Enhancing the Evidence with Algorithms: How Artificial Intelligence Is Transforming Forensic Medicine
Abstract
:1. Introduction
1.1. Definitions of Terms Related to AI and Medicine
1.1.1. Artificial Intelligence
1.1.2. Machine Learning (ML)
1.1.3. Deep Learning (DL)
1.1.4. Natural Language Processing (NPL)
1.1.5. Robotics
1.1.6. Artificial Neural Network (ANN)
1.1.7. Convolutional Neural Networks (CNNs)
2. Literature Review
2.1. Methodology
2.2. Results
2.2.1. Forensic Identification
Forensic Identification | Year of Study | Author | Application |
2022 | Mohammad N. [17] | Forensic Odontology | |
2020 | Khanagar S.B. [18] | Forensic Odontology | |
2021 | Thurzo A. [19] | The AI impact on forensic anthropology | |
2017 | Nino-Sandoval T. [20] | Mandibular reconstruction | |
2022 | Matsuda S. [21] | Personal identification | |
2016 | Nguyen D.T [22] | Sex estimates | |
2021 | Massimo L. [23] | Visual semiotics and digital forensics | |
Ballistics and additional factors of shooting | 2020 | Bobbili R. [24] | Establishing the class of the weapon and the bullet caliber |
Traumatic injuries | 2005 | Georgieva L. [25] | Estimating the ecchymosis age by color analysis |
Post-mortem interval | 2019 | Hachem M. [26] | Prediction of PM interval through blood biomarkers |
2020 | Zou Y. [27] | Post Mortem interval and AI | |
2022 | Wang Z. [28] | AI and microbiome for PM interval | |
Forensic toxicology | 2020 | Gasteiger J. [29] | Chemistry and AI |
2000 | Helma C. [30] | Toxicology and AI | |
Sexual assaults/rape | 2021 | Golomingi R. [31] | Sperm identification under an optical microscope using AI |
Crime Scene Reconstruction | 2020 | Siddhant G. [32] | Making animations regarding the circumstances of the death |
Virtual autopsy | 2017 | O’Sullivan S. [33]; Gerke S. [34] | AI assistance in necropsy expertise |
Medical Act Quality Evaluation | 2019 | Santin M. [35] | AI assistance in imaging investigations |
2020 | Qui S. [36] | AI assistance in psychiatry | |
2023 2019 2018 | Salazar L. [37] Attia Z.I [38] Alsharqi M. [39] | AI assistance in cardiology | |
2020 | Zhang Y.H. [40] | Cancer management using AI | |
2022 | Rajpurkar P. [41] | AI assistance in pathology | |
2020 2019 | Young A.T [42] Dick V. [43] | AI in dermatology | |
2020 | Pedersen M. [44] | AI in neurology | |
2017 | Rathi S. [45] | AI in ophthalmology | |
2021 | Kroner P.T. [46] | AI in gastroenterology | |
2015 2021 | Idowu I.O. [47] Sone K. [48]. | AI in obstetrics and gynecology |
2.2.2. Ballistic Expertise and Additional Factors of the Shooting
2.2.3. Traumatic Injuries—Bruise Color’s Recognition
2.2.4. Determination of the Postmortem Interval
2.2.5. Forensic Toxicology
2.2.6. Sperm Identification
2.2.7. Crime Scene Reconstruction
2.2.8. Virtual Autopsy
3. Discussion
3.1. Perspectives and Directions for the Application of Artificial Intelligence in Forensic Medicine and Pathology
3.2. Evaluation of Medical Malpractice Cases
3.2.1. Medical Diagnosis
3.2.2. Personalized Treatment
3.2.3. Disease Monitoring and Management
3.2.4. Robot-Assisted Surgery
3.2.5. Drug Discovery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaplan, A.; Haenlein, M. Siri, Siri, in My Hand: Who’s the Fairest in the Land? On the Interpretations, Illustrations, and Implications of Artificial Intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach (d), 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Narasimhan, G.; Krishnan, R.; Krishnan, A. Fourth Industrial Revolution and Business Dynamics: Issues and Implications; Palgrave Macmillan: Singapore, 2021. [Google Scholar]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial Intelligence in Disease Diagnosis: A Systematic Literature Review, Synthesizing Framework and Future Research Agenda. J. Ambient Intell. Humaniz. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.T.; Lan, Q.; Xie, T.; Liu, Y.F.; Mei, S.Y.; Zhu, B.F. New Opportunities and Challenges for Forensic Medicine in the Era of Artificial Intelligence Technology. Fa Yi Xue Za Zhi 2020, 36, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Turing, A.M.I. Computing machinery and intelligence. Mind 1950, 236, 433–460. [Google Scholar] [CrossRef]
- Salto-Tellez, M.; Maxwell, P.; Hamilton, P. Artificial intelligence-the third revolution in pathology. Histopathology 2019, 74, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Deloitte Insights State of AI in the Enterprise. Deloitte. 2018. Available online: www2.deloitte.com/content/dam/insights/us/articles/4780_State-of-AI-in-the-enterprise/AICognitiveSurvey2018_Infographic.pdf (accessed on 1 July 2023).
- Lee, S.I.; Celik, S.; Logsdon, B.A.; Lundberg, S.M.; Martins, T.J.; Oehler, V.G. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun. 2018, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Liddy, E.D. Natural Language Processing. In Encyclopedia of Library and Information Science, 2nd ed.; Marcel Decker, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Bann, S.; Khan, M.; Hernandez, J.; Munz, Y.; Moorthy, K.; Datta, V.; Rockall, T.; Darzi, A. Robotics in Surgery. J. Am. Coll. Surg. 2003, 196, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.R.; Yang, Z. Comprehensive Biomedical Physics; Karolinska Institute Stockholm, Sweden; Elsevier: Amsterdam, The Netherlands, 2014; p. 1. [Google Scholar]
- Teuwen, J.; Moriakov, N. Handbook of Medical Image Computing and Computer Assisted Intervention; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Sørensen, L.K.; Hasselstrøm, J.B.; Larsen, L.S.; Bindslev, D.A. Entrapment of Drugs in Dental Calculus—Detection Validation Based on Test Results from Post-Mortem Investigations. Forensic Sci. Int. 2021, 319, 110647. [Google Scholar] [CrossRef]
- Setiawan, I.; Lesmana, D.; Marhaeni Diah Herawati, D.; Sufiawati, I.; Widyaputra, S. Correlation between the Macronutrient Content of Dental Calculus and the FFQ-Based Nutritional Intake of Obese and Normal-Weight Individuals. Int. J. Dent. 2021, 2021, 5579208. [Google Scholar] [CrossRef]
- Mohammad, N.; Ahmad, R.; Kurniawan, A.; Mohd Yusof, M.Y.P. Applications of Contemporary Artificial Intelligence Technology in Forensic Odontology as Primary Forensic Identifier: A Scoping Review. Front. Artif. Intell. 2022, 5, 1049584. [Google Scholar] [CrossRef] [PubMed]
- Khanagar, S.B.; Vishwanathaiah, S.; Naik, S.; Al-Kheraif, A.; Devang Divakar, D.; Sarode, S.C.; Bhandi, S.; Patil, S. Application and Performance of Artificial Intelligence Technology in Forensic Odontology—A Systematic Review. Leg. Med. 2021, 48, 101826. [Google Scholar] [CrossRef]
- Thurzo, A.; Kosnáčová, H.S.; Kurilová, V.; Kosmeľ, S.; Beňuš, R.; Moravanský, N.; Kováč, P.; Kuracinová, K.M.; Palkovič, M.; Varga, I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare 2021, 9, 1545. [Google Scholar] [CrossRef] [PubMed]
- Niño-Sandoval, T.C.; Guevara Pérez, S.V.; González, F.A.; Jaque, R.A.; Infante-Contreras, C. Use of Automated Learning Techniques for Predicting Mandibular Morphology in Skeletal Class I, II and III. Forensic Sci. Int. 2017, 281, 187.e1–187.e7. [Google Scholar] [CrossRef]
- Matsuda, S.; Yoshimura, H. Personal Identification with Artificial Intelligence under COVID-19 Crisis: A Scoping Review. Syst. Rev. 2022, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Park, K. Body-Based Gender Recognition Using Images from Visible and Thermal Cameras. Sensors 2016, 16, 156. [Google Scholar] [CrossRef]
- Massimo, L. From Fingers to Faces: Visual Semiotics and Digital Forensics. Int. J. Semiot. Law 2021, 34, 579–599. [Google Scholar]
- Bobbili, R.; Ramakrishna, B.; Madhu, V. An Artificial Intelligence Model for Ballistic Performance of Thin Plates. Mech. Based Des. Struct. Mach. 2023, 51, 327–338. [Google Scholar] [CrossRef]
- Georgieva, L.; Dimitrova, T.; Stoyanov, I. Computer-Aided System for the Bruise Color’s Recognition; Bulgarian Chapter: Sofia, Bulgaria, 2005; pp. 1–6. [Google Scholar]
- Hachem, M.; Sharma, B.K. Artificial Intelligence in Prediction of PostMortem Interval (PMI) through Blood Biomarkers in Forensic Examination–A Concept. In Proceedings of the 2019 Amity International Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates, 4–6 February 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Zou, Y.; Zhuang, C.; Fang, Q.; Li, F. Big Data and Artificial Intelligence: New Insight into the Estimation of Postmortem Interval. Fa Yi Xue Za Zhi 2020, 36, 86–90. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Wang, L.; Yuan, H.; Guan, D.; Zhao, R. Advances in Artificial Intelligence-Based Microbiome for PMI Estimation. Front. Microbiol. 2022, 13, 1034051. [Google Scholar] [CrossRef]
- Gasteiger, J. Chemistry in Times of Artificial Intelligence. Chemphyschem 2020, 21, 2233–2242. [Google Scholar] [CrossRef]
- Helma, C. Data Mining and Knowledge Discovery in Predictive Toxicology. SAR QSAR Environ. Res. 2004, 15, 367–383. [Google Scholar] [CrossRef]
- Golomingi, R.; Haas, C.; Dobay, A.; Kottner, S.; Ebert, L. Sperm Hunting on Optical Microscope Slides for Forensic Analysis with Deep Convolutional Networks—A Feasibility Study. Forensic Sci. Int. Genet. 2022, 56, 102602. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, V. Artificial intelligence in forensic science. artificial intelligence in forensic science. Int. Res. J. Eng. Technol. 2020, 7, 7181–7184. [Google Scholar]
- Sullivan, S.O.; Holzinger, A.; Zatloukal, K.; Saldiva, P.; Sajid, M.I.; Wichmann, D. Machine Learning Enhanced Virtual Autopsy. Autops. Case Rep. 2017, 7, 3–7. [Google Scholar] [CrossRef]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336. [Google Scholar]
- Santin, M.; Brama, C.; Théro, H.; Ketheeswaran, E.; El-Karoui, I.; Bidault, F.; Gillet, R.; Gondim Teixeira, P.; Blum, A. Detecting Abnormal Thyroid Cartilages on CT Using Deep Learning. Diagn. Interv. Imaging 2019, 100, 251–257. [Google Scholar] [CrossRef]
- Qiu, S.; Joshi, P.S.; Miller, M.I.; Xue, C.; Zhou, X.; Karjadi, C.; Chang, G.H.; Joshi, A.S.; Dwyer, B.; Zhu, S.; et al. Development and Validation of an Interpretable Deep Learning Framework for Alzheimer’s Disease Classification. Brain 2020, 143, 1920–1933. [Google Scholar] [CrossRef]
- Salazar, L.; Vasquez, J.F.; Torres, C.L.B.; Camacho, J.; Turbay, C.I.; Garnica, D.E.; Torralba, F.; Isaza-Restrepo, D.; Alferez, S. Prediction of Acute Complications in Patients with Myocardial Infarction Using Artificial Intelligence. J. Am. Coll. Cardiol. 2023, 81, 2404. [Google Scholar] [CrossRef]
- Attia, Z.I.; Kapa, S.; Yao, X.; Lopez-Jimenez, F.; Mohan, T.L.; Pellikka, P.A.; Carter, R.E.; Shah, N.D.; Friedman, P.A.; Noseworthy, P.A. Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. J. Cardiovasc. Electrophysiol. 2019, 30, 668–674. [Google Scholar] [CrossRef]
- Alsharqi, M.; Woodward, W.J.; Mumith, J.A.; Markham, D.C.; Upton, R.; Leeson, P. Artificial intelligence and echocardiography. Echo Res. Pract. 2018, 5, R115–R125. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Guo, L.-J.; Yuan, X.-L.; Hu, B. Artificial Intelligence-Assisted Esophageal Cancer Management: Now and Future. World J. Gastroenterol. 2020, 26, 5256–5271. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in Health and Medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Young, A.T.; Xiong, M.; Pfau, J.; Keiser, M.J.; Wei, M.L. Artificial Intelligence in Dermatology: A Primer. J. Investig. Dermatol. 2020, 140, 1504–1512. [Google Scholar] [CrossRef]
- Dick, V.; Sinz, C.; Mittlböck, M.; Kittler, H.; Tschandl, P. Accuracy of Computer-Aided Diagnosis of Melanoma: A Meta-analysis. JAMA Dermatol. 2019, 155, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Verspoor, K.; Jenkinson, M.; Law, M.; Abbott, D.F.; Jackson, G.D. Artificial intelligence for clinical decision support in neurology. Brain Commun. 2020, 2, fcaa096. [Google Scholar] [CrossRef]
- Rathi, S.; Tsui, E.; Mehta, N.; Zahid, S.; Schuman, J.S. The Current State of Teleophthalmology in the United States. Ophthalmology 2017, 124, 1729–1734. [Google Scholar] [CrossRef] [PubMed]
- Kröner, P.T.; Engels, M.M.; Glicksberg, B.S.; Johnson, K.W.; Mzaik, O.; van Hooft, J.E.; Wallace, M.B.; El-Serag, H.B.; Krittanawong, C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J. Gastroenterol. 2021, 27, 6794–6824. [Google Scholar] [CrossRef]
- Idowu, I.O.; Fergus, P.; Hussain, A.; Dobbins, C.; Khalaf, M.; Eslava, R.V.C.; Keight, R. Artificial Intelligence for Detecting Preterm Uterine Activity in Gynecology and Obstetric Care. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28 October 2015; pp. 215–220. [Google Scholar]
- Sone, K.; Toyohara, Y.; Taguchi, A.; Miyamoto, Y.; Tanikawa, M.; Uchino-Mori, M.; Iriyama, T.; Tsuruga, T.; Osuga, Y. Application of artificial intelligence in gynecologic malignancies: A review. J. Obstet. Gynaecol. Res. 2021, 47, 2577–2585. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, Y.; Park, J.H.; Heng, P.A.; Zhou, S.K. Iterative Multi-Domain Regularized Deep Learning for Anatomical Structure Detection and Segmentation from Ultrasound Images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 487–495. [Google Scholar]
- Ghafoorian, M.; Karssemeijer, N.; Heskes, T.; van Uden, I.W.M.; Sanchez, C.I.; Litjens, G.; de Leeuw, F.E.; van Ginneken, B.; Marchiori, E.; Platel, B. Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Sci. Rep. 2017, 7, 5110. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Z.; Li, Y.; Chen, Z.; Lu, P.; Wang, W.; Liu, W.; Yu, L. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Davenport, T.; Kalakota, R. The Potential for Artificial Intelligence in Healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Weng, S.F.; Reps, J.; Kai, J.; Garibaldi, J.M.; Qureshi, N. Can machine learning improve cardiovascular risk prediction using routine clinical data? PLoS ONE 2017, 12, e0174944. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.Y.; Guo, Y.; Shen, M.; Yang, G.Z. Application of artificial intelligence in surgery. Front. Med. 2020, 14, 417–430. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Li, W.; Yang, G.Z. Robotic Sewing and Knot Tying for Personalized Stent Graft Manufacturing. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 754–760. [Google Scholar]
- Hu, Y.; Li, W.; Zhang, L.; Yang, G.Z. Designing, prototyping, and testing a flexible suturing robot for transanal endoscopic microsurgery. IEEE Robot. Autom. Lett. 2019, 4, 1669–1675. [Google Scholar] [CrossRef]
- Shademan, A.; Decker, R.S.; Opfermann, J.D.; Leonard, S.; Krieger, A.; Kim, P.C.W. Supervised autonomous robotic soft tissue surgery. Sci. Transl. Med. 2016, 8, 337ra64. [Google Scholar] [CrossRef] [PubMed]
- Poalelungi, D.G.; Musat, C.L.; Fulga, A.; Neagu, M.; Neagu, A.I.; Piraianu, A.I.; Fulga, I. Advancing Patient Care: How Artificial Intelligence Is Transforming Healthcare. J. Pers. Med. 2023, 13, 1214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piraianu, A.-I.; Fulga, A.; Musat, C.L.; Ciobotaru, O.-R.; Poalelungi, D.G.; Stamate, E.; Ciobotaru, O.; Fulga, I. Enhancing the Evidence with Algorithms: How Artificial Intelligence Is Transforming Forensic Medicine. Diagnostics 2023, 13, 2992. https://doi.org/10.3390/diagnostics13182992
Piraianu A-I, Fulga A, Musat CL, Ciobotaru O-R, Poalelungi DG, Stamate E, Ciobotaru O, Fulga I. Enhancing the Evidence with Algorithms: How Artificial Intelligence Is Transforming Forensic Medicine. Diagnostics. 2023; 13(18):2992. https://doi.org/10.3390/diagnostics13182992
Chicago/Turabian StylePiraianu, Alin-Ionut, Ana Fulga, Carmina Liana Musat, Oana-Roxana Ciobotaru, Diana Gina Poalelungi, Elena Stamate, Octavian Ciobotaru, and Iuliu Fulga. 2023. "Enhancing the Evidence with Algorithms: How Artificial Intelligence Is Transforming Forensic Medicine" Diagnostics 13, no. 18: 2992. https://doi.org/10.3390/diagnostics13182992
APA StylePiraianu, A. -I., Fulga, A., Musat, C. L., Ciobotaru, O. -R., Poalelungi, D. G., Stamate, E., Ciobotaru, O., & Fulga, I. (2023). Enhancing the Evidence with Algorithms: How Artificial Intelligence Is Transforming Forensic Medicine. Diagnostics, 13(18), 2992. https://doi.org/10.3390/diagnostics13182992