Identification of Intestinal Microbial Community in Gallstone Patients with Metagenomic Next-Generation Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohorts
2.2. Fecal Samples’ Collection
2.3. DNA Extraction and Sequencing
2.4. Sequence Analysis
2.5. Data Access
2.6. Statistical Analysis
3. Results
3.1. Analysis of Intestinal Microbial Community in GD Patients
3.2. The Intestinal Microbiota in GD Patients Were Extraordinarily Different from Those in Healthy Individuals
3.3. The Functions of Intestinal Microbiota in GD Patients Varied from Those in Healthy Individuals
3.4. The Species and Functions with the Highest Discriminatory Power of Intestinal Microbiota in GD Patients
3.5. The Levels of Serum Biochemical Indicators Were Correlated with the Abundances of Intestinal Microbes in GD Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutt, C.; Schlafer, S.; Lammert, F. The treatment of gallstone disease. Dtsch. Arztebl. Int. 2020, 117, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Warren, J.; Yip, J.; Ji, Y.; Hao, S.; Han, W.; Ding, Y. Factors influencing gallstone formation: A review of the literature. Biomolecules 2022, 12, 550. [Google Scholar] [CrossRef] [PubMed]
- Perez-Palma, E.; Bustos, B.I.; Lal, D.; Buch, S.; Azocar, L.; Toliat, M.R.; Lieb, W.; Franke, A.; Hinz, S.; Burmeister, G.; et al. Copy number variants in lipid metabolism genes are associated with gallstones disease in men. Eur. J. Hum. Genet. 2020, 28, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Aili, A.; Zhang, C.; Saiding, A.; Abudureyimu, K. Prevalence of and risk factors for gallstones in Uighur and Han Chinese. World J Gastroenterol. 2014, 20, 14942–14949. [Google Scholar] [CrossRef] [PubMed]
- Mallick, B.; Anand, A.C. Gallstone disease in cirrhosis-pathogenesis and management. J. Clin. Exp. Hepatol. 2022, 12, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mao, M.; Zhang, C.; Hu, F.; Cui, P.; Li, G.; Shi, J.; Wang, X.; Shan, X. Blood lipid metabolism and the risk of gallstone disease: A multi-center study and meta-analysis. Lipids Health Dis. 2022, 21, 26. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Parini, P.; Eggertsen, G.; Davis, M.A.; Hu, H.; Suo, G.J.; Zhang, S.D.; Rudel, L.L.; Han, T.Q.; Einarsson, C. Increased expression of lxr alpha, abcg5, abcg8, and sr-bi in the liver from normolipidemic, nonobese Chinese gallstone patients. J. Lipid Res. 2008, 49, 464–472. [Google Scholar] [CrossRef]
- Wang, H.H.; Portincasa, P.; Mendez-Sanchez, N.; Uribe, M.; Wang, D.Q. Effect of ezetimibe on the prevention and dissolution of cholesterol gallstones. Gastroenterology 2008, 134, 2101–2110. [Google Scholar] [CrossRef]
- Tilg, H.; Zmora, N.; Adolph, T.E.; Elinav, E. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 2020, 20, 40–54. [Google Scholar] [CrossRef]
- Kc, D.; Sumner, R.; Lippmann, S. Gut microbiota and health. Postgrad. Med. 2020, 132, 274. [Google Scholar] [CrossRef]
- Tang, W.; Li, D.Y.; Hazen, S.L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 2019, 16, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Kitai, T.; Hazen, S.L. Gut microbiota in cardiovascular health and disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol. 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Zhang, J.; Wu, Q.; Chen, J.; Liu, J.; Wang, L.; Chen, C.; Xu, J.; Zhang, H.; Shi, C.; et al. The role of microbiota in the development of colorectal cancer. Int. J. Cancer 2019, 145, 2032–2041. [Google Scholar] [CrossRef]
- Ishii, W.; Komine-Aizawa, S.; Takano, C.; Fujita, Y.; Morioka, I.; Hayakawa, S. Relationship between the fecal microbiota and depression and anxiety in pediatric patients with orthostatic intolerance. Prim. Care Companion CNS Disord. 2019, 21, 25523. [Google Scholar] [CrossRef]
- Fremont-Rahl, J.J.; Ge, Z.; Umana, C.; Whary, M.T.; Taylor, N.S.; Muthupalani, S.; Carey, M.C.; Fox, J.G.; Maurer, K.J. An analysis of the role of the indigenous microbiota in cholesterol gallstone pathogenesis. PLoS ONE 2013, 8, e70657. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, L.; He, C.; Sun, H.; Cai, Q.; Han, T.; Hu, H. Alteration of gut microbiota in association with cholesterol gallstone formation in mice. BMC Gastroenterol. 2017, 17, 74. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Liu, B.; Hou, D.; Liang, Y.; Zhang, J.; Shi, P. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genom. 2013, 14, 669. [Google Scholar] [CrossRef]
- Keren, N.; Konikoff, F.M.; Paitan, Y.; Gabay, G.; Reshef, L.; Naftali, T.; Gophna, U. Interactions between the intestinal microbiota and bile acids in gallstones patients. Environ. Microbiol. Rep. 2015, 7, 874–880. [Google Scholar] [CrossRef]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006, 47, 241–259. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.; Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Perez, O.; Cruz-Ramon, V.; Chinchilla-Lopez, P.; Mendez-Sanchez, N. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol. 2017, 16, s15–s20. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Yao, J.; Yang, F.; Liu, W.; Bai, H.; Ma, J.; Ma, X.; Zhang, J.; Fang, Y.; Miao, Y.; et al. The composition of intestinal microbiota and its association with functional constipation of the elderly patients. Future Microbiol. 2020, 15, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jiang, Y.; Yang, L.; Qin, J.; Guo, M.; Lu, Y.; Chen, H.; Zhuang, Y.; Zhang, J.; Zhang, H.; et al. Molecular and conventional analysis of acute diarrheal isolates identifies epidemiological trends, antibiotic resistance and virulence profiles of common enteropathogens in shanghai. Front. Microbiol. 2018, 9, 164. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.; Yiu, S.M.; Chin, F.Y. Idba-ud: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef]
- Zhu, W.; Lomsadze, A.; Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010, 38, e132. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. Cd-hit: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using diamond. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. Megan analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef]
- Huson, D.H.; Mitra, S.; Ruscheweyh, H.J.; Weber, N.; Schuster, S.C. Integrative analysis of environmental sequences using megan4. Genome Res. 2011, 21, 1552–1560. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The kegg resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, C.; Yao, W.; Zhu, D.; Lu, H.; Li, L.; Ma, B.; Sun, B.; Xue, D.; Zhang, W. Intestinal flora imbalance affects bile acid metabolism and is associated with gallstone formation. BMC Gastroenterol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Molinero, N.; Ruiz, L.; Milani, C.; Gutierrez-Diaz, I.; Sanchez, B.; Mangifesta, M.; Segura, J.; Cambero, I.; Campelo, A.B.; Garcia-Bernardo, C.M.; et al. The human gallbladder microbiome is related to the physiological state and the biliary metabolic profile. Microbiome 2019, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, M.; Qin, C.; Hong, J. Role of the biliary microbiome in gallstone disease. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, K.; Daitoku, H.; Shimamoto, Y.; Matsuzaki, H.; Hirota, K.; Ishida, J.; Fukamizu, A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and foxo1. J. Biol. Chem. 2004, 279, 23158–23165. [Google Scholar] [CrossRef] [PubMed]
- Staels, B.; Handelsman, Y.; Fonseca, V. Bile acid sequestrants for lipid and glucose control. Curr. Diab. Rep. 2010, 10, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Porter, N.T.; Luis, A.S.; Martens, E.C. Bacteroides thetaiotaomicron. Trends Microbiol. 2018, 26, 966–967. [Google Scholar] [CrossRef]
GD Patients | Healthy People | p-Value | |
---|---|---|---|
Age (years) | 49.69 ± 7.37 | 46.10 ± 6.32 | 0.066 |
Gender | |||
Male | 16 | 12 | 0.105 |
Female | 26 | 8 | |
Glutamate Dehydrogenase (μmol/L) | 3.39 ± 2.10 | - | - |
Total Protein/Albumin | 1.62 ± 0.46 | - | - |
Total Protein (μmol/L) | 71.89 ± 5.00 | - | - |
Albumin (μmol/L) | 45.08 ± 3.52 | - | - |
Prealbumin (μmol/L) | 233.37 ± 41.85 | - | - |
Alanine Aminotransferase (μmol/L) | 25.16 ± 18.51 | - | - |
Aspartate Aminotransferase (μmol/L) | 22.73 ± 18.64 | - | - |
Lactate Dehydrogenase (μmol/L) | 168.81 ± 25.12 | - | - |
Total Bile Acid (μmol/L) | 4.10 ± 3.10 | - | - |
γ-Glutamyl Transpeptidase (μmol/L) | 45.69 ± 23.96 | - | - |
Direct Bilirubin (μmol/L) | 4.49 ± 2.40 | - | - |
Total Bilirubin (μmol/L) | 11.45 ± 5.01 | - | - |
Alpha-l-fucosidase (μmol/L) | 19.85 ± 5.47 | - | - |
Cystatin C (μmol/L) | 0.73 ± 0.18 | - | - |
Feature ID | Mean Decrease in Accuracy | Standard Deviation |
---|---|---|
k__Bacteria; p__Bacteroidetes; c__Sphingobacteriia; o__Sphingobacteriales; f__Sphingobacteriaceae; g__Sphingobacterium; s__Sphingobacterium sp. G1-14 | 0.001162928 | 0.000606256 |
k__Eukaryota; p__Basidiomycota; c__Agaricomycetes; o__uc_Agaricomycetes; f__uc_Agaricomycetes; g__uc_Agaricomycetes; s__uc_Agaricomycetes | 0.001031263 | 0.000604338 |
k__Eukaryota; p__Basidiomycota; c__Agaricomycetes; o__Agaricales; f__uc_Agaricales; g__uc_Agaricales; s__uc_Agaricales | 0.000936848 | 0.00046726 |
k__Bacteria; p__Firmicutes; c__Bacilli; o__Bacillales; f__unknown; g__Exiguobacterium; s__Exiguobacterium sp. 11–28 | 0.000832036 | 0.000560922 |
k__Eukaryota; p__Basidiomycota; c__Agaricomycetes; o__Agaricales; f__Omphalotaceae; g__Gymnopus; s__Gymnopus sp. VC-2017f | 0.000810951 | 0.000455266 |
k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Eubacteriaceae; g__Eubacterium; s__Eubacterium ramulus | 0.000759662 | 0.000347172 |
k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__Faecalibacterium; s__Faecalibacterium sp. | 0.000712143 | 0.000622133 |
k__Eukaryota; p__Mucoromycota; c__Mucoromycetes; o__Mucorales; f__Lichtheimiaceae; g__Rhizomucor; s__Rhizomucor miehei | 0.000711614 | 0.000220115 |
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Pseudomonadales; f__Moraxellaceae; g__Acinetobacter; s__Acinetobacter nosocomialis | 0.000686536 | 0.000425183 |
k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacterales; f__Enterobacteriaceae; g__Enterobacter; s__Enterobacter sp. Crenshaw | 0.000654157 | 0.000538885 |
Feature ID | Mean Decrease in Accuracy | Standard Deviation |
---|---|---|
S Function unknown; ENOG4107YKV | 0.000523052 | 0.000482557 |
Q Secondary metabolites biosynthesis, transport and catabolism; ENOG4107VZP | 0.000514268 | 0.000594528 |
S Function unknown; ENOG4106UH8 | 0.000445652 | 0.000245257 |
V Defense mechanisms; ENOG4107RKB | 0.000408646 | 0.000340324 |
K Transcription; ENOG4105S4D | 0.00038124 | 0.000329398 |
E Amino acid transport and metabolism; arCOG05229 | 0.000348469 | 0.000414534 |
S Function unknown; ENOG4108QVM | 0.000348453 | 0.00046618 |
P Inorganic ion transport and metabolism; ENOG4105DH3 | 0.000347117 | 0.000180151 |
S Function unknown; ENOG4105V0F | 0.000328789 | 0.000247238 |
S Function unknown; ENOG4108S9K | 0.000307536 | 0.00033249 |
uc_Bacteroide | Thetaiotaomicron | Dorei | Fragilis | Cellulosilyticus | ||||||
---|---|---|---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
Total bile acid | 0.062 | 0.735 | 0.299 | 0.096 | −0.041 | 0.822 | 0.208 | 0.253 | 0.169 | 0.356 |
Alkaline phosphatase | 0.005 | 0.771 | 0.245 | 0.149 | 0.042 | 0.806 | 0.126 | 0.464 | −0.080 | 0.645 |
γ-Glutamyl transpeptidase | −0.232 | 0.174 | 0.021 | 0.904 | −0.067 | 0.700 | 0.040 | 0.819 | −0.225 | 0.188 |
Direct bilirubin | −0.197 | 0.250 | −0.021 | 0.903 | −0.304 | 0.071 | −0.113 | 0.513 | −0.325 | 0.053 |
Total bilirubin | −0.256 | 0.131 | −0.105 | 0.543 | −0.395 | 0.017 | −0.200 | 0.243 | −0.416 | 0.012 |
Alpha-l-fucosidase | 0.154 | 0.493 | −0.098 | 0.665 | 0.296 | 0.181 | −0.186 | 0.406 | −0.197 | 0.379 |
Urea nitrogen | 0.125 | 0.475 | 0.021 | 0.906 | 0.104 | 0.551 | −0.156 | 0.370 | 0.086 | 0.624 |
Creatinine | 0.151 | 0.386 | 0.282 | 0.101 | 0.180 | 0.301 | −0.075 | 0.671 | −0.044 | 0.803 |
Uric acid | 0.030 | 0.863 | 0.248 | 0.151 | 0.047 | 0.788 | −0.256 | 0.138 | −0.116 | 0.506 |
Cystatin C | −0.264 | 0.158 | −0.016 | 0.935 | −0.307 | 0.099 | −0.402 | 0.027 | −0.065 | 0.734 |
Glutamate dehydrogenase | 0.115 | 0.601 | 0.399 | 0.060 | 0.158 | 0.472 | 0.058 | 0.791 | −0.001 | 0.995 |
Fibronectin | −0.290 | 0.203 | −0.269 | 0.239 | 0.040 | 0.862 | −0.113 | 0.626 | 0.047 | 0.841 |
Cholyglycine | 0.015 | 0.937 | 0.238 | 0.198 | −0.042 | 0.823 | 0.222 | 0.230 | 0.047 | 0.802 |
Total protein/albumin | 0.301 | 0.066 | 0.162 | 0.331 | 0.102 | 0.544 | 0.150 | 0.368 | 0.014 | 0.934 |
Total protein | −0.024 | 0.889 | −0.004 | 0.983 | 0.133 | 0.440 | 0.182 | 0.288 | −0.089 | 0.606 |
Albumin | 0.210 | 0.218 | 0.204 | 0.233 | 0.282 | 0.096 | 0.248 | 0.145 | 0.041 | 0.810 |
Globulin | −0.137 | 0.440 | 0.006 | 0.974 | −0.056 | 0.755 | 0.053 | 0.767 | −0.098 | 0.582 |
Prealbumin | 0.077 | 0.741 | 0.483 | 0.027 | 0.288 | 0.205 | 0.336 | 0.136 | −0.022 | 0.924 |
Alanine aminotransferase | 0.024 | 0.887 | 0.096 | 0.572 | 0.113 | 0.507 | −0.124 | 0.466 | 0.108 | 0.524 |
Aspartate aminotransferase | 0.003 | 0.988 | −0.068 | 0.688 | −0.039 | 0.821 | 0.025 | 0.884 | 0.040 | 0.812 |
Lactate dehydrogenase | −0.108 | 0.642 | −0.006 | 0.978 | 0.009 | 0.969 | 0.083 | 0.722 | −0.029 | 0.900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Wang, S.; Jiang, W.; Miao, Y.; Liu, W.; Yang, F.; Zhang, J.; Chi, W.; Liu, T.; Liu, Y.; et al. Identification of Intestinal Microbial Community in Gallstone Patients with Metagenomic Next-Generation Sequencing. Diagnostics 2023, 13, 2712. https://doi.org/10.3390/diagnostics13162712
Ding L, Wang S, Jiang W, Miao Y, Liu W, Yang F, Zhang J, Chi W, Liu T, Liu Y, et al. Identification of Intestinal Microbial Community in Gallstone Patients with Metagenomic Next-Generation Sequencing. Diagnostics. 2023; 13(16):2712. https://doi.org/10.3390/diagnostics13162712
Chicago/Turabian StyleDing, Li, Su Wang, Wenrong Jiang, Yingxin Miao, Wenjian Liu, Feng Yang, Jinghao Zhang, Wenjing Chi, Tao Liu, Yue Liu, and et al. 2023. "Identification of Intestinal Microbial Community in Gallstone Patients with Metagenomic Next-Generation Sequencing" Diagnostics 13, no. 16: 2712. https://doi.org/10.3390/diagnostics13162712
APA StyleDing, L., Wang, S., Jiang, W., Miao, Y., Liu, W., Yang, F., Zhang, J., Chi, W., Liu, T., Liu, Y., Wang, S., Zhang, Y., & Zhao, H. (2023). Identification of Intestinal Microbial Community in Gallstone Patients with Metagenomic Next-Generation Sequencing. Diagnostics, 13(16), 2712. https://doi.org/10.3390/diagnostics13162712