Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Room—Technological Equipment
2.3. Pilot Test
2.4. Intervention
2.5. Statistical Analysis
3. Results
3.1. Ultrasound at —Group 1
3.2. Ultrasound at —Group 2
3.3. Placebo—Group 3
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, M.H. Agentes Físicos en Rehabilitación: Práctica Basada en la Evidencia; Elsevier España SLU: Barcelona, Spain, 2018; ISBN 9788491133643. [Google Scholar]
- Starkey, C. Therapeutic Modalities, 4th ed.; F.A. Davis Company: Philadelphia, PA, USA, 2013; ISBN 9780803625938. [Google Scholar]
- Qing, W.; Shi, X.; Zhang, Q.; Peng, L.; He, C.; Wei, Q. Effect of Therapeutic Ultrasound for Neck Pain: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2021, 102, 2219–2230. [Google Scholar] [CrossRef]
- de Lucas, B.; Pérez, L.M.; Bernal, A.; Gálvez, B.G. Ultrasound Therapy: Experiences and Perspectives for Regenerative Medicine. Genes 2020, 11, 1086. [Google Scholar] [CrossRef] [PubMed]
- Alfredo, P.P.; Junior, W.S.; Casarotto, R.A. Efficacy of Continuous and Pulsed Therapeutic Ultrasound Combined with Exercises for Knee Osteoarthritis: A Randomized Controlled Trial. Clin. Rehabil. 2020, 34, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Xie, Y.; Luo, X.; Ji, Q.; Lu, C.; He, C.; Wang, P. Effects of Therapeutic Ultrasound on Pain, Physical Functions and Safety Outcomes in Patients with Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2016, 30, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, S.; Lv, Z.; Kan, S.; Wu, Q.; Song, W.; Ning, G.; Feng, S. Effects of Therapeutic Ultrasound for Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2019, 33, 1863–1875. [Google Scholar] [CrossRef] [PubMed]
- Azaharez Rodríguez, M. Efectividad del ultrasonido terapéutico en el tratamiento de la espasticidad del miembro superior pléjico. CCH. Correo Cient. Holguín 2017, 21, 204–218. [Google Scholar]
- Lopez Fernández, F.J. Efecto del Ultrasonido Terapéutico Sobre las Tendinopatías del Tendón del Supraespinoso. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2017. [Google Scholar]
- Moneim, N.H.A.; Hemed, M.A.; Klooster, P.M.T.; Rasker, J.J.; El Shaarawy, N.K. Chronic Plantar Fasciitis Treatment: A Randomized Trial Comparing Corticosteroid Injections Followed by Therapeutic Ultrasound with Extracorporeal Shock Wave Therapy. Rheumato 2023, 3, 169–188. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Öneş, K.; Gökşenoğlu, G. Effectiveness of Ultrasound Therapy on Myofascial Pain Syndrome of the Upper Trapezius: Randomized, Single-Blind, Placebo-Controlled Study. Arch. Rheumatol. 2018, 33, 418–423. [Google Scholar] [CrossRef]
- Ilter, L.; Dilek, B.; Batmaz, I.; Ulu, M.A.; Sariyildiz, M.A.; Nas, K.; Cevik, R. Efficacy of Pulsed and Continuous Therapeutic Ultrasound in Myofascial Pain Syndrome: A Randomized Controlled Study: A Randomized Controlled Study. Am. J. Phys. Med. Rehabil. 2015, 94, 547–554. [Google Scholar] [CrossRef]
- Bellew, J.W.; Michlovitz, S.L.; Nolan, T.P., Jr. Michlovitz’s Modalities for Therapeutic Intervention; F.A. Davis Company: Philadelphia, PA, USA, 2016; ISBN 9780803657632. [Google Scholar]
- Morishita, K.; Karasuno, H.; Yokoi, Y.; Morozumi, K.; Ogihara, H.; Ito, T.; Hanaoka, M.; Fujiwara, T.; Fujimoto, T.; Abe, K. Effects of Therapeutic Ultrasound on Range of Motion and Stretch Pain. J. Phys. Ther. Sci. 2014, 26, 711–715. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.J.; Stretanski, M.F. Ultrasound Therapy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gallo, J.A.; Draper, D.O.; Brody, L.T.; Fellingham, G.W. A Comparison of Human Muscle Temperature Increases during 3-MHz Continuous and Pulsed Ultrasound with Equivalent Temporal Average Intensities. J. Orthop. Sports Phys. Ther. 2004, 34, 395–401. [Google Scholar] [CrossRef]
- Rimington, S.J.; Draper, D.O.; Durrant, E.; Fellingham, G. Temperature Changes during Therapeutic Ultrasound in the Precooled Human Gastrocnemius Muscle. J. Athl. Train. 1994, 29, 325–327. [Google Scholar] [PubMed]
- Rigby, J.H.; Taggart, R.M.; Stratton, K.L.; Lewis, G.K., Jr.; Draper, D.O. Intramuscular Heating Characteristics of Multihour Low-Intensity Therapeutic Ultrasound. J. Athl. Train. 2015, 50, 1158–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piva, G.; Crepaldi, A.; Zenunaj, G.; Caruso, L.; Rinaldo, N.; Gasbarro, V.; Lamberti, N.; Lòpez-Soto, P.J.; Manfredini, F. The Value of Infrared Thermography to Assess Foot and Limb Perfusion in Relation to Medical, Surgical, Exercise or Pharmacological Interventions in Peripheral Artery Disease: A Systematic Review. Diagnostics 2022, 12, 3007. [Google Scholar] [CrossRef]
- Derruau, S.; Bogard, F.; Exartier-Menard, G.; Mauprivez, C.; Polidori, G. Medical Infrared Thermography in Odontogenic Facial Cellulitis as a Clinical Decision Support Tool. A Technical Note. Diagnostics 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Vargas, R.; Ugalde-Ramírez, J.A.; Rojas-Valverde, D.; Salas-Cabrera, J.; Rodríguez-Montero, A.; Gutiérrez-Vargas, J.C. La termografía infrarroja como herramienta efectiva para detectar áreas músculares dañadas después de correr una maratón. Rev. Fac. Med. Univ. Nac. Colomb. 2017, 65, 601–607. [Google Scholar] [CrossRef]
- Aguilar-Juárez, V.; Sánchez-Colín, M.A.; Zúñiga-Avilés, L.A. Scientometric and patentometric analysis to determine the knowledge landscape in innovation technologies: The therapeutic ultrasound equipments. Rev. Mex. Ing. Bioméd. 2020, 41, 167–184. [Google Scholar]
- Lubkowska, A.; Pluta, W. Infrared Thermography as a Non-Invasive Tool in Musculoskeletal Disease Rehabilitation—The Control Variables in Applicability—A Systematic Review. Appl. Sci. 2022, 12, 4302. [Google Scholar] [CrossRef]
- Ratajczak, B.; Boerner, E.; Demidaś, A.; Tomczyk, K.; Dębiec-Bąk, A.; Hawrylak, A. Comparison of Skin Surface Temperatures after Ultrasounds with Use of Paraffin Oil and Ultrasounds with Use of Gel. J. Therm. Anal. Calorim. 2012, 109, 387–393. [Google Scholar] [CrossRef]
- Ratajczak, B.; Boerner, E. Application of Thermovision in Assessment of Superficial Tissue Temperature Changes under the Influence of 1 MHz and 3 MHz Ultrasounds Wave. J. Therm. Anal. Calorim. 2015, 120, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Boerner, E.; Podbielska, H. Application of Thermal Imaging to Assess the Superficial Skin Temperature Distribution after Local Cryotherapy and Ultrasound. J. Therm. Anal. Calorim. 2018, 131, 2049–2055. [Google Scholar] [CrossRef] [Green Version]
- Cabizosu, A.; Carboni, N.; Martinez-Almagro Andreo, A.; Vegara-Meseguer, J.M.; Marziliano, N.; Gea Carrasco, G.; Casu, G. Theoretical Basis for a New Approach of Studying Emery-Dreifuss Muscular Dystrophy by Means of Thermography. Med. Hypotheses 2018, 118, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Tattersall, G.J. Infrared Thermography: A Non-Invasive Window into Thermal Physiology. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2016, 202, 78–98. [Google Scholar] [CrossRef] [PubMed]
- Hegedűs, B. The potential role of thermography in determining the efficacy of stroke rehabilitation. J. Stroke Cerebrovasc. Dis. 2018, 27, 309–314. [Google Scholar] [CrossRef]
- Vargas E Silva, N.C.O.; Rubio, A.L.; Alfieri, F.M. Associations between Skin Surface Temperature and Pressure Pain Tolerance Thresholds of Asymptomatic Individuals Exposed to Cryotherapy and Thermotherapy. J. Chiropr. Med. 2019, 18, 171–179. [Google Scholar] [CrossRef]
- Belmont, J.R.; Carciumaru, D.; Martín, J.M.R. Una nueva fórmula del ultrasonido terapéutico en fisioterapia: Dosificación por unidad de volumen. Rev. Cuba. Med. Física Rehabil. 2022, 14, e713. [Google Scholar]
- Hauck, M.; Noronha Martins, C.; Borges Moraes, M.; Aikawa, P.; da Silva Paulitsch, F.; Méa Plentz, R.D.; Teixeira da Costa, S.; Vargas da Silva, A.M.; Signori, L.U. Comparison of the Effects of 1 MHz and 3 MHz Therapeutic Ultrasound on Endothelium-Dependent Vasodilation of Humans: A Randomised Clinical Trial. Physiotherapy 2019, 105, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.K. Alternatives to P Value: Confidence Interval and Effect Size. Korean J. Anesthesiol. 2016, 69, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Duan, D.; Tang, W.; Wang, R.; Guo, Z.; Feng, H. Evaluation of Epitranscriptome-Wide N6-Methyladenosine Differential Analysis Methods. Brief. Bioinform. 2023, 24, bbad139. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhu, J.; Ma, Y.; Zhou, X. Accuracy, Robustness and Scalability of Dimensionality Reduction Methods for Single-Cell RNA-Seq Analysis. Genome Biol. 2019, 20, 269. [Google Scholar] [CrossRef] [Green Version]
- Draper, D.; Jutte, L. Therapeutic Modalities: The Art and Science, 3rd ed.; Wolters Kluwer Health: Baltimore, MD, USA, 2020; ISBN 9781975121327. [Google Scholar]
- Draper, D.O.; Edvalson, C.G.; Knight, K.L.; Eggett, D.; Shurtz, J. Temperature Increases in the Human Achilles Tendon during Ultrasound Treatments with Commercial Ultrasound Gel and Full-Thickness and Half-Thickness Gel Pads. J. Athl. Train. 2010, 45, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Noble, J.G.; Lee, V.; Griffith-Noble, F. Therapeutic Ultrasound: The Effects upon Cutaneous Blood Flow in Humans. Ultrasound Med. Biol. 2007, 33, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.F. Therapeutic Heat and Cold, 4th ed.; Licht, S., Ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 1990; ISBN 9780683049084. [Google Scholar]
- Norheim, A.J.; Borud, E.; Wilsgaard, T.; De Weerd, L.; Mercer, J.B. Variability in Peripheral Rewarming after Cold Stress among 255 Healthy Norwegian Army Conscripts Assessed by Dynamic Infrared Thermography. Int. J. Circumpolar Health 2018, 77, 1536250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liceralde, P. The Effects of Ultrasound Transducer Velocity on Intramuscular Tissue Temperature across a Treatment Site. Master’s Thesis, University of Nevada Las Vegas, Las Vegas, NV, USA, 2009. [Google Scholar]
- Garrido, R. Acupuntura y Dolor. Rev. Méd. Clín. Las Condes 2019, 30, 487–493. [Google Scholar] [CrossRef]
- Barrios, C.; Yeste, M. The Effect of Dry Needling in Basketball Players Analyzed Using Thermographic Cameras. Rev. Fisioter. Invasiva 2019, 02, 128–129. [Google Scholar] [CrossRef] [Green Version]
Left Leg 1 | Left Leg 2 | 30.85 | 26.75 | <0.001 | 1.15 | 1.62 | −4.10 | 3.71 |
Left Leg 2 | Left Leg 3 | 26.75 | 29.04 | <0.001 | 1.62 | 1.16 | 2.29 | 3.18 |
Left Leg 3 | Left Leg 4 | 29.04 | 29.61 | <0.001 | 1.16 | 1.09 | 0.57 | 1.66 |
Left Leg 4 | Left Leg 5 | 29.61 | 29.79 | <0.001 | 1.09 | 1.03 | 0.18 | 1.37 |
Left Leg 1 | Left Leg 5 | 30.85 | 29.79 | <0.001 | 1.15 | 1.03 | −1.06 | 3.18 |
Left Leg 1 | Left Leg 2 | 30.79 | 26.52 | <0.001 | 1.00 | 1.93 | −4.27 | 2.75 |
Left Leg 2 | Left Leg 3 | 26.52 | 28.59 | <0.001 | 1.93 | 1.12 | 2.07 | 2.06 |
Left Leg 3 | Left Leg 4 | 28.59 | 29.23 | <0.001 | 1.12 | 0.86 | 0.64 | 1.21 |
Left Leg 4 | Left Leg 5 | 29.23 | 29.44 | <0.001 | 0.86 | 0.82 | 0.21 | 1.03 |
Left Leg 1 | Left Leg 5 | 30.79 | 29.44 | <0.001 | 1.00 | 0.82 | −1.35 | 2.01 |
Left Leg 1 | Left Leg 2 | 30.45 | 25.17 | <0.001 | 1.25 | 1.84 | −5.28 | 3.82 |
Left Leg 2 | Left Leg 3 | 25.17 | 27.89 | <0.001 | 1.83 | 1.25 | 2.72 | 2.93 |
Left Leg 3 | Left Leg 4 | 27.89 | 28.74 | <0.001 | 1.25 | 1.09 | 0.85 | 3.00 |
Left Leg 4 | Left Leg 5 | 28.74 | 29.06 | <0.001 | 1.08 | 1.02 | 0.32 | 1.35 |
Left Leg 1 | Left Leg 5 | 30.45 | 29.06 | <0.001 | 1.25 | 1.02 | −1.39 | 2.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Hernandez, A.G.; Martinez-Aguilar, V.; Chavez-Gonzalez, T.M.; Mendez-Avila, J.C.; Frias-Becerril, J.V.; Morales-Hernandez, L.A.; Cruz-Albarran, I.A. Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle. Diagnostics 2023, 13, 2644. https://doi.org/10.3390/diagnostics13162644
Morales-Hernandez AG, Martinez-Aguilar V, Chavez-Gonzalez TM, Mendez-Avila JC, Frias-Becerril JV, Morales-Hernandez LA, Cruz-Albarran IA. Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle. Diagnostics. 2023; 13(16):2644. https://doi.org/10.3390/diagnostics13162644
Chicago/Turabian StyleMorales-Hernandez, Arely G., Violeta Martinez-Aguilar, Teresa M. Chavez-Gonzalez, Julio C. Mendez-Avila, Judith V. Frias-Becerril, Luis A. Morales-Hernandez, and Irving A. Cruz-Albarran. 2023. "Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle" Diagnostics 13, no. 16: 2644. https://doi.org/10.3390/diagnostics13162644
APA StyleMorales-Hernandez, A. G., Martinez-Aguilar, V., Chavez-Gonzalez, T. M., Mendez-Avila, J. C., Frias-Becerril, J. V., Morales-Hernandez, L. A., & Cruz-Albarran, I. A. (2023). Short-Term Thermal Effect of Continuous Ultrasound from 3 MHz to 1 and 0.5 W/cm2 Applied to Gastrocnemius Muscle. Diagnostics, 13(16), 2644. https://doi.org/10.3390/diagnostics13162644