiologist) | Left Ventricle (General Radiologist vs. Neuroradiologist) | Right Ventricle (General Radiologist vs. AI) | Left Ventricle (General Radiologist vs. AI) | Right Ventricle (Neuroradiologist vs. AI) | Left Ventricle (Neuroradiologist vs. AI) |
---|---|---|---|---|---|---|
1 (normal) | 0.4 | 1.6 | 0.6 | 0.9 | 0.2 | 0.7 |
2 (normal) | 0.9 | 0.2 | 0.9 | 1.5 | 0.0 | 1.7 |
3 (normal) | 0.4 | 0.5 | 0.2 | 1.1 | 0.2 | 1.6 |
4 (normal) | 1.0 | 0.2 | 0.5 | 0.9 | 1.5 | 1.1 |
5 (normal) | 0.5 | 0.5 | 0.5 | 0.3 | 0.0 | 0.8 |
6 (normal) | 0.5 | 0.6 | 0.9 | 1.2 | 0.4 | 0.6 |
7 (normal) | 1.3 | 0.3 | 0.9 | 0.1 | 0.4 | 0.2 |
8 (normal) | 0.3 | 0.2 | 0.9 | 1.4 | 0.6 | 1.6 |
9 (normal) | 0.3 | 0.8 | 0.4 | 0.2 | 0.1 | 0.6 |
10 (normal) | 0.1 | 0.2 | 1.5 | 0.5 | 1.4 | 0.7 |
11 (abnormal) | 0.1 | 0.4 | 0.7 | 3.2 | 0.8 | 3.6 |
12 (abnormal) | 0.9 | 0.5 | 1.3 | 0.3 | 0.4 | 0.8 |
13 (abnormal) | 0.8 | 0.6 | 0.7 | 0.8 | 0.1 | 1.4 |
14 (abnormal) | 1.0 | 0.5 | 1.3 | 0.6 | 0.3 | 0.1 |
15 (abnormal) | 0.5 | 0.4 | 0.1 | 1.0 | 0.4 | 1.4 |
16 (abnormal) | 0.1 | 0.0 | 0.8 | 1.0 | 0.7 | 1.0 |
17 (abnormal) | 0.4 | 0.3 | 0.0 | 0.3 | 0.4 | 0.0 |
18 (abnormal) | 0.4 | 0.4 | 2.9 | 2.4 | 2.5 | 2.0 |
19 (abnormal) | 0.2 | 1.0 | 0.7 | 1.1 | 0.5 | 2.1 |
20 (abnormal) | 0.4 | 0.5 | 0.1 | 0.8 | 0.5 | 0.3 |
21 (abnormal) | 0.6 | 0.6 | 0.6 | 2.2 | 0.0 | 1.6 |
22 (abnormal) | 0.9 | 0.3 | 0.5 | 0.9 | 0.4 | 1.2 |
Mean of errors | 0.55 | 0.48 | 0.77 | 1.03 | 0.54 | 1.14 |
Standard Deviation | 0.34 | 0.33 | 0.62 | 0.76 | 0.59 | 0.82 |
Mean of errors (right and left) | 0.51 mean error for Right and left (General Radiologist vs. Neuroradiologist) | 0.90 mean error for Right and left (General Radiologist vs. AI) | 0.84 mean error for Right and left (Neuroradiologist vs. AI) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahedifard, F.; Ai, H.A.; Supanich, M.P.; Marathu, K.K.; Liu, X.; Kocak, M.; Ansari, S.M.; Akyuz, M.; Adepoju, J.O.; Adler, S.; et al. Automatic Ventriculomegaly Detection in Fetal Brain MRI: A Step-by-Step Deep Learning Model for Novel 2D-3D Linear Measurements. Diagnostics 2023, 13, 2355. https://doi.org/10.3390/diagnostics13142355
Vahedifard F, Ai HA, Supanich MP, Marathu KK, Liu X, Kocak M, Ansari SM, Akyuz M, Adepoju JO, Adler S, et al. Automatic Ventriculomegaly Detection in Fetal Brain MRI: A Step-by-Step Deep Learning Model for Novel 2D-3D Linear Measurements. Diagnostics. 2023; 13(14):2355. https://doi.org/10.3390/diagnostics13142355
Chicago/Turabian StyleVahedifard, Farzan, H. Asher Ai, Mark P. Supanich, Kranthi K. Marathu, Xuchu Liu, Mehmet Kocak, Shehbaz M. Ansari, Melih Akyuz, Jubril O. Adepoju, Seth Adler, and et al. 2023. "Automatic Ventriculomegaly Detection in Fetal Brain MRI: A Step-by-Step Deep Learning Model for Novel 2D-3D Linear Measurements" Diagnostics 13, no. 14: 2355. https://doi.org/10.3390/diagnostics13142355
APA StyleVahedifard, F., Ai, H. A., Supanich, M. P., Marathu, K. K., Liu, X., Kocak, M., Ansari, S. M., Akyuz, M., Adepoju, J. O., Adler, S., & Byrd, S. (2023). Automatic Ventriculomegaly Detection in Fetal Brain MRI: A Step-by-Step Deep Learning Model for Novel 2D-3D Linear Measurements. Diagnostics, 13(14), 2355. https://doi.org/10.3390/diagnostics13142355